December 2013

1301 Series High-Pressure Regulators

Figure 1. Type 1301F Regulator

Features

- Durable Stainless Steel Diaphragm—For high-outlet pressure applications.
- Spare Valve Disk Provided—Extra valve disk through a reversible disk holder assembly.
- Versatility—Can control a variety of media including air, gas, water, and other liquids.
- ANSI Class VI Shutoff—Soft-seat valve plug disks ensure tight shutoff.
- Sour Gas Service Capability—Optional materials are available for applications handling sour gases. These constructions comply with the recommendations of NACE International Standards MR0175 and MR0103.

Introduction

The proven reliability and accurate regulation of the 1301 Series regulators (see Figure 1) make them ideal for numerous high-pressure drop applications. They are direct-operated, high-pressure regulators designed for inlet pressures up to 6000 psig / 414 bar. The Type 1301F can handle outlet pressures from 10 to 225 psig / 0.69 to 15.5 bar in three ranges and the Type 1301G can handle outlet pressures from 200 to 500 psig / 13.8 to 34.5 bar in one range.

These multi-purpose regulators can be used as pilot supply or pressure-loaded regulators where high-pressure operating medium must be reduced for use by gas regulator pilots or pressure-loaded regulators. Their rugged design offers versatility for a wide variety of applications including air, gas, water, and other liquids. An optional spring case with a tapped vent and adjusting screw closing cap is available that enables the Type 1301F to be used as a pressureloaded regulator.

www.fisherregulators.com

Specifications

Available Configurations Type 1301F: Direct-operated, high-pressure reducing regulator for inlet pressures to 6000 psig / 414 bar and outlet pressure ranges from 10 to 225 psig / 0.69 to	C′
15.5 bar in three ranges Type 1301G: Direct-operated, high-pressure reducing regulator for inlet pressures to 6000 psig / 414 bar and an outlet pressure range of 200 to 500 psig / 13.8 to 34.5 bar	W
Body Size and End Connection Style 1/4 NPT (one inlet and two outlet connections); CL300 RF, CL600 RF, and CL1500 RF; or PN 25 RF (all flanges are 125 RMS)	0
Maximum Inlet Pressure ⁽¹⁾ Brass Body: Air and Gas: 6000 psig / 414 bar at or below 200°F / 93°C and 1000 psig / 69.0 bar above 200°F / 93°C Liquid:	Те
Polytetrafluoroethylene (PTFE) Disk: 1000 psig / 69.0 bar Nylon (PA) Disk: Water: 1000 psig / 69.0 bar Other Liquids: 2000 psig / 138 bar Stainless Body: Air and Gas: 6000 psig / 414 bar	Lo
Liquid: Polytetrafluoroethylene (PTFE) Disk: 1000 psig / 69.0 bar Nylon (PA) Disk: Water: 1000 psig / 69.0 bar Other Liquids: 2000 psig / 138 bar	SI
Maximum Emergency Outlet Pressure ⁽¹⁾ Type 1301F: 250 psig / 17.2 bar Type 1301G: 550 psig / 37.9 bar	
Outlet Pressure Ranges See Table 1	0
Pressure Registration Internal	
Recovery Coefficient K _m : 0.72	
Flow Capacities Air: See Tables 2, 3, and 4 Water: See Tables 5 and 6	A

C_v Coefficients at 20% Droop Type 1301F: See Table 7 Type 1301G: See Table 8

Wide-Open Flow Coefficients for Relief Valve Sizing Cg: 5.0 Cv: 0.13

C₁: 38.5

IEC Sizing Coefficients

X_T: 0.938 F_D: 0.50 F_L: 0.85

Orifice Size

5/64-inch / 2.0 mm

Temperature Capabilities⁽¹⁾

Nylon (PA) Valve Disk and Neoprene (CR) Gaskets: -20 to 180°F / -29 to 82°C PTFE Valve Disk and Fluorocarbon (FKM) Gaskets: -20 to 400°F / -29 to 204°C⁽²⁾ PTFE Valve Disk and Ethylenepropylene (EPDM) Gaskets: -40 to 300°F / -40 to 149°C

Low Temperature Service

Service to -65°F / -54°C is available with low temperature bolting and special low temperature Nitrile (NBR) O-rings to replace the gaskets.

Service to -80°F / -62°C is available with low temperature bolting and special low temperature Fluorosilicone (FVQM) O-rings to replace the gaskets.

Spring Case Vents

Type 1301F Brass Spring Case: Four 5/32-inch / 4.0 mm holes Type 1301F Stainless Steel Spring Case: One 1/4 NPT connection Type 1301G: One 1/8 NPT connection with screen

Options

- Pipe plug in second outlet
- Handwheel adjusting screw (Type 1301F only)
- Panel mounting spring case with T-handle adjusting screw (Type 1301G only)
- Bracket for mounting regulator on yoke of control valve actuator
- NACE construction
- Stainless steel construction

Approximate Weight

8 pounds / 3.6 kg

. The pressure/temperature limits in this Bulletin and any applicable standard or code limitation should not be exceeded.

