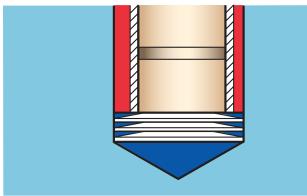


High-Performance Butterfly WKM Valves

Low-cost, lightweight, reliable valves for high-pressure applications

Contents


Body styles	3
Features and benefits	4
Readily automated	5
Special service valves	6
Product specifications Standards and compliance	7
Models and size availability	
How to order	7
Standard materials list	8
Seat and seal material codes and ratings	10
Valve body pressure ratings	11
Torque values	
Dimensional data	14
Flow characteristics (C_{ν})	17
Manual actuators	

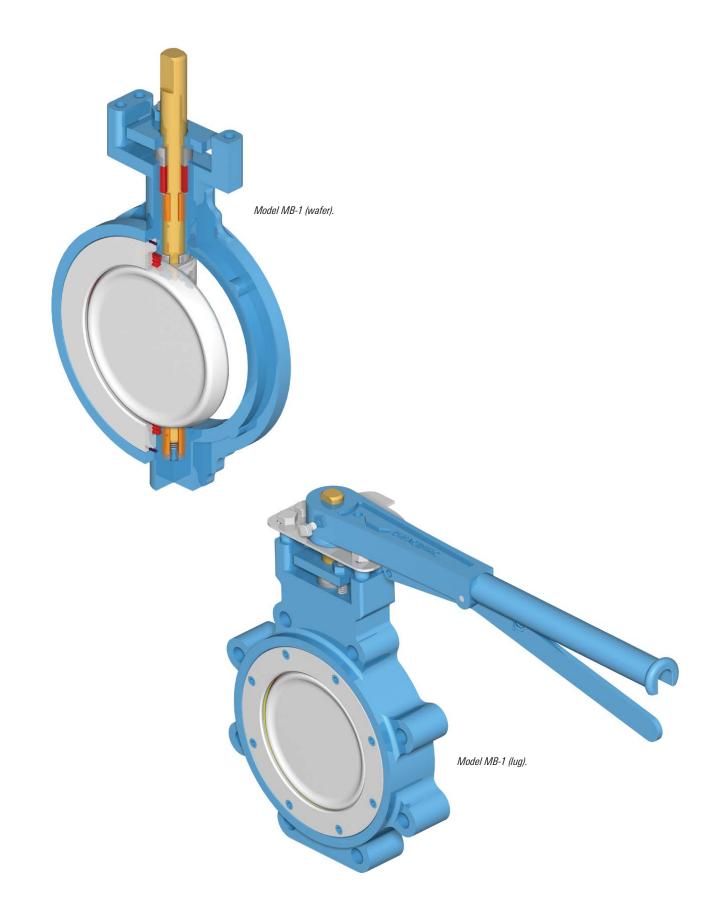
High-Performance Butterfly WKM Valves

The high-performance butterfly valves of the WKM* valve line bring low cost and light weight to high-pressure water, oil, steam, gas, and slurry applications. These valves satisfy a wide range of industrial applications and are available in carbon steel or stainless steel, as well as lug and wafer body styles. These WKM valves provide the high performance of ball and gate valves with the low-cost, lightweight benefits of a butterfly valve design.

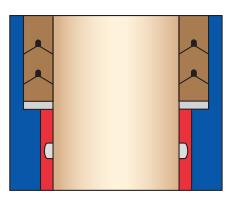
Engineered for heavy-duty, maintenance-free performance, the high-performance butterfly valve is most commonly selected for the following applications:


- chemical and petrochemical processing
- utilities
- pulp and paper
- oil and gas production
- fuel handling systems
- air conditioning and refrigeration
- marine.

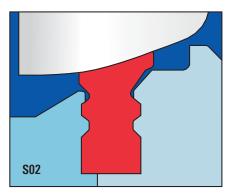
Lower stem disc springs allowing for thermal expansion and providing constant grounding.

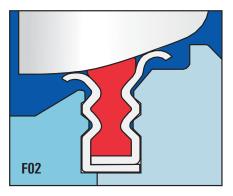

Disc design reduces seat wear

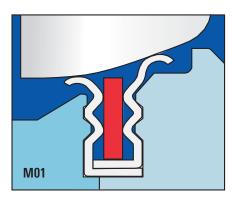
Precision machined from carbon or alloy steels, the rugged valve disc is designed for gradual engagement into the seat to prevent pinching or cutting. Eccentric positioning of the stem enables the disc to swing free of the seat in the open position, reducing operating torque and wear.



Double offset design.


Body Styles


Features and Benefits


Positively retained stem.

Standard bidirectional TFM seat.

Fire-tested bidirectional metallic seat with TFM seal insert.

Two body styles

Flangeless wafer and threaded lug styles are available.

Heavy-duty disc

The heavy-duty disc is designed to withstand the higher stresses associated with high-pressure applications. The wide disc edge provides greater sealing area.

Thrust bearing and disc spacer

A corrosion-resistant, single-component thrust bearing and disc spacer reduces body wear and ensures positive disc centering in the valve bore.

Internal stop

The internal stop prevents seat damage caused by disc overtravel. It also ensures proper disc alignment in the closed position.

Deep stuffing box

The deep stuffing box design includes stainless steel fasteners as standard and is available with tetrafluoroethylene (TFE) chevron or high-temperature compression packing for long life and positive stem seal. Live-loaded packing assemblies are available on request.

Lower stem disc spring

The lower stem disc springs allow for thermal expansion and provide constant grounding.

Positively retained stem prevents blowouts

The tamperproof design exceeds the requirements of ASME B16.34. The disc, disc pins, and stem design meet ASME requirements for maximum torsional and bending stress. Additional blowout prevention is provided by stem retainer pins inserted in the stem below the stuffing box.

Multiple seat designs provide versatility

The standard TFM seat (S02) is bidirectional with an extended pressureresponsive sealing lip. The S02 seat design is capable of drop-tight sealing to 740 psi.

The patented fire-tested bidirectional metallic seats with TFM seat insert (F02) provide a metal-to-metal pressure-responsive triple seal. High-performance butterfly valves with the F02 seat design and hightemperature seals have been fire-tested and are qualified to meet the stringent requirements of API Standard 607 4th Edition. This unique design provides fire-test capabilities regardless of flow direction. The F02 seat design is capable of drop-tight sealing to 1,480 psi.

Metal seats of 316 stainless steel (M01) are suitable for temperatures to 750 degF [399 degC].

Metal seat.

Readily Automated

Butterfly WKM valve with bracket and actuator.

Specifications (See page 7 for technical specifications.)

Sizes

- 21/2-36 in [65-900 mm]
- ASME Class 150, 21/2-36 in [65-900 mm]
- ASME Class 300, 2½–24 in [65–600 mm]

Operating temperatures

• Up to 750 degF [399 degC]

Body styles

- Flangeless wafer
- Threaded lug

Standard materials

- Body—Carbon steel, stainless steel
- Stem 17-4 stainless steel
- Disc Stainless steel
- Seat—S02—TFM
 - F02—Fire tested M01—Metal seat

Optional materials

Additional trim materials are listed on page 7

Special Service Valves

High-temperature service

Butterfly WKM valves for high-temperature service are equipped with a 316 stainless steel seat (M01), 316 stainless steel stem bearings, and high-temperature seals.

This seat and seal combination is rated up to 750 degF [399 degC] in carbon steel bodies and is certified to API Specification 641 for low emissions. Leakage rates for metal-seated valves can be provided within the service limits of ANSI/FCI 70-2.

The standard leakage rate of metal-seated valves is Class IV.

Valves furnished with this seat perform well in steam, hot oil, and heat transfer fluids.

Vacuum service

The drop-tight sealing capabilities of these valves make them an excellent selection for vacuum service.

S02 and F02 seat-seal codes are suitable for vacuum service to 20 um absolute.

Inverted packing configuration is available on request.

Sour oil and gas service

High-performance butterfly WKM valves with sour gas trims are available for H_2S service in accordance with NACE MR0175.

Low-temperature service

High-performance butterfly WKM valves for temperatures to -50 degF [-46 degC] are available in both 316 stainless steel construction and low-temperature carbon steel.

Steam service

High-performance butterfly WKM valves are also suitable for applications in steam service. Reinforced TFM seats (S02) with high-temperature packing are the standard steam service seal materials.

For higher saturation pressures, 316 stainless steel seats with TFM inserts (F02) are available.

The combination of rotary operation, streamlined flow, and positive shutoff can result in years of maintenance-free service without the seizures on cooldown, flashing, or stem leakage associated with conventional globe or gate valves.

Enhanced fugitive emission control

The valve stuffing box can be modified for live-loaded packing assemblies.

Product Specifications

Standards and compliance

High-performance butterfly WKM valves comply with the following design and testing standards:

- ASME B16.5 (steel pipe flanges and flange fittings)
- ASME B16.34 (steel valves)
- MSS-SP-6 (standard finishes for pipe flanges)
- MSS-SP-25 (standard marking system for valves)
- MSS-SP-55 (quality standard for steel castings)
- MSS-SP-68

Model and size availability

Model A

- 30-in [750-mm] Class 150 lug
- Other materials of construction and valve options are available.

Model numbers

- MA-1 and MB-1 standard high-performance butterfly valve assembly
- MA-2 and MB-2 standard high-performance butterfly valve assembly with MTRs
- MA-3 and MB-3 CE-compliant high-performance butterfly valve assembly

- United States Coast Guard Category A acceptance on API Standard 607 qualified valves
- API Standard 609 (dimensions)

In addition, high-performance butterfly WKM valves can be supplied to comply with these standards:

- API Standard 609, API Standard 598 (valve inspection and testing)
- API Standard 607 4th Edition (fire-test specifications)
- CE PED (pressure equipment directive) 97/23/EC
- API Standard 641 (low emissions)

Model B

- 2½-in and 5-in [65-mm and 125-mm] Class 150 and Class 300 lug
- 4-in and 6-in [100-mm and 150-mm] through 24-in [600-mm] Class 150 and Class 300 lug and wafer
- 3-in [80-mm] Class 150 and Class 300 lug and wafer and 36-in [900-mm] Class 150 lug

How to order

<u>03-B5 310-03-S02-15/00</u>

Size, in [m	m]	B5 Body Group			Trim Group	Seal Group			Actuation		
21⁄2 [65]	21/2	Class	Material	Style	SS disc 17-4 stem	02	TFM	S02		Bare stem	00
3 [80]	03	1 = 150	$1 = CS^{\dagger}$	$0 = Wafer^{\ddagger} 2\frac{1}{2}$ -in	SS disc Ni-Cr [§] stem	03	SS and TFM	F02	·	Handle	HL
4 [100]	04	3 = 300	2 = SS	to 12-in slip-in seat	Ni-Cu ⁺⁺ disc and stem	04	316 SS	M01		Handwheel	
5 [125]	05	0 - 000	5 = LCC	- retainer	SS disc 316 stem	05	010.00			worm gear	WG
6 [150]	06		<u>J = 100</u>	2 = Wafer 14-in to 24-in	CS QPQ disc 17-4 stem	08				Less gear	
8 [200]	08			bolted seat retainer	SS QPQ disc 17-4 stem	09	Packing Grou	р		with flange	FG
10 [250]	10			3 = Lug Model B bolted	CS QPQ disc Ni-Cr ^s stem	10	Low-E graphite	e ^{‡‡}	15		
12 [300]	12			seat retainer	SS QPQ disc Ni-Cr ^s stem	11	Low-E Teflon®	ŝŝ	16		
14 [350]	14				CS QPQ disc 17-4 QPQ stem	12					
16 [400]	16				SS QPQ disc 17-4 QPQ stem	13					
18 [450]	18										
20 [500]	20										
24 [600]	24										

 30 [750]
 30

 36 [900]
 36

Note: CS = carbon steel, LCC = low-temperature carbon steel, SS = stainless steel

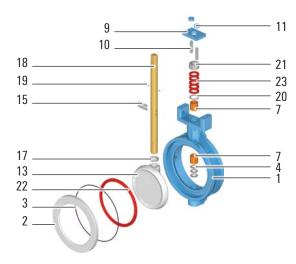
 $^{\rm t}$ Controlled hardness carbon steel (H_2S service).

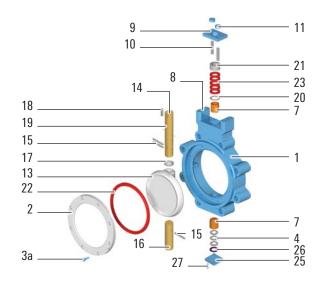
¹Wafer valves 2¹/₂ to 12 in [65 mm to 300 mm] come standard with an unbolted inset seat retainer, held firmly in place for shipping and handling by an interference-fit 0-ring retention design (see page 8). By design, the seat retainer is secured in place by the piping flange during normal installation procedure.

§Reference INCONEL®

Stainless steel packing adjustment studs and nuts are standard.

^{tt} Reference MONEL®.


Requires FO2 seal group


§§ Requires SO2 seal group.

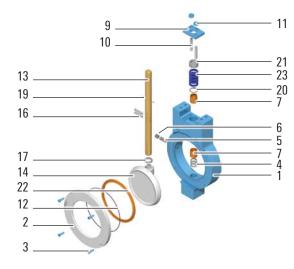
Standard Materials List

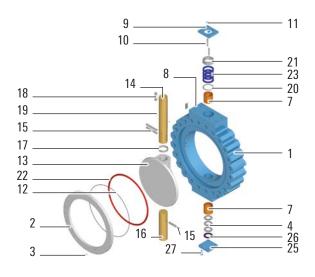
MB-1 high-performance butterfly WKM valves

21/2- through 24-in [65- through 600-mm] ASME Classes 150 and 300 36-in [900-mm] ASME Class 150

MB-1 High-Performance Butterfly WKM Valves

No.	Part	Carbon Steel (H ₂ S)	Stainless Steel
Body	group trim number		
1	Body	A216 Grade WCC	A351 Grade CF8M
2	Seat retainer	A516 Grade 70	A276 Type 316
3	Seat retainer O-ring	Nitrile	Nitrile
3a	Seat retainer screw	A193 Grade B7	18-8 SS
4	Stem and disc spring	18-8 SS	18-8 SS
7	Stem bearing	TFE and steel	Teflon and 316 SS
3	Nameplate	18-8 SS	18-8 SS
9	Gland retainer	Carbon steel	Stainless steel
10	Gland retainer stud	A193 Grade B7	18-8 SS
11	Gland retainer nut	A193 Grade B7	18-8 SS
25	Bottom cover	Carbon steel	Stainless steel
26	Bottom cover gasket	Composite fiber	Composite fiber
27	Bottom cover screw	A193 Grade B7	18-8 SS
Inter	nal group trim number		
13	Disc	A351 Grade CF8M ⁺	A351 Grade CF8M ⁺
14	Upper stem	A564 Type 630, H1150 + H1150	A564 Type 630, H1150 + H1150
15	Stem pins	A564 Type 630, H1150 + H1150	A564 Type 630, H1150 + H1150
16	Lower stem	A564 Type 630, H1150 + H1150	A564 Type 630, H1150 + H1150
17	Disc spacer	Nitronic [®] 60	Nitronic [®] 60
18	Stem key (8 in [200 mm] and larger)	Carbon steel	Carbon steel
19	Stem retainer pins	316 SS	316 SS
20	Packing spacer	316 SS	316 SS
21	Gland ring	316 SS	316 SS
Seal	group trim code		
22	Seat	See Note (1)	See Note (1)
23	Packing set	Teflon or graphite	Teflon or graphite
	valve construction shown—some sizes may vary.): Seat assemblies consist of the following:		[†] Hard chrome plated on FO2 and MO1. One-piece stem 2½-in [65-mm] through 12-in


Type S-Class 150-Virgin TFE (available in Class 150 only); Standard Class 150 and 300-TFM Type F-Metal, fire-tested, Class 150 and 300-Stainless steel with TFM insert


Type M-Metal, high-temperature, Class 150 and 300-316 stainless steel with 316 stainless steel insert

[300-mm] Class 300.

MA-1 high-performance butterfly WKM valves

30-in [750-mm] ASME Class 150

MA-1 High-Performance Butterfly WKM Valves

No.	Part	Carbon Steel (H ₂ S)	Stainless Steel
Body	group trim number		
1	Body	A216 Grade WCC	A351 Grade CF8M
2	Seat retainer	A516 Grade 70	A276 Type 316
3	Seat retainer screw	A193 Grade B7	18-8 SS
4	Stem and disc spring	18-8 SS	18-8 SS
5	Stop pin (4- to 10-in only)	316 SS	316 SS
6	Stop pin plug (4- to 10-in only)	Carbon steel	316 SS
1	Stem bearing	TFE and steel	Teflon and 316 SS
}	Nameplate	18-8 SS	18-8 SS
}	Gland retainer	Carbon steel	Stainless steel
0	Gland retainer stud	A193 Grade B7	18-8 SS
1	Gland retainer nut	A193 Grade B7	18-8 SS
2	Body gasket	See Note (1)	See Note (1)
25	Bottom cover plate	Carbon steel	Stainless steel
26	Bottom cover gasket	Composite fiber	Composite fiber
7	Bottom cover screw	A193 Grade B7	18-8 SS
nter	nal group trim number		
3	Upper stem	A564 Type 630, H1150 + H1150	A564 Type 630, H1150 + H1150
4	Disc	A216 Grade WCC A351 Grade CF8M [†]	A351 Grade CF8M [†]
5	Lower stem	A564 Type 630, H1150 + H1150	A564 Type 630, H1150 + H1150
6	Stem pins	A564 Type 630, H1150 + H1150	A564 Type 630, H1150 + H1150
7	Disc spacer	Nitronic 60	Nitronic 60
8	Stem key (6 in [150 mm] and larger)	Carbon steel	Carbon steel
9	Stem retainer pins	316 SS	316 SS
20	Packing spacer	316 SS	316 SS
21	Gland ring	316 SS	316 SS
Seal	group trim code		
22	Seat	See Note (2)	See Note (2)
23	Packing set	Teflon or graphite	Teflon or graphite
Typical	valve construction shown—some sizes may vary.		[†] Electroless nickel plated

Typical valve construction shown-some sizes may vary.

Note (1): Standard valves do not require body gaskets. F02 fire-tested and high-temperature M01 valves are equipped with composite fiber body gaskets.

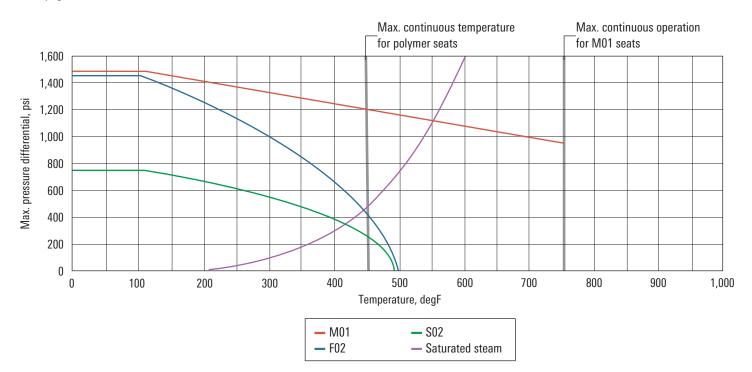
Note (2): Seat assemblies consist of the following: Type S—Class 150—Virgin TFE (available in Class 150 only); Standard Class 150 and 300—TFM

Type F-Metal, fire-tested, Class 150 and 300-Stainless steel with TFM insert

Type M-Metal, high-temperature, Class 150 and 300-316 stainless steel with 316 stainless steel insert

Seat and Seal Material Codes and Ratings

Material codes


This chart is an abbreviated guide to the chemical resistance and pressure temperature limitations of seat seal materials used in high-performance butterfly WKM valves. Complete ratings curves are also shown. For additional information, please consult your Cameron representative.

Seal Code	Seat Material	ASME/FCI 70-2 Shutoff Class	Service Application
S02	TFM	6 (VI)	Seat material is TFM with inert materials for use at elevated temperatures and pressures. Same chemical resistance as virgin TFE, except slightly affected by hot alkaline solutions. Suitable for saturated steam to 200 psi gauge. [†] Temperature range is –50 to 500 degF [–46 to 260 degC]. Drop tight.
F02	SS and TFM	6 (VI)	Seat consists of stainless steel rings with a TFM insert. Recommended trim for fire-test applications and for higher pressure steam service. ⁺ Temperature is -50 to 500 degF [-46 to 260 degC]. Drop tight.
M01	316 SS	4 (IV)	Recommended trim for superheated steam above 250 psi, hot oils and gases, and temperatures to 750 degF [399 degC]. Pressure and temperature range is same as body rating. Meets ASME/FCI 70-2.

[†] Consult Cameron for steam applications with higher pressure

Seat pressure and temperature limitations

Seat ratings are based on differential pressures with the disc in the fully closed position and refer to seat only. Body pressure and temperature ratings are on page 11.

Valve Body Pressure Ratings

Pressure and temperature ratings for high-performance butterfly valve bodies[†]

All pressures are gauge psi.

Tomn dogE	Class 1	50		Class 3	00
Temp, degF	CS	LCC	316 SS	CS	LCC
■ -20 to 100	285	290	275	740	750
200	260	260	235	675	750
300	230	230	215	655	730
400	200	200	195	635	705
500	170	170	170	600	665
600	140	140	140	550	605
650	125	125	125	535	590
▲ 700	110	_	110	535	_
▲ 750	95	_	95	505	_

[†]In accordance with ASME B16.34

ASTM A564 Type 630, H1150 + H1150, Ni-Cr alloy UNS 7718, or Ni-Cu alloy UNS 5500

▲ Ni-Cr alloy UNS 7718 or Ni-Cu alloy UNS 5500

Recommended	Recommended Temperature Limits for Standard Materials Available										
Seal Group	Material	Max. Temperature, degF [degC]									
S02	TFM	450 [177] (500 [260] intermittent)									
F02	SS and TFM	450 [177] (500 [260] intermittent)									
M01	316 SS	750 [399]									

Trim Group ⁺	Material	Max. Temperature, degF [degC]
02	SS disc and 17-4 stem	650 [343]
03	SS disc and Ni-Cr stem	700 [371]
04	Ni-Cu disc and Ni-Cu stem	750 [399]
05	SS disc and 316 stem	700 [371]

⁺ For trim groups 08 through 13, consult Cameron for temperature limitations.

Ratings shown left are maximum working pressure ratings for the valve body at various temperatures. Partial pressure limitations according to actual service conditions are determined by seat, trim, and packing ratings.

Stem materials

Note: Valves with 17-4 PH stems are recommended only up to a maximum temperature of 650 degF [343 degC].

- Ni-Cr alloy UNS 7718 stems are required for temperatures above 650 degF [343 degC].
- Ni-Cu alloy UNS 5500 stems can be furnished for applications requiring high corrosion resistance and full ASME ratings.

Body materials

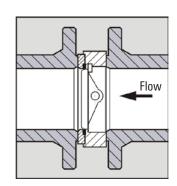
- Carbon steel—ASTM A516 Grade 70, ASTM A216 Grade WCC
- Low-temperature CS—ASTM A352 Grade LCC
- Stainless steel—ASTM A351 Grade CF8M

Torque Values

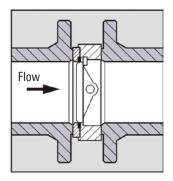
The torque values shown in these tables are net required operating torques for actuator sizing.

An appropriate safety factor is included for normal wet operating torque.

Seat alignment in upstream flow.


Torque Val	ues														
Size, in [mm]	2 ½ [65]	3 [80]	4 [100]	5 [125]	6 [150]	8 [200]	10 [250]	12 [300]	14 [350]	16 [400]	18 [450]	20 [500]	24 [600]	30 [750]	36 [900]
SO seats u	pstream —	valve torc	jue, Ibf.in												
0 to 50 psi	111	155	348	503	728	1,125	2,154	3,291	4,277	6,334	8,129	11,685	15,770	23,040	36,030
100 psi	136	190	395	583	860	1,290	2,430	3,790	5,050	7,469	9,533	13,556	18,540	26,980	44,450
200 psi	179	250	490	737	1,110	1,600	2,990	4,790	6,610	9,740	12,340	17,297	24,080	35,390	61,520
285 psi	214	300	570	871	1,330	1,900	3,460	5,640	7,930	11,670	14,276	20,477	28,790	43,200	75,000
300 psi	225	315	590	899	1,370	1,950	3,550	5,790	8,160	12,010	15,147	21,038	29,620	_	_
400 psi	271	380	680	1,053	1,630	2,280	4,100	6,800	9,720	14,281	17,955	24,780	35,160	_	_
500 psi	318	445	780	1,205	1,880	2,610	4,660	7,800	11,270	16,551	20,762	28,521	40,700	_	_
600 psi	364	510	875	1,368	2,140	2,940	5,220	8,800	12,820	18,821	23,570	32,262	46,240	_	_
700 psi	411	575	970	1,526	2,400	3,270	5,780	9,800	14,380	21,092	26,377	36,003	51,780	_	_
740 psi	429	600	1,020	1,597	2,500	3,400	6,000	10,200	15,000	22,000	27,500	37,500	54,000	_	_
SO seats d	ownstream	n — valve t	orque, Ibf.i	n											
0–50 psi	111	155	348	503	728	1,125	2,154	3,291	4,277	6,334	8,129	11,685	15,770	23,040	36,030
100 psi	143	200	419	618	911	1,364	2,563	4,013	5,380	7,947	10,131	14,371	19,714	30,000	46,580
200 psi	208	291	561	846	1,276	1,841	3,381	5,458	7,586	11,174	14,134	19,743	27,603	43,820	70,000
285 psi	263	368	681	1,040	1,587	2,247	4,077	6,686	9,462	13,917	17,536	24,309	34,308	55,980	90,000
300 psi	272	381	702	1,074	1,642	2,319	4,200	6,903	9,793	14,401	18,137	25,114	35,491	_	_
400 psi	337	472	844	1,302	2,007	2,796	5,018	8,348	11,999	17,628	22,140	30,486	43,379	_	_
500 psi	402	563	986	1,530	2,373	3,274	5,836	9,793	14,205	20,855	26,143	35,858	51,268	_	_
600 psi	466	653	1,128	1,757	2,738	3,751	6,654	11,237	16,411	24,082	30,146	41,230	59,156	_	_
700 psi	531	744	1,269	1,985	3,104	4,229	7,473	12,682	18,618	27,309	34,149	46,601	67,045	_	_
740 psi	557	780	1,326	2,076	3,250	4,420	7,800	13,260	19,500	28,800	35,750	48,750	70,200	_	_

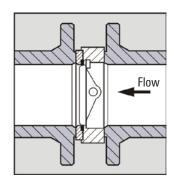
For severe service, an additional safety factor should be added:


Dry gas or slurry: 1.25

Low temperature: 1.20

Emergency shutdown: 1.60

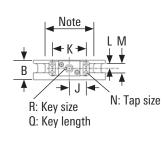
Seat alignment in downstream flow.