2. Fluorocarbon (FKM) is limited to 180°F / 82°C hot water.

Specifications (continued)

Construction Materials Standard Construction Body and Spring Case: Forged brass or CF8M Stainless steel Bottom Cap: Brass, 304 Stainless steel, or 316 Stainless steel Orifice: 303 Stainless steel Valve Disks and Holder: Nylon (PA) and Zinc-plated brass, PTFE and Zinc-plated brass, Nylon (PA) and 303 Stainless steel, or PTFE and 303 Stainless steel Orifice Yoke: Brass or 316 Stainless steel Valve Disk Collem: 204 Stainless steel	Construction Materials (continued) NACE Construction Body and Bottom Cap: CF8M Stainless steel Spring Case: CF8M Stainless steel Orifice: 316 Stainless steel Valve Disks and Holder: PTFE and 316 Stainless steel Orifice Yoke: 316 Stainless steel Valve Disk Collar: 316 Stainless steel Gaskets: Fluorocarbon (FKM) Bottom Cap O-ring: Fluorocarbon (FKM) Regulator Spring: Zinc-plated steel
Valve Disk Collar: 304 Stainless steel Elastomers: Neoprene (CR), Fluorocarbon (FKM), or Ethylenepropylene (EPDM) Regulator Spring: Zinc-plated steel Valve Spring: 302 Stainless steel Diaphragm Plate: Zinc-plated steel Adjusting Screw and Bolting: Double Zinc-plated steel with zinc dichromate overlay Upper Spring Seat: Zinc-plated steel	Valve Spring: Inconel [®] X750 Diaphragm Plate: Zinc-plated steel Adjusting Screw and Bolting: Double Zinc-plated steel with zinc dichromate overlay Upper Spring Seat: Zinc-plated steel Diaphragm: K500 Monel [®]

Diaphragm: 302 Stainless steel

Inconel® and Monel® are marks owned by Special Metals Corporation.

Table 1. Outlet Pressure Ranges

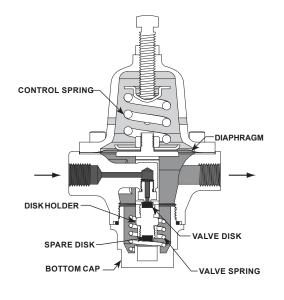
OUTLET PRESS	URE RANGES ⁽¹⁾	SPRING PART	SPRING COLOR	SPRING WIR	E DIAMETER	SPRING FREE LENGTH		
psig	bar	NUMBER	CODE	Inch	mm	Inch	mm	
10 to 75	0.69 to 5.2	1D387227022	Blue	0.200	5.08			
50 to 150	3.4 to 10.3	1B788527022	Silver	0.225	5.72	1.69	42.9	
100 to 225	6.9 to 15.5	1D465127142	Red	0.243	6.17			
200 to 500	13.8 to 34.5	1K156027142	Silver	0.331	8.41	1.88	47.8	
	psig 10 to 75 50 to 150 100 to 225	10 to 75 0.69 to 5.2 50 to 150 3.4 to 10.3 100 to 225 6.9 to 15.5	psig bar NUMBER 10 to 75 0.69 to 5.2 1D387227022 50 to 150 3.4 to 10.3 1B788527022 100 to 225 6.9 to 15.5 1D465127142	psig bar NUMBER SPRING PART SPRING COLOR 10 to 75 0.69 to 5.2 1D387227022 Blue 50 to 150 3.4 to 10.3 1B788527022 Silver 100 to 225 6.9 to 15.5 1D465127142 Red	psig bar NUMBER SPRING CODE Inch 10 to 75 0.69 to 5.2 1D387227022 Blue 0.200 50 to 150 3.4 to 10.3 1B788527022 Silver 0.225 100 to 225 6.9 to 15.5 1D465127142 Red 0.243	psig bar NUMBER CODE Inch mm 10 to 75 0.69 to 5.2 1D387227022 Blue 0.200 5.08 50 to 150 3.4 to 10.3 1B788527022 Silver 0.225 5.72 100 to 225 6.9 to 15.5 1D465127142 Red 0.243 6.17	psig bar NUMBER CODE Inch mm Inch 10 to 75 0.69 to 5.2 1D387227022 Blue 0.200 5.08 1.69 50 to 150 3.4 to 10.3 1B788527022 Silver 0.225 5.72 1.69 100 to 225 6.9 to 15.5 1D465127142 Red 0.243 6.17	

1. All springs can be backed off to 0 psig / 0 bar.

Principle of Operation

The 1301 Series regulators are direct-operated. Downstream pressure is registered internally through the body to the underside of the diaphragm. When downstream pressure is at or above set pressure, the disk is held against the orifice and there is no flow through the regulator. When demand increases, downstream pressure decreases slightly allowing the regulator spring to extend, moving the yoke and disk assembly down and away from the orifice. This allows flow through the body to the downstream system. As the downstream pressure reach its setting, it started to overcome the spring force which is sensed by the diaphragm, moving the yoke and disk assembly up and near its orifice, restricting the flow across the regulator.

Installation


The 1301 Series regulators may be installed in any position. Spring case vents must be protected against the entrance of rain, snow, debris, or any other foreign material that might plug the vent openings. The inlet connection is marked "In" and the three outlet connections are marked "Out". If a pressure gauge is not installed in one outlet connection, plug the unused connection. See Figure 3 for dimensions.

Overpressure Protection

The 1301 Series regulators have outlet pressure ratings lower than the inlet pressure ratings. Complete downstream overpressure protection is needed if the actual inlet pressure exceeds the outlet pressure rating.

Overpressuring any portion of a regulator or associated equipment may cause leakage, parts damage, or personal injury due to bursting of pressure-containing parts or explosion of accumulated gas. Regulator operation within ratings does not preclude the possibility of damage from external sources or from debris in the pipeline. A regulator should be inspected for damage periodically and after any overpressure condition.

Refer to the relief sizing coefficients in the Specifications and the Capacity Information section to determine the required relief valve capacity.

M1015

Figure 2. Type 1301F Operational Schematic

Capacity Information

Air Capacities

Tables 2 and 3 give regulating capacities at selected pressures and outlet pressure flows in SCFH (at 60°F and 14.7 psia) and Nm³/h (at 0°C and 1.01325 bar) of air. To determine the equivalent capacities for other gases, multiply the table capacities by the following appropriate conversion factors: 1.29 for 0.6 specific gravity natural gas, 0.808 for propane, 0.707 for butane, or 1.018 for nitrogen. For gases of other specific gravities, divide by the square root of the appropriate specific gravity.

To determine wide-open flow capacity for relief valve sizing, use one of the following equations:

For Critical Pressure Drops

Use this equation for critical pressure drops (absolute outlet pressure equal to one-half or less than one-half the absolute inlet pressure).

$$Q = P_{1(abs)}C_g$$

where,

Q = gas flow rate, SCFH

C_g = gas sizing coefficient

P₁ = absolute inlet pressure, psia

For Non-Critical Pressure Drops

Use this equation for pressure drops lower than critical (absolute outlet pressure greater than one-half of absolute inlet pressure).

$$Q = \sqrt{\frac{520}{GT}} C_g P_1 SIN \left(\frac{3417}{C_1} \sqrt{\frac{\Delta P}{P_1}} \right) DEG$$

where,

- Q = gas flow rate, SCFH
- G = specific gravity of the gas
- T = absolute temperature of gas at inlet, °Rankine
- C_g = gas sizing coefficient
- P_1 = absolute inlet pressure, psia
- $C_1 =$ flow coefficient
- ΔP = pressure drop across the regulator, psi

Then, if capacity is desired in normal cubic meters per hour at 0°C and 1.01325 bar, multiply SCFH by 0.0268.

Liquid Capacities

Tables 5 and 6 give regulating capacities in U.S. gallons per minute and liters per minute of water.

To determine regulating capacities at pressure settings not given in Tables 5 and 6, or to determine wide-open capacities for relief sizing at any inlet pressure, use the following equation.

$$Q = C_V \sqrt{\frac{\Delta P}{G}}$$

where,

 ΔP = pressure drop across the regulator, psi

- C_v = regulating or wide-open flow coefficient
- G = specific gravity of the liquid

								CAP	ACITIE	S IN SC	FH / N	m³/h Ol	AIR					
OUTLET PRESSURE	OUT PRES			Inlet Pressure,							e, psig / bar							
RANGE, SPRING PART NUMBER,	SET			100	/ 6.9			250 /	17.2			500 /	34.5			750 /	51.7	
AND COLOR			10%	Droop	20% I	Droop	10%	Droop	20% [Droop	10% [Droop	20% [Droop	10% I	Droop	20% [Droop
	psig	bar	SCFH	Nm³/h	SCFH	Nm³/h	SCFH	Nm³/h	SCFH	Nm³/h	SCFH	Nm³/h	SCFH	Nm³/h	SCFH	Nm³/h	SCFH	Nm³/h
10 to 75 psig / 0.69 to 5.2 bar 1D387227022, Blue	25 50 75	1.7 3.4 5.2	190 280 250	5.1 7.5 6.7	290 400 400	7.8 10.7 10.7	300 480 600	8.0 12.9 16.1	480 800 900	12.9 21.4 24.1	400 720 900	10.7 19.3 24.1	650 1000 1400	17.4 26.8 37.5	500 840 1000	13.4 22.5 26.8	750 1200 1600	20.1 32.2 42.9
50 to 150 psig / 3.4 to 10.3 bar 1B788527022, Silver	75 150	5.2 10.3	200	5.4	350	9.4	500 750	13.4 20.1	800 1000	21.4 26.8	800 1100	21.4 29.5	1300 1800	34.8 48.2	950 1450	25.5 38.9	1500 2300	40.2 61.6
100 to 225 psig / 6.9 to 15.5 bar 1D465127142, Red	150 225	10.3 15.5		 			650 500	17.4 13.4	900 800	24.1 21.4	1000 1400	26.8 37.5	1700 2100	45.6 56.3	1350 1900	36.2 50.9	2200 2900	59.0 77.7