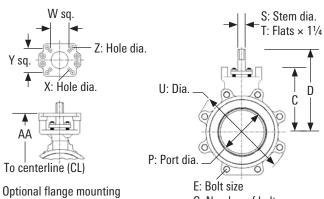

Seat alignment in upstream flow.

Torque Va	lues														
Size, in [mn	n] 2 ½ [65]	3 [80]	4 [100]	5 [125]	6 [150]	8 [200]	10 [250]	12 [300]	14 [350]	16 [400]	18 [450]	20 [500]	24 [600]	30 [750]	36 [900]
F0 and M0	seats ups	tream — v	alve torque	, Ibf.in											
0–50 psi	238	333	609	920	1,389	2,710	4,422	6,547	7,728	9,709	13,116	18,395	25,623	36,600	53,610
100 psi	261	366	694	1,046	1,578	3,050	5,043	7,595	8,956	11,218	15,432	21,289	29,746	42,805	62,660
200 psi	308	431	863	1,300	1,957	3,729	6,286	9,689	11,412	14,235	20,063	27,079	37,991	55,130	78,620
285 psi	348	487	1,006	1,514	2,278	4,307	7,343	11,470	13,500	16,800	24,000	32,000	45,000	64,980	90,000
300 psi	355	497	1,032	1,552	2,335	4,409	7,531	11,784	13,868	17,253	24,695	32,868	46,237	_	-
400 psi	401	562	1,201	1,805	2,714	5,089	8,773	13,878	16,325	20,270	29,326	38,658	54,482	-	-
500 psi	449	628	1,370	2,058	3,092	5,769	10,016	15,973	18,781	23,288	33,958	44,447	62,728	-	-
600 psi	495	693	1,539	2,311	3,470	6,448	11,259	18,068	21,237	26,305	38,589	50,237	70,974	-	-
700 psi	542	759	1,707	2,563	3,849	7,128	12,503	20,162	23,693	29,323	43,221	56,026	79,219	-	-
740 psi	561	785	1,775	2,665	4,000	7,400	13,000	21,000	24,675	30,530	48,074	58,342	82,518	-	-
F0 and M0	seats dow	nstream -	-valve tor	que, Ibf.in											
0 to 50 psi	238	333	609	920	1,389	2,710	4,422	6,547	7,728	9,709	13,116	18,395	25,623	36,600	53,610
100 psi	274	383	733	1,105	1,665	3,211	5,326	8,051	9,314	11,660	16,085	22,135	30,942	45,080	66,020
200 psi	344	482	979	1,474	2,218	4,212	7,134	11,059	12,485	15,562	22,023	29,616	41,579	61,750	91,710
285 psi	405	567	1,188	1,787	2,687	5,063	8,672	13,615	15,181	18,880	27,070	35,974	50,621	75,000	115,000
300 psi	416	582	1,225	1,842	2,770	5,214	8,943	14,066	15,656	19,465	27,961	37,096	52,216	-	-
400 psi	487	682	1,471	2,211	3,322	6,215	10,751	17,074	18,828	23,367	33,899	44,577	62,854	-	-
500 psi	558	781	1,717	2,579	3,875	7,216	12,560	20,082	21,999	27,270	39,837	52,057	73,491	-	-
600 psi	629	881	1,963	2,948	4,427	8,218	14,368	23,089	25,171	31,172	45,775	59,538	84,129	-	-
700 psi	701	981	2,209	3,316	4,979	9,219	16,177	26,097	28,342	35,075	51,713	67,018	94,766	-	-
740 psi	729	1,021	2,308	3,464	5,200	9,620	16,900	27,300	29,611	36,636	54,088	70,011	99,021	_	_

For severe service, an additional safety factor should be added: Dry gas or slurry: 1.25

Emergency shutdown: 1.60 Low temperature: 1.20

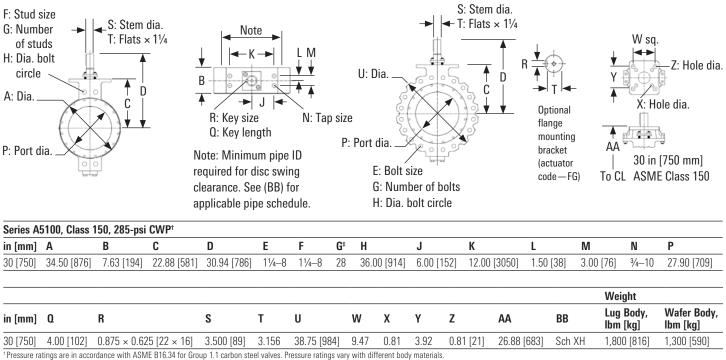

High temperature between 600 and 700 degF [316 and 371 degC]: 1.30


Seat alignment in downstream flow.

Dimensional Data

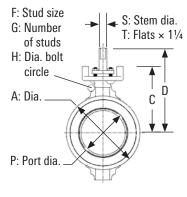
Note: Minimum pipe ID required for disc swing clearance. See (BB) for applicable pipe schedule.

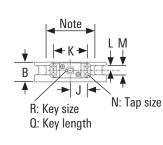
bracket (actuator code — FG)

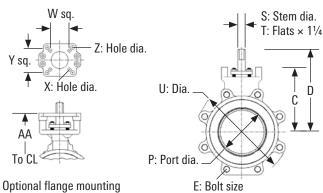

E: Bolt size G: Number of bolts H: Dia. bolt circle

Series B5	eries B5100, Class 150, 285-psi Cold Working Pressure (CWP)†													
in [mm]	Α	В	С	D	E	F	G‡	Н	J	К	L	М	N	Р
21⁄2 [65]	_	1.87 [48]	5.81 [148]	7.94 [202]	⁵⁄‰—11	-	4	5.50 [140]	2.00 [51]	4.00 [102]	0.44 [11]	0.88 [22]	³ ⁄8—16	2.09 [53]
3 [80]	5.00 [127]	2.00 [51]	5.50 [140]	7.63 [194]	‰—11	5⁄8	4	6.00 [152]	2.00 [51]	4.00 [102]	0.44 [11]	0.88 [22]	³⁄8−16	2.62 [67]
4 [100]	6.19 [157]	2.12 [54]	6.38 [162]	8.50 [216]	‰—11	5⁄8	8	7.50 [191]	2.00 [51]	4.00 [102]	0.44 [11]	0.88 [22]	3∕8—16	3.63 [92]
5 [125]	_	2.25 [57]	7.50 [191]	9.63 [245]	3⁄4—10	_	8	8.50 [216]	2.00 [51]	4.00 [102]	0.44 [11]	0.88 [22]	3∕8—16	4.50 [114]
6 [150]	8.50 [216]	2.28 [58]	7.63 [194]	9.75 [248]	3⁄4—10	3⁄4	8	9.50 [241]	2.00 [51]	4.00 [102]	0.44 [11]	0.88 [22]	3∕8—16	5.62 [143]
8 [200]	10.62 [270]	2.50 [64]	8.88 [226]	11.58 [294]	3⁄4—10	3⁄4	8	11.75 [298]	2.13 [54]	4.25 [108]	0.63 [16]	1.25 [32]	¾−16	7.61 [193]
10 [250]	12.75 [324]	2.81 [71]	9.88 [251]	12.62 [321]	7⁄8—9	7⁄8	12	14.25 [362]	2.13 [54]	4.25 [108]	0.63 [16]	1.25 [32]	3∕8—16	9.50 [241]
12 [300]	15.00 [381]	3.19 [81]	11.25 [286]	14.81 [376]	7⁄8—9	7⁄8	12	17.00 [432]	2.75 [70]	5.50 [140]	0.81 [21]	1.62 [41]	1⁄2-13	11.50 [292]
14 [350]	16.25 [413]	3.62 [92]	10.75 [274]	15.58 [396]	1—8	1	12	18.75 [476]	3.44 [87]	6.88 [175]	0.88 [22]	1.75 [44]	1⁄2-13	12.50 [318]
16 [400]	18.50 [470]	4.00 [102]	12.28 [312]	17.83 [453]	1—8	1	16	21.25 [540]	3.44 [87]	6.88 [175]	0.88 [22]	1.75 [44]	1⁄2-13	14.37 [365]
18 [450]	21.00 [533]	4.50 [114]	14.50 [368]	20.84 [529]	11⁄8—8	11/8	16	22.75 [578]	4.75 [121]	9.50 [241]	1.00 [25]	2.00 [51]	0.69 through	16.25 [413]
20 [500]	23.00 [584]	5.00 [127]	15.81 [402]	22.44 [570]	11⁄8—8	11/8	20	25.00 [635]	4.75 [121]	9.50 [241]	1.00 [25]	2.00 [51]	0.69 through	18.03 [458]
24 [600]	27.25 [692]	6.06 [154]	17.75 [451]	24.75 [629]	11⁄4-8	11⁄4	20	29.50 [749]	4.75 [121]	9.50 [241]	1.00 [25]	2.00 [51]	0.69 through	21.45 [545]
36 [900]	_	8.12 [206]	25.00 [635]	33.38 [848]	11⁄2-8	_	32	42.75 [1,086]	7.50 [191]	15.00 [381]	2.19 [56]	4.38 [111]	1—8	33.88 [861]

												Weight	
in (mm)	٥	R	S	т	U	W	х	Y	Z	AA	BB	Lug Body, Ibm [kg]	Wafer Body, Ibm [kg]
21⁄2 [65]	_	_	0.500 [13]	0.375 [10]	6.75 [171]	2.25 [57]	0.34 [9]	3.00 [76]	0.41 [10]	6.69 [170]	Sch 160	13 [6]	_
3 [80]	-	-	0.625 [16]	0.437 [11]	7.25 [184]	2.25 [57]	0.34 [9]	3.00 [76]	0.41 [10]	6.38 [162]	Sch 160	15 [7]	11 [5]
4 [100]	_	_	0.625 [16]	0.437 [11]	8.75 [222]	2.25 [57]	0.34 [9]	3.00 [76]	0.41 [10]	7.26 [184]	Sch 80	21 [10]	15 [7]
5 [125]	_	_	0.875 [22]	0.625 [16]	10.00 [254]	2.25 [57]	0.34 [9]	3.00 [76]	0.41 [10]	8.38 [213]	Sch 80	33 [15]	_
6 [150]	_	_	0.875 [22]	0.625 [16]	10.86 [276]	2.25 [57]	0.34 [9]	3.00 [76]	0.41 [10]	8.50 [216]	Sch 40	38 [17]	28 [13]
8 [200]	1.56 [40]	0.250 [6.35] sq.	1.125 [29]	-	13.25 [337]	_	_	3.50 [89]	0.56 [14]	10.00 [254]	Sch 40	53 [24]	44 [20]
10 [250]	1.56 [40]	0.250 [6.35] sq.	1.125 [29]	_	16.00 [406]	_	_	3.50 [89]	0.56 [14]	11.00 [279]	Sch 40	88 [40]	63 [29]
12 [300]	2.00 [51]	0.312 [7.92] sq.	1.375 [35]	-	18.75 [476]	3.50 [89]	0.56 [14]	5.31 [135]	0.69 [18]	12.75 [324]	Sch 40	132 [60]	102 [46]
14 [350]	2.00 [51]	0.312 [7.92] sq.	1.375 [35]	_	20.75 [527]	3.50 [89]	0.57 [14]	4.78 [121] sq.	0.81 [21]	13.50 [343]	Sch 40	215 [98]	130 [59]
16 [400]	2.75 [70]	0.375 [9.53] sq.	1.750 [44]	-	23.25 [591]	4.06 [103]	0.81 [21]	5.31 [135] sq.	0.69 [18]	15.03 [382]	Sch 40	280 [127]	185 [84]
18 [450]	3.00 [76]	0.500 [12.70] sq.	2.000 [51]	-	25.00 [635]	4.78 [121]	0.81 [21]	2.88 × 6.94 [73 × 176]	0.94 [24]	17.50 [445]	Sch 40	365 [166]	260 [118]
20 [500]	3.00 [76]	0.500 [12.70] sq.	2.000 [51]	_	27.25 [692]	4.78 [121]	0.81 [21]	2.88 × 6.94 [73 × 176]	0.94 [24]	18.81 [478]	Sch 40	477 [216]	350 [159]
24 [600]	3.75 [95]	0.625 [15.88] sq.	2.500 [64]	_	32.00 [813]	4.78 [121]	0.81 [21]	2.88 × 6.94 [73 × 176]	0.94 [24]	20.75 [527]	Sch 40	670 [304]	540 [245]
36 [900]	6.50 [165]	0.875	3.750 [95]		45.75 [1,162]				_	29.00 [737]	Sch 40	2,185 [991]	_


[†] Pressure ratings are in accordance with ASME B16.34 for Group 1.1 carbon steel valves. Pressure ratings vary with different body materials.


⁺ Installation manual is available with complete flange bolt and stud information.


* Installation manual is available with complete flange bolt and stud information.

Dimensional Data

Note: Minimum pipe ID required for disc swing clearance. See (BB) for applicable pipe schedule.

Optional flange mounting bracket (actuator code—FG)

G: Number of bolts H: Dia. bolt circle

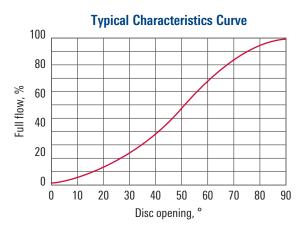
Series B5	5300, Class 3	00, 740-psi	CWP [↑]											
in [mm]	Α	В	C	D	E	F	G⁺	Н	J	К	L	М	Ν	Р
21⁄2 [65]	4.13 [105]	1.87 [48]	5.81 [148]	7.94 [202]	3⁄4-10	3⁄4	8	5.88 [149]	2.00 [51]	4.00 [102]	0.44 [11]	0.88 [22]	‰—16	2.09 [53]
3 [80]	5.00 [127]	2.00 [51]	5.50 [140]	7.63 [194]	3⁄4—10	3⁄4	8	6.63 [168]	2.00 [51]	4.00 [102]	0.44 [11]	0.88 [22]	‰—16	2.62 [53]
4 [100]	6.19 [157]	2.12 [54]	6.38 [162]	8.50 [216]	3⁄4—10	3⁄4	8	7.88 [200]	2.00 [51]	4.00 [102]	0.44 [11]	0.88 [22]	‰—16	3.63 [92]
5 [125]	7.31 [186]	2.25 [57]	7.50 [191]	9.63 [245]	3⁄4—10	3⁄4	8	9.25 [235]	2.00 [51]	4.00 [102]	0.44 [11]	0.88 [22]	‰—16	4.50 [114]
6 [150]	8.50 [216]	2.28 [58]	7.63 [194]	9.75 [248]	3⁄4-10	3/4	12	10.63 [270]	2.00 [51]	4.00 [102]	0.44 [11]	0.88 [22]	‰—16	5.62 [143]
8 [200]	10.62 [270]	2.88 [73]	8.88 [226]	11.58 [294]	1∕%—9	7⁄8	12	13.00 [330]	2.13 [54]	4.25 [108]	0.63 [16]	1.25 [32]	‰—16	7.61 [193]
10 [250]	12.75 [324]	3.25 [83]	10.88 [276]	14.41 [366]	1–8	1	16	15.25 [387]	2.75 [70]	5.50 [140]	0.81 [21]	1.62 [41]	1⁄2—13	9.50 [241]
12 [300]	15.00 [381]	3.62 [92]	12.25 [311]	16.48 [419]	11⁄8-8	11/8	16	17.75 [451]	2.75 [70]	5.50 [140]	0.81 [21]	1.62 [41]	1⁄2—13	11.50 [292]
14 [350]	16.25 [413]	4.62 [117]	13.62 [346]	19.98 [507]	11⁄8-8	11/8	20	20.25 [514]	4.75 [121]	9.50 [241]	1.00 [25]	2.00 [51]	0.69 through	12.50 [318]
16 [400]	18.50 [470]	5.25 [133]	14.62 [371]	21.00 [533]	11⁄4-8	11/4	20	22.50 [572]	4.75 [121]	9.50 [241]	1.00 [25]	2.00 [51]	0.69 through	14.37 [365]
18 [450]	21.00 [533]	5.88 [149]	16.16 [410]	23.16 [588]	11⁄4-8	11⁄4	24	24.75 [629]	4.75 [121]	9.50 [241]	1.00 [25]	2.00 [51]	0.69 through	16.25 [413]
20 [500]	23.00 [584]	6.25 [159]	17.14 [435]	24.15 [613]	11⁄4-8	11⁄4	24	27.00 [686]	4.75 [121]	9.50 [241]	1.00 [25]	2.00 [51]	0.69 through	18.03 [458]
24 [600]	27.25 [692]	7.25 [184]	19.62 [498]	27.69 [703]	11⁄2-8	11/2	24	32.00 [813]	6.00 [152]	12.00 [305]	1.50 [38]	3.00 [76]	3⁄4—10	21.40 [544]

												Weight	
in [mm]	٥	R	S	т	U	W	х	Y	Z	AA	BB	Lug Body, Ibm [kg]	Wafer Body, Ibm [kg]
21⁄2 [65]	_	_	0.500 [13]	0.375 [10]	7.38 [187]	2.25 [57]	0.34 [9]	3.00 [76]	0.41 [10]	6.69 [170]	Sch 160	17 [8]	_
3 [80]	-	_	0.625 [16]	0.437 [11]	8.12 [206]	2.25 [57]	0.34 [9]	3.00 [76]	0.41 [10]	6.38 [162]	Sch 160	20 [9]	11 [5]
4 [100]	-	_	0.625 [16]	0.437 [11]	9.38 [238]	2.25 [57]	0.34 [9]	3.00 [76]	0.41 [10]	7.26 [184]	Sch 80	24 [11]	15 [7]
5 [125]	_	_	0.875 [22]	0.625 [16]	10.75 [273]	2.25 [57]	0.34 [9]	3.00 [76]	0.41 [10]	8.38 [213]	Sch 80	35 [16]	23 [10]
6 [150]	_	_	0.875 [22]	0.625 [16]	12.12 [308]	2.25 [57]	0.34 [9]	3.00 [76]	0.41 [10]	8.50 [216]	Sch 40	47 [21]	28 [13]
8 [200]	1.56 [40]	0.250	1.125 [29]	_	14.75 [375]	_	_	3.50 [89]	0.56 [14]	10.00 [254]	Sch 40	75 [34]	46 [21]
10 [250]	2.00 [51]	[6.35] sq. 0.312 [7.92] sq.	1.375 [35]	-	17.25 [438]	3.50 [89]	0.56 [14]	5.31 [135]	0.69 [18]	12.38 [314]	Sch 40	132 [60]	87 [39]
12 [300]	2.75 [70]	0.375 [9.53] sq.	1.750 [44]	_	20.00 [508]	3.50 [89]	0.56 [14]	5.31 [135]	0.69 [18]	13.75 [349]	Sch 40	197 [89]	135 [61]
14 [350]	3.00 [76]	0.500 [12.70] sq.	2.000 [51]	_	22.50 [572]	4.78 [121]	0.81 [21]	2.88 × 6.94 [73.15 × 176.28]	0.94 [24]	16.62 [422]	Sch 80	390 [177]	235 [107]
16 [400]	3.00 [76]	0.500 [12.70] sq.	2.000 [51]	-	25.00 [635]	4.78 [121]	0.81 [21]	2.88 × 6.94 [73.15 × 176.28]	0.94 [24]	17.62 [448]	Sch 80	495 [225]	310 [141]
18 [450]	3.75 [95]	0.625 [15.88] sq.	2.500 [64]	-	27.25 [692]	4.78 [121]	0.81 [21]	2.88 × 6.94 [73.15 × 176.28]	0.94 [24]	19.16 [487]	Sch 80	675 [306]	430 [195]
20 [500]	3.75 [95]	0.625 [15.88] sq.	2.500 [64]	_	29.50 [749]	4.78 [121]	0.81 [21]	2.88 × 6.94 [73.15 × 176.28]	0.94 [24]	20.14 [512]	Sch 80	775 [352]	480 [218]
24 [600]	3.62 [92]	0.625 × 0.875	3.500 [89]	_	35.00 [889]	-	_	3.92 × 9.47 [99.57 × 240.54]	0.81 [21]	23.62 [600]	Sch 80	1325 [601]	815 [370]

[†] Pressure ratings are in accordance with ASME B16.34 for Group 1.1 carbon steel valves. Pressure ratings vary with different body materials.

⁺ Installation manual is available with complete flange bolt and stud information.

Flow Characteristics (C_{ν})

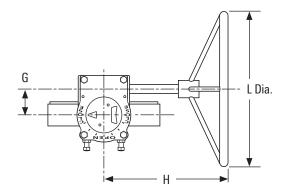

The practical control range of this type of valve occurs where continuous throttling can be effected without significant loss of accuracy or valve life.

The usable range for high-performance butterfly valves is between 20° and 70° opening, resulting in a ratio of 10:1.

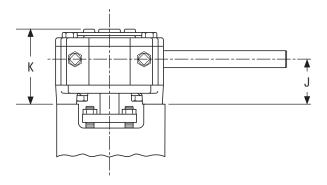
In sizing the high-performance butterfly valve for throttling applications, a fully open flow coefficient (C_{ν}) should be selected that is approximately 1.8 times the C_{ν} determined from calculations.

Under normal flow conditions, this selection provides a valve opening of 50° to 60°.

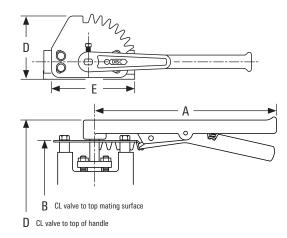
 C_{ν} values equal the flow of water in galUS per minute per 1-psi pressure drop.



in [mm]	20							
		30	40	50	60	70	80	90
Series 5100 C	lass 150							
21⁄2 [65]	8	17	31	46	66	82	97	103
3 [80]	14	31	54	81	115	144	169	180
4 [100]	31	66	117	176	250	312	367	400
5 [125]	54	114	201	302	429	536	630	670
6 [150]	85	180	317	476	677	846	995	1,058
8 [200]	174	371	654	981	1,395	1,744	2,049	2,180
10 [250]	300	638	1,125	1,688	2,401	3,001	3,526	3,751
12 [300]	440	936	1,651	2,477	3,523	4,403	5,174	5,504
14 [350]	523	1,110	1,959	2,939	4,180	5,225	6,139	6,531
16 [400]	659	1,401	2,473	3,709	5,276	6,594	7,748	8,243
18 [450]	886	1,883	3,323	4,985	7,089	8,862	10,412	11,077
20 [500]	1,066	2,266	3,998	5,998	8,530	10,662	12,528	13,328
24 [600]	1,554	3,302	5,828	8,741	12,432	15,540	18,260	19,425
30 [750]	2,752	5,848	10,320	15,480	22,016	27,520	32,336	34,400
36 [900]	3,963	8,421	14,861	22,291	31,703	39,629	46,564	49,536
Series 5300 C	lass 300							
21⁄2 [65]	8	17	31	46	66	82	97	103
3 [80]	14	31	54	81	115	144	169	180
4 [100]	31	66	117	176	250	312	367	400
5 [125]	54	114	201	302	429	536	630	670
6 [150]	85	180	317	476	677	846	995	1,058
8 [200]	174	371	654	981	1,395	1,744	2,049	2,180
10 [250]	268	570	1,005	1,508	2,145	2,681	3,150	3,351
12 [300]	399	849	1,498	2,247	3,196	3,995	4,693	4,993
14 [350]	428	910	1,606	2,409	3,426	4,282	5,032	5,353
16 [400]	609	1,295	2,285	3,428	4,876	6,094	7,161	7,618
18 [450]	848	1,730	2,983	4,504	6,303	7,594	8,379	8,855
20 [500]	906	1,926	3,378	5,098	7,250	9,062	10,648	11,328
24 [600]	1,290	2,629	4,534	6,847	9,580	11,542	12,738	15,520


Manual Actuators

Worm gear actuators


Worm gear actuators are available as optional equipment for highperformance butterfly WKM valves sizes 2½ through 8 in [65 through 200 mm]. All larger size valves require worm gear actuators or power actuation.

Handle-operated valves, sizes 2½ through 8 in [65 through 200 mm], can be converted in the field to worm gear operation. No modification is required to accommodate the addition of the worm gear unit.

Valve Size, in [mm]	ASME Class	G	Н	J	К	L Dia.	Weight, Ibm [kg]
21⁄2 [65]	150, 300	1.75 [44]	7.25 [184]	1.75 [44]	3.5 [89]	8.00 [203]	11 [5]
3 [80]	150, 300	1.75 [44]	7.25 [184]	1.98 [50]	3.45 [87]	8.00 [203]	15 [7]
4 [100]	150, 300	1.75 [44]	7.25 [184]	1.98 [50]	3.45 [87]	8.00 [203]	15 [7]
5 [125]	150, 300	1.75 [44]	7.25 [184]	1.98 [50]	3.45 [87]	8.00 [203]	15 [7]
6 [150]	150, 300	1.75 [44]	7.25 [184]	1.98 [50]	3.45 [87]	8.00 [203]	15 [7]
8 [200]	150, 300	2.51 [64]	10.28 [261]	2.49 [63]	4.29 [109]	12.00 [305]	23 [10]
10 [250]	150	2.51 [64]	10.28 [261]	2.49 [63]	4.29 [109]	12.00 [305]	23 [10]
	300	3.00 [76]	14.02 [356]	3.73 [95]	4.68 [118]	18.00 [457]	39 [18]
12 [300]	150	3.00 [76]	14.02 [356]	3.00 [76]	4.68 [118]	18.00 [457]	39 [18]
	300	3.63 [92]	16.38 [416]	3.73 [95]	6.01 [153]	24.00 [610]	49 [22]
14 [350]	150	3.00 [76]	14.02 [356]	4.25 [108]	5.93 [150]	18.00 [457]	39 [18]
	300	4.63 [118]	18.95 [481]	5.25 [133]	7.83 [198]	30.00 [762]	51 [23]
16 [400]	150	3.63 [92]	16.38 [416]	4.98 [126]	7.26 [184]	24.00 [610]	49 [22]
	300	4.63 [118]	18.95 [481]	5.25 [133]	7.83 [198]	30.00 [762]	51 [23]
18 [450]	150	3.63 [92]	18.95 [481]	5.23 [133]	7.14 [181]	30.00 [762]	51 [23]
	300	4.63 [118]	19.90 [505]	5.25 [133]	8.33 [212]	30.00 [762]	106 [48]
20 [500]	150	4.63 [118]	18.95 [481]	5.25 [133]	7.83 [199]	30.00 [762]	51 [23]
	300	4.63 [118]	18.95 [481]	5.25 [133]	8.33 [212]	30.00 [762]	51 [23]
24 [600]	150	4.63 [118]	19.90 [505]	5.25 [133]	8.33 [212]	30.00 [762]	106 [48]
	300	7.30 [185]	20.56 [522]	9.19 [233]	10.57 [268]	30.00 [762]	160 [48]
30 [750]	150	7.30 [185]	20.56 [522]	9.19 [233]	10.57 [268]	30.00 [762]	160 [48]
36 [750]	150	5.93 [151]	20.56 [522]	9.00 [228]	10.57 [268]	30.00 [762]	163 [74]