Table 2. Type 1301F Regulating Capacities — Air with 100 to 750 psig / 6.9 to 51.7 bar Inlet Pressure

Table 3. Type 1301F Regulating Capacities — Air with 1000 to 2000 psig / 69.0 to 138 bar Inlet Pressure

		CAPACITIES IN SCFH / Nm ³ /h OF AIR												
OUTLET PRESSURE		'LET SURE		Inlet Pressure, psig / bar										
RANGE, SPRING PART		SETTING		1000 / 69.0				1500 / 103				2000	/ 138	
NUMBER, AND COLOR			10% [Droop	20% [Droop	10% [Droop	20% [Droop	10%	Droop	20% [Droop
	psig	bar	SCFH	Nm³/h	SCFH	Nm³/h	SCFH	Nm³/h	SCFH	Nm³/h	SCFH	Nm³/h	SCFH	Nm³/h
10 to 75 psig / 0.69 to 5.2 bar 1D387227022, Blue	25 50 75	1.7 3.4 5.2	520 900 1100	13.9 24.1 29.5	770 1300 1700	20.6 34.8 45.6	540 950 1200	14.5 25.5 32.2	800 1400 1800	21.4 37.5 48.2	560 1000 1300	15.0 26.8 34.8	820 1500 1900	22.0 40.2 50.9
50 to 150 psig / 3.4 to 10.3 bar 1B788527022, Silver	75 150	5.2 10.3	1000 1600	26.8 42.9	1600 2600	42.9 69.7	1100 1700	29.5 45.6	1700 2800	45.6 75.0	1200 1800	32.2 48.2	1800 3000	48.2 80.4
100 to 225 psig / 6.9 to 15.5 bar 1D465127142, Red	150 225	10.3 15.5	1500 2400	40.2 64.3	2250 3500	60.3 93.8	1650 2700	44.2 72.4	2750 4000	73.7 107	1800 3000	48.2 80.4	3000 4500	80.4 121

Table 4. Type 1301G Regulating Capacities — Air

	ουτ	LET							CAPA		S IN SC	FH/N	m³/h O	F AIR				
OUTLET PRESSURE RANGE. SPRING PART	PRESSURE		PRESSURE OFFSET		OFFSET Inlet Pressure, psig / bar													
NUMBER, AND COLOR	SET	TING			300 / 20.7		500 / 34.5		750 / 51.7		1000 / 69.0		1500 / 103		2000 / 138		2250 / 155	
	psig	bar	psig	bar	SCFH	Nm³/h	SCFH	Nm³/h	SCFH	Nm³/h	SCFH	Nm³/h	SCFH	Nm³/h	SCFH	Nm³/h	SCFH	Nm³/h
200 to 500 psig / 13.8 to 34.5 bar	200	13.8	10 20 30 40	0.69 1.4 2.1 2.8	350 650 900 1100	9.4 17.4 24.1 29.5	550 900 1350 1650	14.7 24.1 36.2 44.2	750 1200 1700 2100	20.1 32.2 45.6 56.3	950 1500 2000 2500	25.5 40.2 53.6 67.0	1100 1800 2300 3000	29.5 48.2 61.6 80.4	1250 2000 2700 3500	33.5 53.6 72.4 93.8	1400 2100 3000 3700	37.5 56.3 80.4 99.2
1K156027142, Silver	500	34.5	15 25 50	1.0 1.7 3.4		 			800 1400 2200	21.4 37.5 59.0	1000 1600 2800	26.8 42.9 75.0	1300 2000 3300	34.8 53.6 88.4	1500 2600 4000	40.2 69.7 107	1600 2800 4500	42.9 75.0 121

Table 5.	Type 1301	F Regulating	Capacities —	Water ⁽¹⁾
----------	-----------	--------------	--------------	----------------------