Handle Actuators								
Valve Size, in [mm]	ASME Class	Handle Number	Α	В	C	D	E	Weight, lbm [kg]
21⁄2 [65]	150, 300	H-06	12 [305]	6.69 [170]	7.94 [202]	4.5 [114]	5.56 [141]	5 [2.3]
3 [80]	150, 300	H-16	12 [305]	6.38 [162]	7.62 [194]	4.5 [114]	5.56 [141]	5 [2.3]
4 [100]	150, 300	H-16	12 [305]	7.25 [184]	8.50 [216]	4.5 [114]	5.56 [141]	5 [2.3]
5 [125]	150, 300	H-36	18 [457]	8.37 [213]	9.62 [244]	4.5 [114]	5.56 [141]	9 [4.1]
6 [150]	150, 300	H-36	18 [457]	8.50 [216]	9.75 [248]	4.5 [114]	5.56 [141]	9 [4.1]
8 [200]	150	H-46	18 [457]	10.00 [254]	11.50 [292]	4.5 [114]	5.56 [141]	9 [4.1]

 Caution: Handle should be used only up to the following differential pressures:

 2½-in valves to 450 psi

 3-in valves to 400 psi

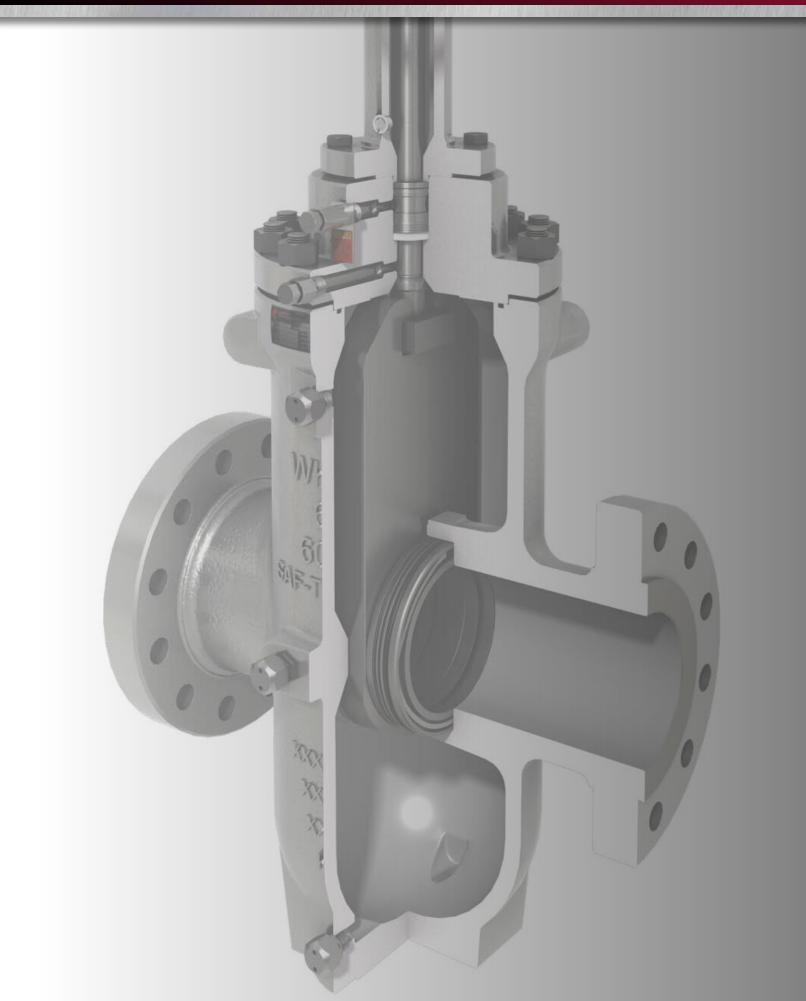
 6-in valves to 150 psi

 4-in valves to 300 psi

 8-in valves to 50 psi

High-performance butterfly WKM valves

slb.com/valves



WKM Saf-T-Seal Gate Valves

Through-conduit, double block-and-bleed slab gate valves with fully protected seat faces for long-lasting, drop-tight shutoff in liquid pipelines

Table of Contents

WKM SAF-T-SEAL GATE VALVES	
Introduction	3
Design	4
Features	5
Options	6
C6, C2B and C2C Models Automatic Relief of Excess Body Pressure	7
C6B Model Automatic Relief of Excess Body Pressure	8
Single Spring-Loaded (SLS) Seal	9
2" to 4" (50 mm to 100 mm) Classes 600, 900 and 1500 Model M (Handwheel Operated)	10
6" to 12" (150 mm to 300 mm) Classes 150, 300, 600, and 900 Models C6 and C6B (Handwheel and Bevel Gear Operated)	11
14" to 36" (350 mm to 900 mm) Classes 150 and 300 Models C6B and C2B (Bevel Gear Operated)	12
14" to 36" (350 mm to 900 mm) Classes 600 and 900 Models C68 and C6B (Handwheel and Bevel Gear Operated)	13
WKM Saf-T-Gard Actuators	14
Pneumatic Diaphragm Actuator	15
Pneumatic Piston Actuator	19

Table of Contents

Operating Size Requirements	20
Topworks Model M	22
Topworks Model C6	23
Topworks Model C6B	24
Flow Coefficients (C _v)	26
Flow Coefficients (K _v)	27
Trim Chart	28
Common Trims	29
Partial Open Flow Characteristics	30
CAMSERV Aftermarket Services for Valves and Actuation	31
Trademark Information	32

WKM Saf-T-Seal Gate Valves

Ville Platte, La., USA

Cameron is a leading provider of valves and measurement systems to the oil and gas industry. Our products are primarily used to control, direct and measure the flow of oil and gas as it is moved from individual wellheads through flowlines, gathering lines and transmission systems to refineries, petrochemical plants and industrial centers for processing.

Cameron provides a wide range of valves for use in natural gas, LNG, crude oil and refined products transmission lines. The traditional CAMERON[®] fully welded ball valve product line has been combined with the GROVE[®], RING-O[®], TOM WHEATLEY[®], ENTECH[™] and TK[®] product lines. This broad offering has strengthened Cameron's ability to serve as a single source for customer requirements. Cameron also provides critical service valves for refinery, chemical and petrochemical processing businesses, and for associated storage terminal applications, particularly through the ORBIT[®] and GENERAL VALVE[®] lines. These brands are complemented by WKM[®], TBV[™] and TEXSTEAM[™] valve products and considerably expand the scope of our product offerings.

Cameron's WKM Saf-T-Seal[™] gate valve's smooth continuous bore reduces turbulence. Additionally, the seat faces are outside the flow stream and are protected from contact with the lading whether the valve is in the open or closed position. The WKM Saf-T-Seal gate valve's full bore makes it possible to run pigs, scrapers or hot tap cutters through the valves without danger of damaging the valve, lodging the scraper, or jamming it with metal cuttings.

DESIGN

Cameron's WKM Saf-T-Seal valve's through-conduit design provides the following specific advantages that result in reliable performance and long life:

Protection of Seat Faces

 Seat faces are outside the flow stream and in full contact with the gate, in both open and closed positions, greatly extending the seat life.

Smooth, Continuous Conduit for Flow

• Destructive turbulence is reduced. In a full-bore valve, pressure drop through the valve is no greater than that through an equal length of equal diameter pipe.

Block-and-Bleed Capability

• In the closed position, the valve forms a tight seal on both seats simultaneously. This allows the body cavity to be bled.

The single spring-loaded (SLS) lip seal is self-adjusting and does not depend on plastic packing

Blowout-proof stem with backseat

Metal wave spring to ensure a bubble-tight seal

Full-bore, through-conduit design reduces turbulence

Commonly Used Applications

- Mainline and manifold valves in liquids pipelines
- Storage wells (salt domes, etc.)
- Water flood
- Safety valves (emergency shutdown valves (ESDVs) pipelines, wellheads and salt domes

FEATURES

1. Through-Conduit Slab Gate Valve

- Provides a tight pressure-activated seal
- Full-bore design reduces pressure drop and allows passage of all types of scrapers (pigs)
- Nickel-plated internals

2. Cameron's SLS Stem Seal System or Vee Packing with Injectable Plastic Packing

3. Double-Sealing, Replaceable, Floating Seats

- Block-and-bleed per API 6D
- Simple one-piece design is resistant to dirty service
- Insert initiates the seal and helps clean the gate
- Excess body pressure is automatically vented upstream
- Seats may be lubricated to promote long life, reduce operating torques, or effect a seal in an emergency situation
- Easily removed and replaced while the valve is in-line
- Double seal established by initial plastic-to-metal seal in addition to metal-to-metal seal, both upstream and downstream

4. Bolted Bonnet Valve is In-Line Repairable

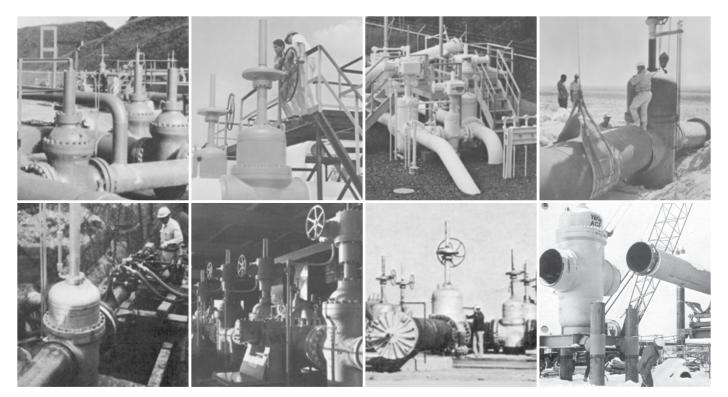
• Seal is made by an O-ring or flat metal gasket for standard applications (spiral-wound metal gasket with a non-asbestos filler for high-temperature applications)

5. Singe-Piece Cast Body Center Section

- Provides the necessary strength to resist pipeline bending moments
- Smooth shape reduces stress concentrations
- Made from pressure vessel quality steel

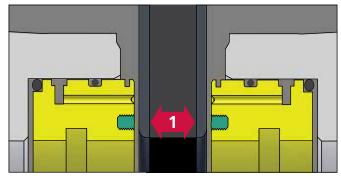
6. Valve Stroke is Established by Manufacturing Tolerances

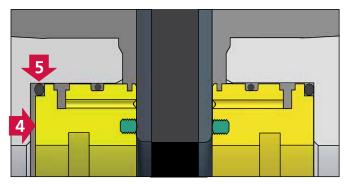
• Cannot get out of adjustment


7. Upgrades

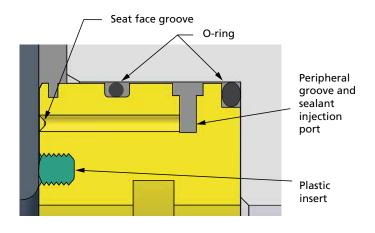
- Stem backseat with test port
- SLS stem seal contained entirely in the bonnet, reducing a potential leak path
- Seat with wave spring to seal on low-pressure air
- Complies to API 6D and B16.34

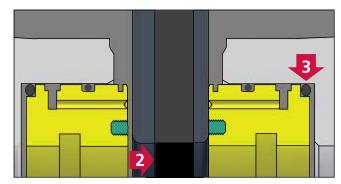
OPTIONS


- Position indicator rods standard on handwheel- and bevel gear-operated valves
- Handwheel operators, bevel gear operators, or less gearing (bare stem)
- Saf-T-Gard hydraulic actuators or piston or diaphragm pneumatic actuators for surface safety applications
- Lubrication/packing/drain extensions
- Stem/yoke tube extensions
- Variety of coatings (coal tar epoxy for buried service, two- to three-part coating systems for marine environments, inorganic zinc-rich epoxy, etc.)
- Retrofits available for stem and body fitting extensions on buried service or difficult-to-reach valves, 6" (150 mm) increments
- HF-6 overlay available for gate and seal sealing surfaces

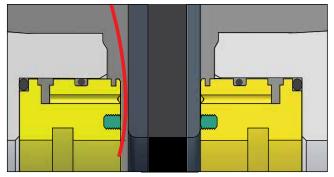

WKM Saf-T-Seal valves have a legacy of solid, innovative solutions around the globe.

C6, C2B and C2C Models


AUTOMATIC RELIEF OF EXCESS BODY PRESSURE



1. When the gate is in the closed position and there is an equal pressure through the valve, an initial seal (1) is formed by the raised plastic ring on the faces of the seats. The seat inserts clean both sides of the gate each time the valve is opened or closed.

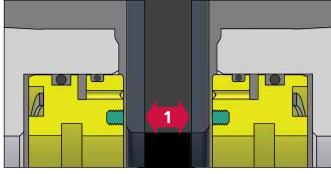


 An upstream seal is provided by the force of line pressure acting against the upstream seat (4), moving the seat against the gate and providing a tight plastic-to-metal seal. At the same time, the O-ring (5) forms a tight seal with the seat recess.

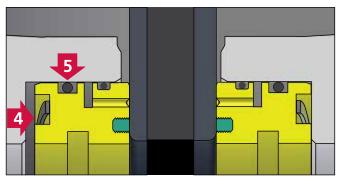
 As line pressure (2) is applied to the valve, it acts on the gate, forcing it against the plastic ring on the downstream seat and compressing it until the gate rests against the steel seat. Thus, a double seal is formed; first, a plastic-to-metal seal then metal-to-metal. The seal also is forced firmly into its recess. The O-ring (3) prevents any downstream flow around the seat.

4. The valve automatically relieves itself of excessive body pressure. When body pressure exceeds line pressure, from causes such as thermal expansion, the upstream seat is forced back into its recess and the excess pressure in the body is bled between the seat and the gate into the line.

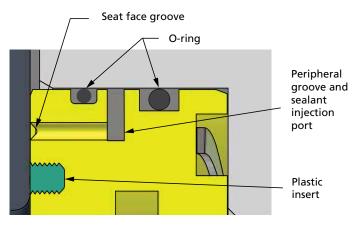
Emergency Sealant Injection

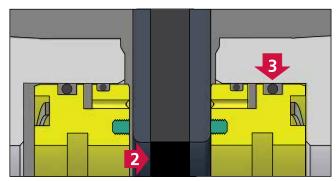

In valves 6" (150 mm) and larger, the sealant can be pumped through body fittings directly into a groove on the face of the seat. In smaller valves, the sealant is injected through fittings into the valve body.

Repacking Under Pressure

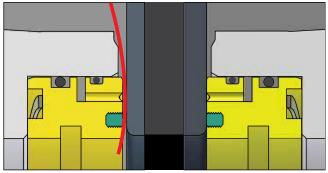

The WKM Saf-T-Seal gate valve is equipped with Cameron's SLS stem packing in an enclosed packing box. Plastic packing is not required. Plastic stem packing can be added while the valve is under pressure in case of an emergency.

C6B Model


AUTOMATIC RELIEF OF EXCESS BODY PRESSURE



 When the gate is in the closed position and there is an equal pressure through the valve, an initial seal (1) is formed by the raised plastic ring on the faces of the seats. The seat inserts clean both sides of the gate each time the valve is opened or closed.



 An upstream seal is provided by the force of line pressure acting against the upstream seat (4), moving the seat against the gate and providing a tight plastic-to-metal seal. At the same time, the O-ring (5) forms a tight seal with the seat recess.

 As line pressure (2) is applied to the valve, it acts on the gate, forcing it against the plastic ring on the downstream seat and compressing it until the gate rests against the steel seat. Thus, a double seal is formed; first, a plastic-to-metal seal then metal-to-metal. The seal is also forced firmly into its recess. The O-ring (3) prevents any downstream flow around the seat.

4. The valve automatically relieves itself of excessive body pressure. When body pressure exceeds line pressure from causes such as thermal expansion, the upstream seat is forced back into its recess and the excess pressure in the body is bled between the seat and the gate into the line.

Emergency Sealant Injection

In valves 6" (150 mm) and larger, the sealant can be pumped through body fittings directly into a groove on the face of the seat. In smaller valves, the sealant is injected through fittings into the valve body.

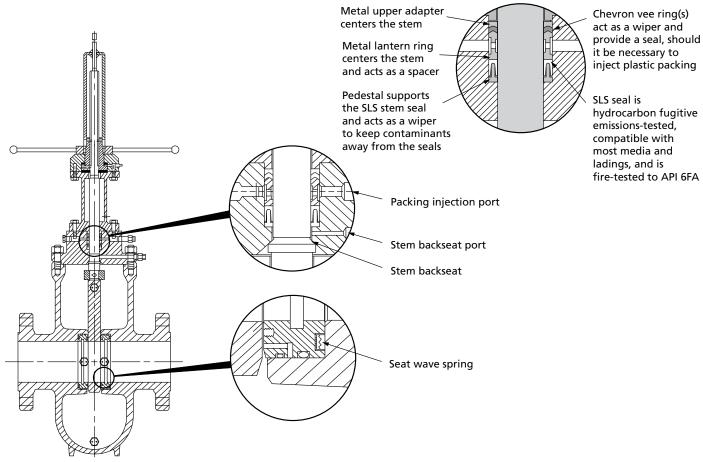
Repacking Under Pressure

The WKM Saf-T-Seal gate valve is equipped with Cameron's SLS stem packing in an enclosed packing box. Plastic packing is not required. Plastic stem packing can be added while the valve is under pressure in case of an emergency.

Single Spring-Loaded (SLS) Seal

The SLS stem seal system is designed to provide optimum performance while requiring reduced maintenance. This seal is hydrocarbon fugitive emissions-tested and has demonstrated seal ability up to 500 ppm leakage.

Testing and Certifications


- Fire tests per API 6FA, BS 6755 Part 11
- ISO 10497

Design

- Single spring-loaded lip seal
- Lantern ring
- Chevron ring(s)
- Lower pedestal
- Upper adapter

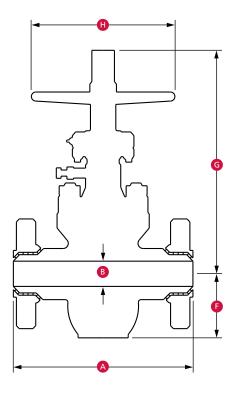
Features

- Self-adjusting seal designed to reduce maintenance
- No plastic packing required to establish an effective seal*
- Four separate sealing bands to promote reliability
- Filled PTFE shell backed with a corrosion-resistant alloy spring (making it suitable for virtually all line media)
- Metal spring provides an initial seal and uniform loading over a wide temperature range
- Lantern ring acts as a spacer in conjunction with the upper adapter as a bearing to center the stem
- Lower pedestal support seal acts as a stem scraper to keep contaminants away from sealing members
- Chevron ring(s) act as an emergency seal, should it be necessary to inject plastic packing, and keeps foreign matter away from the seal

Standard on C6B model. Can be retrofitted or requested for C6, C2B and C2C models.

* Plastic packing can be injected into packing box to affect a temporary seal while the valve is under pressure.

Model C6B Details


2" to 4" (50 mm to 100 mm) Classes 600, 900 and 1500

MODEL M (HANDWHEEL OPERATED)

Max. WP at	100° F (38° C)
Class 600:	1500 psi CWP 2250 psi Test
Class 900:	2250 psi CWP 3375 psi Test
Class 1500:	3750 psi CWP 5625 psi Test

PRINCIPAL DIMENSIONS

N = Number of turns to fully open or close valve SN = Stem nut BGO = Bevel gear operator

Class 600

Size in.					*			Weight lb (kg)	
(mm)	A	В	F	G	н	N	FE	WE	F x W
2	11-1/2	2-1/16	4-13/16	17-3/4	12	15-3/4	90	72	84
(50)	(292)	(52)	(122)	(451)	(305)		(41)	(33)	(38)
3	14	3-3/16	6-15/16	24-3/8	12	20-1/4	180	144	155
(80)	(356)	(81)	(176)	(619)	(305)		(82)	(65)	(70)
4	17	4-1/8	8-5/8	29	14	19-1/2	345	259	245
(100)	(432)	(105)	(219)	(737)	(356)		(156)	(117)	(111)

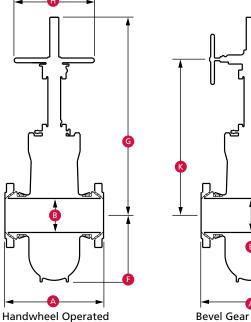
Class 900

2	14-1/2	2-1/16	5-1/16	17-3/4	12	15-3/4	150	72	105
(50)	(368)	(52)	(129)	(451)	(305)	15-5/4	(68)	(33)	(48)
3	15	3-3/16	7-5/16	24-3/8	12	20-1/4	265	193	247
(80)	(381)	(81)	(186)	(619)	(305)	20-1/4	(120)	(88)	(112)
4	18	4-1/8	9-1/16	29	18	19-1/2	515	390	417
(100)	(457)	(105)	(230)	(737)	(457)	19-1/2	(234)	(177)	(189)

Class 1500

2	14-1/2	2-1/16	5-1/16	17-3/4	12	15-3/4	220	150	154
(50)	(368)	(52)	(129)	(451)	(305)	15-3/4	(100)	(68)	(70)
3	18-1/2	3-3/16	7-5/16	24-3/8	12	20-1/4	450	328	370
(80)	(470)	3(81)	(186)	(619)	(305)	20-1/4	(204)	(149)	(168)
4	21-1/2	4-1/8	9-1/16	29	18	19-1/2	720	547	583
(100)	(546)	(105)	(230)	(737)	(457)	19-1/2	(327)	(248)	(264)

* Some valves may require a gear operator to meet API 6D.


6" to 12" (150 mm to 300 mm) Classes 150, 300, 600 and 900

MODELS C6 AND C6B (HANDWHEEL AND BEVEL GEAR OPERATED)

Max. WP	Max. WP at 100° F (38° C)							
Class 150:	290 psi CWP 450 psi Test							
Class 300:	750 psi CWP 1125 psi Test							
Class 600:	1500 psi CWP 2250 psi Test							
Class 900:	2250 psi CWP 3375 psi Test							

PRINCIPAL DIMENSIONS N = Number of turns to fully open or close valve SN = Stem nut BGO = Bevel gear operator

Class 150 (Model C6)

Bevel Gear Operated

Size in.				G	G	*		N	N	N N	/eight lb (k	g)
(mm)	A	В	F	(HWO)	(BGO)	Н	K	(SN)	(BGO)	FE	WE	WXF
6	10-1/2	6	13-1/2	45-3/8	46-3/8	24	30-3/4	29	116	245	215	230
(150)	(267)	(152)	(343)	(1153)	(1178)	(610)	(781)	29	110	(111)	(98)	(104)
8	11-1/2	8	16-1/2	52-3/8	55-3/8	24	35-7/8	77	140	365	320	342
(200)	(292)	(203)	(419)	(1330)	(1407)	(610)	(911)	37	148	(166)	(145)	(155)
10	13	10	19-1/2	59-1/2	60-1/2	24	40-7/8	45	100	515	459	488
(250)	(330)	(254)	(495)	(1511)	(1537)	(610)	(1038)	45	180	(234)	(208)	(221)
12	14	12	22-3/4	68-5/8	69-5/8	24	46-1/8	52	212	677	594	635
(300)	(356)	(305)	(578)	(1743)	(1768)	(610)	(1172)	53	212	(307)	(269)	(288)

Class 300 (Model C6)

6 (150)	15-7/8 (403)	6 (152)	13-1/2 (343)	45-3/8 (1153)	46-3/8 (1178)	24 (610)	30-3/4 (781)	29	116	316 (143)	271 (123)	294 (133)
8	16-1/2	8	16-1/2	54-3/8	55-3/8	24	35-7/8	37	148	520	459	489
(200)	(419)	(203)	(419)	(1381)	(1407)	(610)	(911)	57	140	(236)	(208)	(222)
10 (250)	18 (457)	10 (254)	19-1/2 (495)	59-1/2 (1511)	60-1/2 (1537)	24 (610)	40-7/8 (1038)	45	180	773 (351)	695 (315)	731 (332)
12 (300)	19-3/4 (502)	12 (305)	22-5/8 (578)	68-5/8 (1743)	69-5/8 (1768)	24 (610)	46-1/8 (1172)	53	212	1035 (469)	930 (422)	983 (446)

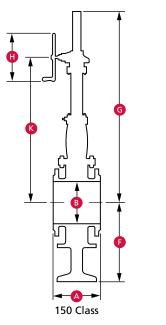
Class 600 (Model C6B)

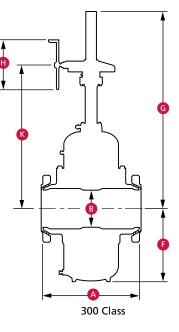
Size in.				G	G	*	N		N N		Weight lb (kg)			
(mm)	A	В	F	(HWO)	(BGO)	н	K	(SN)	(BGO)	FE	WE	WXF		
6	22	6	13-5/8	45-3/8	46-3/8	24	30-3/4	20	110	600	439	650		
(150)	(559)	(152)	(346)	(1153)	(1178)	(610)	(781)	29	116	(272)	(199)	(295)		
8	26	8	16-3/4	56-3/8	57-3/8	24	37-13/16	77	1.40	970	737	853		
(200)	(660)	(203)	(425)	(1432)	(1457)	(610)	(960)	37	148	(440)	(334)	(387)		
10	31	10	20	59-1/2	61-1/2	24	40-7/8	45	100	1736	1584	1656		
(250)	(787)	(254)	(508)	(1511)	(1562)	(610)	(1038)	45	180	(787)	(718)	(751)		
12	33	12	23-1/4	68-7/8	70-1/2	30	47-1/4	52	210	2374	2010	2156		
(300)	(838)	(305)	(591)	(1743)	(1791)	(762)	(1200)	53	318	(1077)	(912)	(9143)		

Class 900 (Model C6B)

6 (150)	24 (610)	6 (152)	13-7/8 (352)	45-1/8 (1146)	46-1/8 (1222)	24 (610)	30-3/4 (781)	29	116	650 (295)	500 (227)	575 (261)
8	29	8	17-1/8	56-1/8	57-1/8	24	37-13/16	37	140	1200	950	1050
(200)	(737)	(203)	(435)	(1426)	(1451)	(610)	(960)	37	148	(544)	(431)	(476)
10	33	10	20-1/2	59-1/2	60-3/4	30	42-1/16	45	100	2150	1830	1980
(250)	(838)	(254)	(521)	(1511)	(1543)	(762)	(1068)	45	180	(975)	(830)	(898)
12	38	12	23-3/4	71-3/4	73-1/8	30	48-1/2	53	210	3250	2500	2650
(300)	(965)	(305)	(603)	(1822)	(1857)	(762)	(1232)	53	318	(1474)	(1134)	(1202)

Flange dimensions conform to ASME B16.5, 1981. Information on power-actuated and other types of valves available on application. * Some valves may require a gear operator to meet API 6D.