OUTLET	OUTLET CAPACITIES IN GALLONS / liters PER MINUTE OF WATER BA									20% DROO	P		
PRESSURE SETTING			Inlet Pressure, psig / bar										
		SETTING		100 / 6.9		250 / 17.2		500 / 34.5		750 /	51.7	1000 / 69.0(1)	
psig	bar	Gallons	Liters	Gallons	Liters	Gallons	Liters	Gallons	Liters	Gallons	Liters		
25 50 75	1.7 3.4 5.2	0.50 0.50 0.46	2.0 2.0 1.7	0.73 0.83 0.91	2.8 3.1 3.4	0.94 1.12 1.28	3.6 4.2 4.8	1.09 1.32 1.52	4.1 5.0 5.7	1.16 1.43 1.69	4.4 5.4 6.4		
75 150	5.2 10.3	0.43	1.6	0.88 1.01	3.3 3.8	1.24 1.64	4.7 6.2	1.49 2.02	5.6 7.6	1.65 2.31	6.2 8.7		
150 225	10.3 15.5			0.95 0.84	3.6 3.2	1.56 1.73	5.9 6.5	1.96 2.27	7.4 8.6	2.24 2.68	8.5 10.1		
	PRESS SETT psig 25 50 75 75 150 150	PRESSURE SETTING psig bar 25 1.7 50 3.4 75 5.2 75 5.2 150 10.3 150 10.3	OUTLET PRESSURE SETTING 100 psig bar Gallons 25 1.7 0.50 50 3.4 0.50 75 5.2 0.46 75 5.2 0.43 150 10.3 150 10.3	OUTLET PRESSURE SETTING Image: Constraint of the sector of t	OUTLET PRESSURE SETTING 100 / 6.9 250 / psig bar Gallons Liters Gallons 25 1.7 0.50 2.0 0.73 50 3.4 0.50 2.0 0.83 75 5.2 0.46 1.7 0.91 75 5.2 0.43 1.6 0.88 150 10.3 1.01 1.01	OUTLET PRESSURE SETTING Gallons Liters Gallons Liters psig bar Gallons Liters Gallons Liters 25 1.7 0.50 2.0 0.73 2.8 50 3.4 0.50 2.0 0.83 3.1 75 5.2 0.46 1.7 0.91 3.4 75 5.2 0.43 1.6 0.88 3.3 150 10.3 1.01 3.8 150 10.3 0.95 3.6	OUTLET PRESSURE SETTING Inlet Pressur 100 / 6.9 250 / 17.2 500 / psig bar Gallons Liters Gallons Liters Gallons 25 1.7 0.50 2.0 0.73 2.8 0.94 50 3.4 0.50 2.0 0.83 3.1 1.12 75 5.2 0.46 1.7 0.91 3.4 1.28 75 5.2 0.43 1.6 0.88 3.3 1.24 150 10.3 1.01 3.8 1.64 150 10.3 0.95 3.6 1.56	OUTLET PRESSURE SETTING Inlet Pressure, psig / b 100 / 6.9 250 / 17.2 500 / 34.5 psig bar Gallons Liters Gallons Liters Gallons Liters 25 1.7 0.50 2.0 0.73 2.8 0.94 3.6 50 3.4 0.50 2.0 0.73 2.8 0.94 3.6 75 5.2 0.46 1.7 0.91 3.4 1.28 4.8 75 5.2 0.43 1.6 0.88 3.3 1.24 4.7 150 10.3 1.01 3.8 1.64 6.2 150 10.3 0.95 3.6 1.56 5.9	OUTLET PRESSURE SETTING Inlet Pressure, psig / bar 100 / 6.9 250 / 17.2 500 / 34.5 750 / psig bar Gallons Liters Gallons Liters Gallons Liters Gallons Liters Gallons 25 1.7 0.50 2.0 0.73 2.8 0.94 3.6 1.09 50 3.4 0.50 2.0 0.83 3.1 1.12 4.2 1.32 75 5.2 0.46 1.7 0.91 3.4 1.28 4.8 1.52 75 5.2 0.43 1.6 0.88 3.3 1.24 4.7 1.49 150 10.3 1.01 3.8 1.64 6.2 2.02 150 10.3 0.95 3.6 1.56 5.9 1.96	OUTLET PRESSURE SETTING Inlet Pressure, psig / bar Inlet Pressure, psig / bar 100 / 6.9 250 / 17.2 500 / 34.5 750 / 51.7 psig bar Gallons Liters 25 1.7 0.50 2.0 0.73 2.8 0.94 3.6 1.09 4.1 50 3.4 0.50 2.0 0.83 3.1 1.12 4.2 1.32 5.0 75 5.2 0.46 1.7 0.91 3.4 1.28 4.8 1.52 5.7 150 10.3 </td <td>OUTLET PRESSURE SETTING Inlet Pressure, psig / bar 100 / 6.9 250 / 17.2 500 / 34.5 750 / 51.7 1000 / psig bar Gallons Liters Gallons 25 1.7 0.50 2.0 0.73 2.8 0.94 3.6 1.09 4.1 1.16 50 3.4 0.50 2.0 0.83 3.1 1.12 4.2 1.32 5.0 1.43 75 5.2 0.46 1.7 0.91 3.4 1.28 4.8 1.52 5.7 1.69 75 5.2 0.43 1.6 0.88 3.3 1.24 4.7 1.49 5.6 1.65 150 10.3 1.01 3.8 1.64 6.2 2.02 7.6 2.31 150 10.3 0.95</td>	OUTLET PRESSURE SETTING Inlet Pressure, psig / bar 100 / 6.9 250 / 17.2 500 / 34.5 750 / 51.7 1000 / psig bar Gallons Liters Gallons 25 1.7 0.50 2.0 0.73 2.8 0.94 3.6 1.09 4.1 1.16 50 3.4 0.50 2.0 0.83 3.1 1.12 4.2 1.32 5.0 1.43 75 5.2 0.46 1.7 0.91 3.4 1.28 4.8 1.52 5.7 1.69 75 5.2 0.43 1.6 0.88 3.3 1.24 4.7 1.49 5.6 1.65 150 10.3 1.01 3.8 1.64 6.2 2.02 7.6 2.31 150 10.3 0.95		