14" to 36" (350 mm to 900 mm) Classes 150 and 300


MODELS C6B AND C2B (BEVEL GEAR OPERATED)

Max. V	/P at 100° F (38° C)	
Class 150:	290 psi CWP 450 psi Test	
Class 300:	750 psi CWP 1125 psi Test	

PRINCIPAL DIMENSIONS

N = Number of turns to fully open or close valve SN = Stem nut BGO = Bevel gear operator

Class 150 (Model C6B)

Size in.					*		N	N	V	Veight lb (ko	g)
(mm)	А	В	F	G	Н	K	(SN)	(BGO)	FE	WE	WXF
14 (350)	15 (381)	13-1/4 (337)	25-1/4 (641)	76 (1930)	24 (610)	51-3/4 (1314)	36-3/4	146-7/8	872 (396)	760 (345)	817 (371)
16 (400)	16 (406)	15-1/4 (387)	28-3/8 (721)	82-7/8 (2105)	24 (610)	56-7/8 (1445)	41-3/4	166-7/8	1309 (594)	1163 (528)	1235 (560)
18 (450)	17 (432)	17-1/4 (438)	31-3/8 (797)	90 (2286)	24 (610)	62 (1575)	46-1/16	184-3/8	1781 (808)	1603 (727)	1690 (767)
20 (500)	18 (457)	19-1/4 (489)	34-1/2 (876)	98-1/4 (2496)	24 (610)	67-1/4 (1708)	41-1/2	166	2351 (1066)	2119 (961)	2235 (1014)
24 (600)	20 (508)	23-1/4 (591)	41-1/8 (1045)	113 (2870)	24 (610)	78 (1981)	50-1/4	301-1/2	2892 (1312)	2514 (1140)	2703 (1226)
26 (650)	22 (559)	25 (635)	43-13/16 (1113)	120-1/4 (3054)	24 (610)	84-5/8 (2149)	-	-	3521 (1597)	3172 (1439)	3327 (1509)
28 (700)	24 (610)	27 (686)	46-7/8 (1191)	127-1/4 (3232)	24 (610)	90-1/8 (2289)	57-7/8	347-1/4	4098 (1859)	3506 (1590)	3802 (1725)
30 (750)	26 (660)	29 (737)	50 (1270)	136-1/4 (3461)	24 (610)	95-1/2 (2426)	62-1/2	500	4916 (2230)	4231 (1919)	4573 (2074)
36 (900)	32 (813)	34-1/2 (876)	59 (1499)	157 (3988)	36 (914)	113-3/8 (2880)	46-1/8	368-3/4	5842 (2650)	5264 (2388)	5521 (2504)

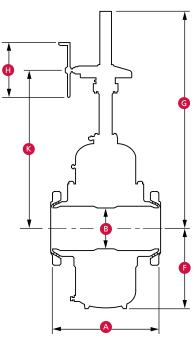
Flange dimensions on valves through 24" (600 mm) conform to American National Standards Institute Standard 816.5, 1974. Larger sizes conform to MSS-SP-44.

Class 300 (Model C2B)

14	20	12 1/4			24	40.1/2				1266	1201
14	30	13-1/4	25-1/2	75-5/8	24	49-1/2	29-3/8	117-1/2	1454	1266	1361
(350)	(762)	(337)	(648)	(1921)	(610)	(1257)	25-5/0	117-172	(660)	(574)	(617)
16	33	15-1/4	28-1/8	80-5/8	24	54-1/2	41 3/4	100 7/0	2182	1939	2058
(400)	(838)	(387)	(714)	(2048)	(610)	(1384)	41-3/4	166-7/8	(990)	(880)	(933)
18	36	17-1/4	31	88	24	60-3/4	27.2/0	224.4/4	2969	2672	2816
(450)	(914)	(438)	(787)	(2235)	(610)	(1543)	37-3/8	224-1/4	(1347)	(1212)	(1277)
20	39	19-1/4	34-1/2	97-3/4	24	67	44.4/2	2.40	3919	3532	3725
(500)	(991)	(489)	(876)	(2483)	(610)	(1702)	41-1/2	249	(1778)	(1602)	(1690)
24	45	23-1/4	41-1/8	114-1/8	24	78-3/4	FO 1/4	400	5868	5287	5545
(600)	(1143)	(591)	(1045)	(2899)	(610)	(2000)	50-1/4	402	(2662)	(2398)	(2515)
26	49	25	43-3/4	120-1/4	24	83-1/4			6830	5844	6337
(650)	(1245)	(635)	(1111)	(3054)	(610)	(2115)	-	-	(3098)	(2651)	(2874)
28	53	27	47	129-3/4	24	90-1/4			8194	7051	7623
(700)	(1346)	(686)	(1194)	(3296)	(610)	(2292)	-	-	(3717)	(3198)	(3458)
30	55	29	50-5/8	139-1/8	36	96-3/4	20.1/10	212 1/2	9736	8773	9201
(750)	(1397)	(737)	(1286)	(3534)	(914)	(2457)	39-1/16	312-1/2	(4416)	(3979)	(4174)
36	68	34-1/2	59-1/4	161	36	112-3/4	46-1/8	368-3/4	15,441	13,607	14,524
(900)	(1727)	(876)	(1505)	(4089)	(914)	(2864)	40-1/8	308-3/4	(7004)	(6172)	(6588)

Flange dimensions conform to ASME B16.5, 1981.

Information on power-actuated and other types of valves available on application.


* Some valves may require a gear operator to meet API 6D.

14" to 36" (350 mm to 900 mm) Classes 600 and 900

MODELS C6 AND C6B (HANDWHEEL AND BEVEL GEAR OPERATED)

Max. V	VP at 100° F (38° C)
Class 600:	1500 psi CWP 2250 psi Test
Class 900:	2250 psi CWP 3375 psi Test

PRINCIPAL DIMENSIONS N = Number of turns to fully open or close valve SN = Stem nut BGO = Bevel gear operator

Class 600 (Model C6B)

Size in.					*		N	N	V	Veight lb (kg	g)
(mm)	А	В	F	G	н	K	(SN)	(BGO)	FE	WE	WXF
14	35	13-1/4	26	75-3/8	24	51-1/2	29-3/8	176-1/4	3232	2828	3030
(350)	(889)	(337)	(660)	(1915)	(610)	(1308)	29-5/0	170-174	(1466)	(1283)	(1374)
16	39	15-1/4	29-1/8	83-1/2	24	56-3/4	33-3/8	200-1/4	4023	3515	3767
(400)	(991)	(387)	(740)	(2121)	(610)	(1441)	55-5/0	200-1/4	(1825)	(1594)	(1709)
18	43	17-1/4	32-3/8	91-1/2	24	62-1/2	37-3/8	224-1/4	5617	4110	5252
(450)	(1092)	(438)	(822)	(2324)	(610)	(1588)	57-576	224-1/4	(2548)	(1864)	(2382)
20	47	19-1/4	35-7/8	100-1/2	24	69-3/8	26	208	6984	6070	6449
(500)	(1194)	(489)	(911)	(2553)	(610)	(1762)	20	200	(3168)	(2753)	(2925)
24	55	23-1/4	42-1/4	118	36	83	31-3/8	251-1/4	11,447	10,014	10,730
(600)	(1397)	(591)	(1073)	(2997)	(914)	(2108)	51-5/6	251-1/4	(5192)	(4542)	(4867)
26	57	25	46	124-5/8	36	87-1/2	33-9/16	268-3/4	13,124	11,494	10,024
(650)	(1448)	(635)	(1168)	(3165)	(914)	(2223)	55-9/10	200-5/4	(5953)	(5214)	(4547)
28	61	27	49-1/4	134	36	93-1/2	36-3/16	434	14,293	12,232	12,624
(700)	(1549)	(686)	(1251)	(3404)	(914)	(2375)	50-5/10	454	(6483)	(5548)	(5726)
30	65	29	52-3/4	142-3/4	36	100-1/2	39-1/16	468-3/4	14,457	12,724	13,591
(750)	(1651)	(737)	(1340)	(3626)	(914)	(2553)	35-1/10	400-5/4	(6558)	(5772)	(6165)
36	82	34-1/2	61-3/4	171-1/4	36	117-1/2	46-1/8	553-1/8	26,377	23,967	25,172
(900)	(2083)	(876)	(1568)	(4350)	(914)	(2985)	40-1/8	555-1/8	(11964)	(10871)	(11418)

Class 900 (Model C2C)

14 (350)	40-1/2 (1029)	12-3/4 (324)	25-9/16 (649)	79-5/8 (2022)	24 (610)	55-13/16 (1418)	20-7/8	166-7/8	-	-	-
16 (400)	44-1/2 (1130)	15-1/4 (387)	30-7/16	87-3/8 (2219)	24 (610)	60-3/16 (1529)	20-7/8	166-7/8	-	-	-
18	48	(387) 17-1/4	(773) 33-7/8	56-15/16	24	64-11/16	22.2/0	107	-	-	-
(450)	(1219)	(438)	(860)	(1446)	(610)	(1643)	23-3/8	187	-	-	-
20	52	19-1/4	37-1/4	103-3/8	36	71-1/8	26	208	-	-	-
(500)	(1321)	(489)	(946)	(2626)	(914)	(1807)	20	200	-	-	-
24	61	23-1/4	46-1/4	123-1/8	36	86-3/8	_	_	-	-	-
(600)	(1549)	(591)	(1175)	(3127)	(914)	(2194)			-	-	-

Flange dimensions conform to ASME B16.5, 1981.

Information on power-actuated and other types of valves available on application.

WKM Saf-T-Gard Actuators

Electric and Pneumatic

Cameron's WKM Saf-T-Seal[™] gate valves can be equipped with two principal types of actuators: electric actuators and pneumatic or gas-powered motor drives.

Information Required for Sizing Electric Actuators

- Valve type: Saf-T-Seal
- Size: pipe size x bore size
- Pressure class
- Top-mounted or side-mounted
- Closing time in seconds
- Maximum differential pressure (psi)
- Type and make of actuator required
- Voltage:
 - Three-phase, 60-cycle 220 V/440 V
 - Three-phase, 50-cycle 220 V/440 V
 - Control voltage
 - Motor connection voltage
 - Any special requirements
- Enclosure:
 - Weather-proof
 - Explosion-proof, Class 1, Group D, Div. 2
 - ATEX
 - Certification required
- Accessories:
 - Reversing starter
 - Control transformer
 - Push-button station:
 - Three push buttons
 - Two lights
 - Limit switches:
 - Two train-geared limit switches (eight contacts)
 - Four train-geared limit switches (16 contacts)
- Special requirements

Information Required for Sizing Pneumatic Actuators

- Valve type: Saf-T-Seal
- Size: pipe size x bore size
- Pressure class
- Actual working pressure at which valve will be operated (psi)
- Available gas pressure to power motor drive: psi
- Top-mounted or side-mounted
- Closing time in seconds
- Maximum differential pressure (psi)
- Type and make of actuator required
- Accessories
- Special requirements

PNEUMATIC DIAPHRAGM ACTUATOR

MA 12 Series

For use with 2", 3" and 4" (50 mm, 80 mm and 100 mm) nominal gate valves (Family Group Code Y55012).

Design Advantages

Stronger Actuator Mounting Arrangement

Unlike other designs, the mounting bolts on Cameron's actuators are positioned parallel to the centerline of the actuator, which loads the mounting bolts in tension. This design is not subject to bending or shear forces. This means it can withstand greater separation forces than other actuators on the market.

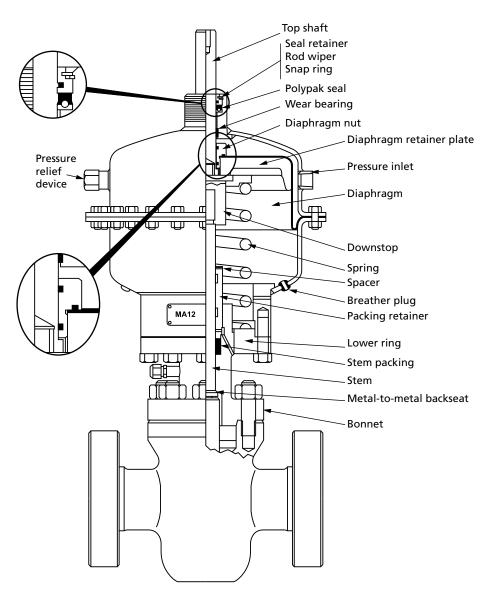
Corrosion-Resistant Materials

Cameron's Saf-T-Gard diaphragm actuators are manufactured to NACE MR0175. In addition, all non-stainless components are coated with Xylan to increase corrosion resistance.

Superior Diaphragm Design

Cameron's diaphragm material is stronger than most designs currently on the market, resulting in extended service life and higher operating pressures. Unique sealing grooves provide additional grip and improve the outer seal of the diaphragm housing.