Bulletin 71.1:1301

			CAPACITIES IN GALLONS / liters PER MINUTE OF WATER BASED ON 20% DROOP											
OUTLET PRESSURE RANGE,		RESSURE		Inlet Pressure, psig / bar										
SPRING PART NUMBER, AND COLOR	021		300 /	20.7	500 /	34.5	750 /	51.7	1000 / 69.0 ⁽¹⁾					
	psig	bar	Gallons	Liters	Gallons	Liters	Gallons	Liters	Gallons	Liters				
200 to 500 psig / 13.8 to 34.5 bar 1K156027142, Silver	200 500	13.8 34.5	1.12	4.2	1.73	6.5	2.24 1.99	8.5 7.5	2.64 2.58	10.0 9.8				
1. Inlet pressure greater than 1000 psig	/ 69.0 bar is no	t recommende	d for water serv	vice.										

Table 6. Type 1301G Regulating Capacities — Water⁽¹⁾

Table 7. Type 1301F C_V Coefficients⁽¹⁾ — Incompressible Fluid

DDECC		ROOP									
	Inlet Pressure, psig / bar										
psig	bar	100 / 6.9	250 / 17.2	500 / 34.5	750 / 51.7	1000 / 69.0	1500 / 103 ⁽¹⁾	2000 / 138(1)			
25 50 75	1.7 3.4 5.2	0.056 0.065 0.073	0.048 0.057 0.066	0.043 0.052 0.061	0.040 0.050 0.058	0.037 0.046 0.055	0.032 0.041 0.051	0.029 0.038 0.049			
75 150	5.2 10.3	0.068	0.064 0.089	0.059 0.084	0.057 0.080	0.054 0.078	0.050 0.075	0.047 0.074			
150 225	10.3 15.5		0.083 0.100	0.080 0.097	0.078 0.095	0.076 0.094	0.074 0.092	0.074 0.091			
	osig 25 50 75 75 150 150 225	25 1.7 50 3.4 75 5.2 75 5.2 150 10.3 150 10.3 225 15.5	Desig bar 100 / 6.9 25 1.7 0.056 50 3.4 0.065 75 5.2 0.073 75 5.2 0.068 150 10.3 150 15.5	Desig bar 100 / 6.9 250 / 17.2 25 1.7 0.056 0.048 50 3.4 0.065 0.057 75 5.2 0.073 0.066 75 5.2 0.068 0.064 150 10.3 0.089 150 10.3 0.083 225 15.5 0.100	bar 100 / 6.9 250 / 17.2 500 / 34.5 25 1.7 0.056 0.048 0.043 50 3.4 0.065 0.057 0.052 75 5.2 0.073 0.066 0.061 75 5.2 0.068 0.064 0.059 150 10.3 0.083 0.080 225 15.5 0.100 0.097	bar 100 / 6.9 250 / 17.2 500 / 34.5 750 / 51.7 25 1.7 0.056 0.048 0.043 0.040 50 3.4 0.065 0.057 0.052 0.050 75 5.2 0.073 0.066 0.061 0.058 75 5.2 0.068 0.064 0.059 0.057 150 10.3 0.089 0.084 0.080 150 10.3 0.083 0.080 0.078 225 15.5 0.100 0.097 0.095	bsig bar 100 / 6.9 250 / 17.2 500 / 34.5 750 / 51.7 1000 / 69.0 25 1.7 0.056 0.048 0.043 0.040 0.037 50 3.4 0.065 0.057 0.052 0.050 0.046 75 5.2 0.073 0.066 0.061 0.058 0.055 75 5.2 0.068 0.064 0.059 0.057 0.054 150 10.3 0.083 0.080 0.078 0.076 150 10.3 0.100 0.097 0.095 0.094	bsig bar 100 / 6.9 250 / 17.2 500 / 34.5 750 / 51.7 1000 / 69.0 1500 / 103 ⁽¹⁾ 25 1.7 0.056 0.048 0.043 0.040 0.037 0.032 50 3.4 0.065 0.057 0.052 0.050 0.046 0.041 75 5.2 0.073 0.066 0.061 0.058 0.055 0.051 75 5.2 0.068 0.064 0.059 0.057 0.054 0.050 10.3 0.089 0.084 0.078 0.076 0.074			

1. Inlet pressure greater than 1000 psig / 69.0 bar is not recommended for water service.

Table 8. Type 1301G C_V Coefficients⁽¹⁾ — Incompressible Fluid

	1		TYPE 1	301G C _v COEF	FICIENTS BA	SED ON 20% I	DROOP					
		The second										
psig	bar	300 / 20.7	500 / 34.5	750 / 51.7	1000 / 69.0	1500 / 103 ⁽¹⁾	2000 / 138(1)	2250 / 155 ⁽¹⁾				
200 500	13.8 34.5	0.095	0.094	0.092 0.106	0.091 0.105	0.089 0.104	0.088 0.103	0.088 0.103				
	PRES SET psig 200	200 13.8	PRESSURE SETTING psig bar 300 / 20.7 200 13.8 0.095	PRESSURE SETTING 300 / 20.7 500 / 34.5 psig bar 30.095 0.094	PRESSURE SETTING Inlet psig bar 300 / 20.7 500 / 34.5 750 / 51.7 200 13.8 0.095 0.094 0.092	PRESSURE SETTING Inlet Pressure, psig psig bar 300 / 20.7 500 / 34.5 750 / 51.7 1000 / 69.0 200 13.8 0.095 0.094 0.092 0.091	PRESSURE SETTING Inlet Pressure, psig / bar psig bar 300 / 20.7 500 / 34.5 750 / 51.7 1000 / 69.0 1500 / 103 ⁽¹⁾ 200 13.8 0.095 0.094 0.092 0.091 0.089	PRESSURE SETTING Inlet Pressure, psig / bar psig bar 300 / 20.7 500 / 34.5 750 / 51.7 1000 / 69.0 1500 / 103 ⁽¹⁾ 2000 / 138 ⁽¹⁾ 200 13.8 0.095 0.094 0.092 0.091 0.089 0.088				

1. Inlet pressure greater than 1000 psig / 69.0 bar is not recommended for water service.

Maximum Allowable Pressure Drop for Liquid

Pressure drops in excess of allowable will result in choked flow and possible cavitation damage. Choked flow is the formation of vapor bubbles in the liquid flowstream causing a condition at the vena contracta which tends to limit flow through the regulator. The vena contracta is the minimum cross-sectional area of the flow stream occurring just downstream of the actual physical restriction. Cavitation and flashing are physical changes in the process fluid. The change is from the liquid state to the vapor state and results from the increase in fluid velocity at or just downstream of the greatest flow restriction, normally the regulator orifice.

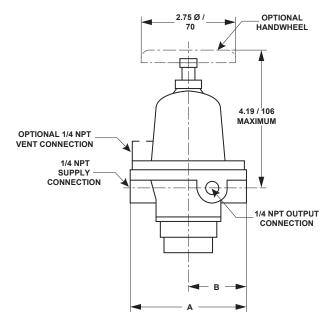
To determine the maximum allowable pressure drop for water:

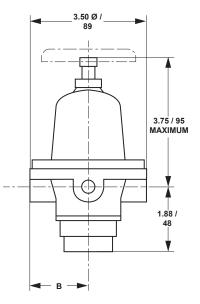
$$\Delta P$$
 (allow) = K_m(P₁)

where,

ΔP =	pressure drop across the
	regulator, psi
K _m =	valve recovery coefficient
P ₁ =	absolute inlet pressure, psia

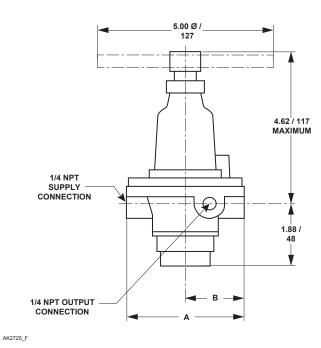
To determine maximum allowable pressure drop for fluids other than water, use other Fisher[®] sizing methods or contact your local Sales Office for assistance.

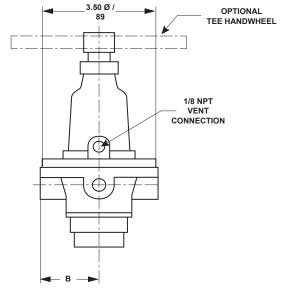

Universal NACE Compliance


Optional materials are available for applications handling sour gases. These constructions comply with the recommendations of NACE International sour service standards.

The manufacturing processes and materials used by Emerson Process Management Regulator Technologies, Inc. assure that all products specified for sour gas service comply with the chemical, physical, and metallurgical requirements of NACE MR0175 and/or NACE MR0103. Customers have the responsibility to specify correct materials. Environmental limitations may apply and shall be determined by the user.

Ordering Information


Use the Specifications section on pages 2 and 3 to complete the Ordering Guide on page 8. Specify the desired selection wherever there is a choice to be made. Provide your Sales Office with this information when ordering the regulator.



TYPE 1301F



INCH / mm

TYPE 1301G

	BODY MATERIAL	DIMENSIONS			
ТҮРЕ		A		В	
		Inch	mm	Inch	mm
1301F	Brass	3.38	86	1.69	43
	Stainless steel	3.62	92	1.75	44
1301G	Brass	3.38	86	1.69	43
	Stainless steel	3.62	92	1.75	44

Ordering Guide

Type (Select One)

- 1301F
- □ 10 to 75 psig / 0.69 to 5.2 bar***
- □ 50 to 150 psig / 3.4 to 10.3 bar***
- □ 100 to 225 psig / 6.9 to 15.5 bar***

1301G

□ 200 to 500 psig / 13.8 to 34.5 bar***

Dual Gauge Port Construction (Optional)

Body and Spring Case Material (Select One)

- □ Brass***
- □ CF8M Stainless steel**

Valve Disk (Select One)

- Nylon (PA)***
- PTFE**

Gaskets (Select One)

- □ Neoprene (CR)***
- □ Fluorocarbon (FKM)**
- Ethylenepropylene (EPDM)*
- □ Fluorosilicone (FVMQ)**

* Standard - Readily Available for Shipment

* * *	Standard - Readily Available for Shipment	
* *	Non-Standard - Allow Additional Time for Shipment	
*	Special Order, Constructed from Non-Stocked Parts. Consult your local Sales Office for Availability.	
Availability of the product being ordered is determined by the component with the		

longest shipping time for the requested construction.

Industrial Regulators

Emerson Process Management Regulator Technologies, Inc.

USA - Headquarters McKinney, Texas 75070 USA Tel: +1 800 558 5853 Outside U.S. +1 972 548 3574

Asia-Pacific Shanghai 201206, China Tel: +86 21 2892 9000

Europe Bologna 40013, Italy Tel: +39 051 419 0611

Middle East and Africa Dubai, United Arab Emirates Tel: +011 971 4811 8100

Natural Gas Technologies

Emerson Process Management Regulator Technologies, Inc.

USA - Headquarters McKinney, Texas 75070 USA Tel: +1 800 558 5853 Outside U.S. +1 972 548 3574

Asia-Pacific Singapore 128461, Singapore Tel: +65 6770 8337

Europe Bologna 40013, Italy Tel: +39 051 419 0611 Chartres 28008, France Tel: +33 2 37 33 47 00

Middle East and Africa Dubai, United Arab Emirates Tel: +011 971 4811 8100

TESCOM

Emerson Process Management Tescom Corporation

USA - Headquarters Elk River, Minnesota 55330-2445, USA Tels: +1 763 241 3238 +1 800 447 1250

Europe Selmsdorf 23923, Germany Tel: +49 38823 31 287

Asia-Pacific Shanghai 201206, China Tel: +86 21 2892 9499

For further information visit www.fisherregulators.com

The Emerson logo is a trademark and service mark of Emerson Electric Co. All other marks are the property of their prospective owners. Fisher is a mark owned by Fisher Controls International LLC, a business of Emerson Process Management.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. We reserve the right to modify or improve the designs or specifications of such products at any time without notice.

Emerson Process Management Regulator Technologies, Inc. does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Emerson Process Management Regulator Technologies, Inc. product remains solely with the purchaser.

Replacement Parts Kit (Optional)

□ Yes, send one replacement parts kit to match this order.

Specification Worksheet			
Application:			
Specific Use			
Line Size			
Fluid Type			
Specific Gravity			
Temperature			
Does the Application Require Overpressure Protection?			
🗆 Yes 🗋 No			
Pressure:			
Maximum Inlet Pressure			
Minimum Inlet Pressure			
Differential Pressure			
Set Pressure			
Maximum Flow			
Accuracy Requirements:			
Less Than or Equal To:			

Construction Material Requirements (if known):