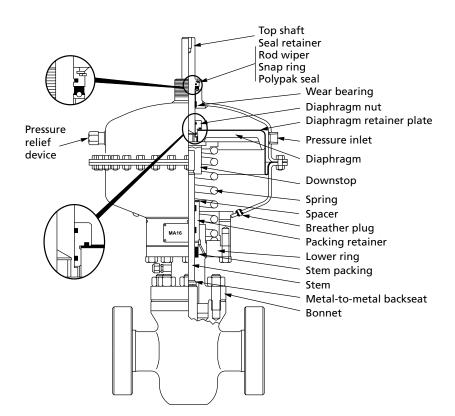
Flexible Actuator Orientation

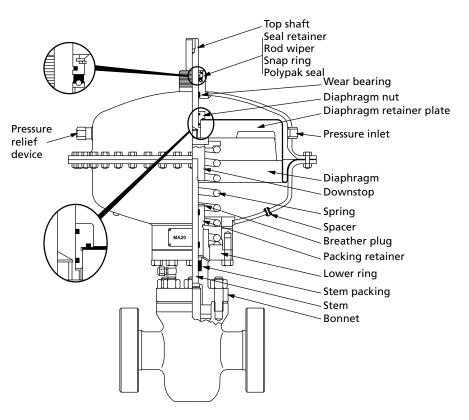

Connecting misaligned components with rigid tubing can be timeconsuming and can induce high stress into the tubing connections. The MA lower ring is threaded to the bonnet, thus allowing rotation of the actuator to accommodate precise alignment.

Description

Cameron's Saf-T-Gard diaphragm actuator was developed by using the quality features of field proven products and then combining them with innovative technology. Particular attention has been given to safety, ease of maintenance and cost of manufacturing.

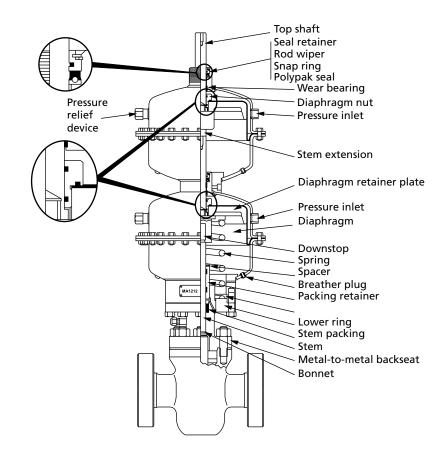
Designed for use with all manufacturers' gate valves in nominal sizes of 2" to 6" (50 mm to 150 mm), its simple design and operating principle helps to avoid most of the problems commonly associated with piston type actuators such as galling, misalignment, distortion and O-ring failures.


The Saf-T-Gard diaphragm actuators are interchangeable with other models in the product line, which reduces the amount of spare parts necessary for maintenance.


MA 16 Series

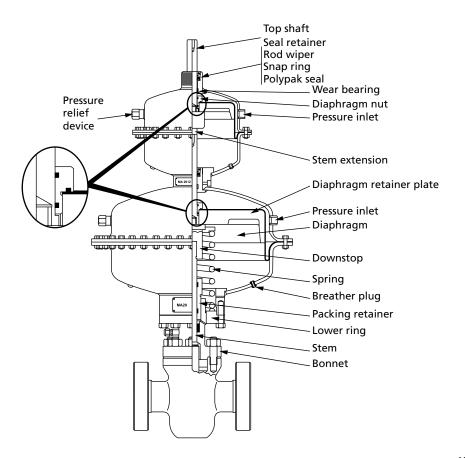
For use with 2", 3", 4" and 5" (50 mm, 80 mm, 100 mm and 125 mm) nominal gate valves (Family Group Code Y55016).

MA 20 Series


For use with 2", 3", 4", 5" and 6" (50 mm, 80 mm, 100 mm, 125 mm and 150 mm) nominal gate valves (Family Group Code Y55020).

MA 1212 Series

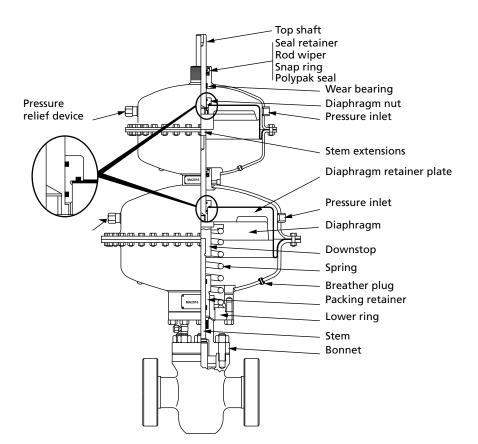
For use with 2", 3" and 4" (50 mm, 80 mm and 100 mm) nominal gate valves (Family Group Code Y55012).


The MA 1212 series doubles the area affected by applied control pressure.

MA 2012 Series

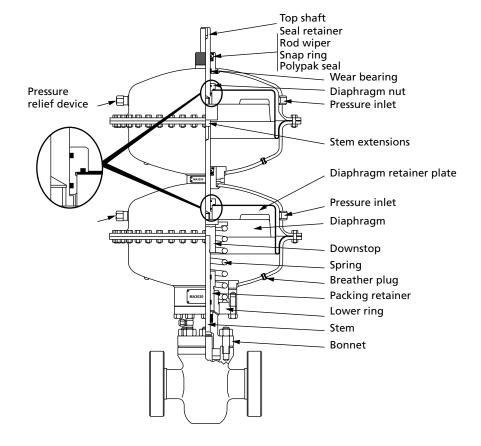
For use with 2", 3" and 4" (50 mm, 80 mm and 100 mm) nominal gate valves (Family Group Code Y55020).

The MA 2012 series increases the area affected by applied control pressure.



MA 2016 Series

For use with 2", 3", 4" and 6" (50 mm, 80 mm, 100 mm and 150 mm) nominal gate valves (Family Group Code Y55020).


The MA 2016 series increases the area affected by applied control pressure.

MA 2020 Series

For use with 2", 3", 4", 5", 6" and 8" (50 mm, 80 mm, 100 mm, 125 mm, 150 mm and 200 mm) nominal gate valves (Family Group Code Y55020).

The MA 2020 series increases the area affected by applied control pressure.

PNEUMATIC PISTON ACTUATOR

MP 13 Series

For use with 2", 3" and 4" (50 mm, 80 mm and 100 mm) nominal gate valves (Family Group Code Y55013).

Design Advantages

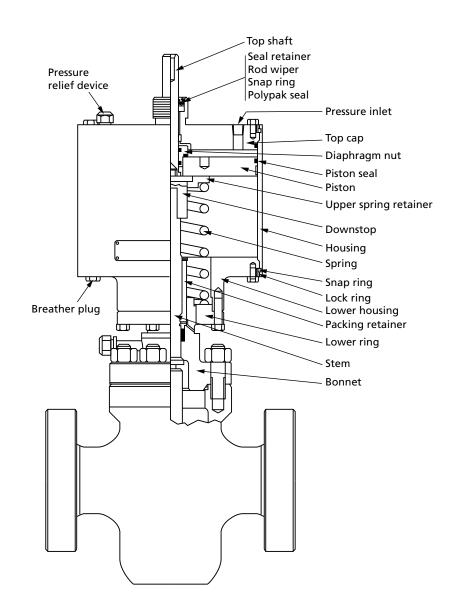
Stronger Actuator Mounting Arrangement

Unlike other designs, the mounting bolts on Cameron's actuators are positioned parallel to the centerline of the actuator, which loads the mounting bolts in tension. This design is not subject to bending and shear forces. This means it can withstand greater separation forces than other actuators on the market.

Corrosion-Resistant Materials

Cameron's piston actuators are manufactured to NACE MR0175. In addition, all non-stainless components are coated with Xylan to increase corrosion resistance.

Superior Diaphragm Design


Cameron's piston actuators utilize a single-piece stainless steel snap ring to facilitate easy cylinder removal. The dynamic piston has a large wear bearing that reduces any internal metal-to-metal contact.

Flexible Actuator Orientation

Connecting misaligned components with rigid tubing can be time-consuming and can induce high stress into the tubing connections. The MA lower ring is threaded to the bonnet, thus allowing rotation of the actuator to accommodate precise alignment.

Description

Cameron's pneumatic piston actuator series is designed for use with all manufacturers' gate valves in nominal sizes of 2" to 4" (50 mm to 100 mm). Its remarkably simple design and operating principle make this piston actuator suitable for a variety of applications. Cameron's piston actuators are interchangeable and very versatile because they operate with many types of supply gas, compressed air, nitrogen or well gas.

OPERATING SIZE REQUIREMENTS

Valve Size	ASME	ASME Working	Ste	m Thre	ead	Recommended Operating	Recommended Operating	Block- and-	Block- and-	Maximum Allowable	Maximum Allowable	Total Stem	Stem Nut Turns-to-
in. (mm)		Pressure (psig)	Size in.	Pitch in.	Lead in.	Thrust (lbf)	Torque (ft-lbf)	Bleed Thrust (lbf)	Bleed Torque (ft-lbf)	Thrust (lbf)	Torque (ft-lbf)	Travel in. (mm)	Open Valve
2 (50)	150	290	0.875	0.167	0.167	457	3	535	4	12,597	93	2.63 (67)	15.8
2 (50)	300	750	0.875	0.167	0.167	1183	9	1383	10	12,597	93	2.63 (67)	15.8
2 (50)	600	1500	0.875	0.167	0.167	2366	17	2766	20	12,597	93	2.63 (67)	15.8
2 (50)	900	2250	0.875	0.167	0.167	3549	26	4149	30	12,597	93	2.63 (67)	15.8
2 (50)	1500	3750	0.875	0.167	0.167	5914	43	6915	51	12,597	93	2.63 (67)	15.8
3 (80)	150	290	1.000	0.200	0.200	803	7	1115	9	16,027	136	4.03 (102)	20.2
3 (80)	300	750	1.000	0.200	0.200	2078	18	2884	25	16,027	136	4.03 (102)	20.2
3 (80)	600	1500	1.000	0.200	0.200	4155	35	5769	49	16,027	136	4.03 (102)	20.2
3 (80)	900	2250	1.000	0.200	0.200	6233	53	8653	74	16,027	136	4.03 (102)	20.2
3 (80)	1500	3750	1.000	0.200	0.200	10,388	88	14,422	123	16,027	136	4.03 (102)	20.2
4 (100)	150	290	1.250	0.250	0.250	1327	14	1783	19	25,442	271	4.88 (124)	19.5
4 (100)	300	750	1.250	0.250	0.250	3432	37	4610	49	25,442	271	4.88 (124)	19.5
4 (100)	600	1500	1.250	0.250	0.250	6864	73	9221	98	25,442	271	4.88 (124)	19.5
4 (100)	900	2250	1.250	0.250	0.250	10,297	110	13,831	147	25,442	271	4.88 (124)	19.5
4 (100)	1500	3750	1.250	0.250	0.250	17,161	183	23,052	245	25,442	271	4.88 (124)	19.5

Model M - 2" to 4" (50 mm to 100 mm) ASME Classes 150 to 1500

Model C6B - 6" to 12" (150 mm to 300 mm) ASME Classes 600 to 900

Valve		ASME	Ste	m Thre	ead	Recommended	Recommended	Block- and-	Block- and-	Maximum	Maximum	Total	Stem Nut
Size in. (mm)		Working Pressure (psig)	Size in.	Pitch in.	Lead in.	Operating Thrust (lbf)	Operating Torque (ft-lbf)	Bleed Thrust (lbf)	Bleed Torque (ft-lbf)	Allowable Thrust (lbf)	Allowable Torque (ft-lbf)	Stem Travel in. (mm)	Turns-to- Open Valve
6 (150)	600	1500	1.250	0.250	0.250	9839	105	14,307	152	26,783	283	7.25 (184)	29
6 (150)	900	2250	1.250	0.250	0.250	14,758	157	21,460	228	27,685	335	7.25 (184)	29
8 (200)	600	1500	1.750	0.250	0.250	17,099	237	21,507	298	45,807	557	9.25 (235)	37
8 (200)	900	2250	1.750	0.250	0.250	25,649	355	32,261	447	49,637	604	9.25 (235)	37
10 (250)	600	1500	1.750	0.250	0.250	23,859	330	29,078	403	46,726	569	11.25 (286)	45
10 (250)	900	2250	1.750	0.250	0.250	35,789	495	43,617	604	57,297	697	11.25 (286)	45
12 (300)	600	1500	1.750	0.250	0.250	32,032	443	41,381	573	69,033	840	13.31 (338)	53
12 (300)	900	2250	2.000	0.250	0.250	49,816	770	62,072	959	80,522	1109	13.31 (338)	53
14 (350)	150	290	1.500	1.390	0.400	7149	104	16,674	242	9053	131	14.75 (375)	36.875
14 (350)	600	1500	2.000	1.864	0.500	39,183	741	64,831	1226	46,824	886	14.75 (375)	29.50
16 (400)	150	290	1.500	1.390	0.400	9177	133	27,543	399	11,448	166	16.75 (425)	41.875
16 (400)	600	1500	2.000	1.864	0.500	49,676	940	69,091	1307	59,215	1120	16.75 (425)	33.50
18 (450)	150	290	1.500	1.390	0.400	11,594	168	22,596	327	13,960	202	18.50 (470)	46.25
18 (450)	600	1500	2.250	2.113	0.500	63,501	1303	98,175	2014	72,208	1481	18.75 (470)	37.50
20 (500)	150	290	1.750	1.614	0.500	14,380	249	31,621	548	17,230	298	20.75 (527)	41.50
20 (500)	600	1500	2.750	2.536	0.500	79,986	1858	145,272	3375	89,122	2070	20.75 (527)	41.50
24 (600)	150	290	2.000	1.864	0.500	20,606	390	21,390	405	26,347	498	25.125 (638)	50.25
24 (600)	600	1500	3.250	3.036	0.800	114,674	3510	219,495	6718	136, 279	4171	25.00 (635)	31.25

Note: 1. Recommended operating thrust and torque are the loads required to open or close the valve with full differential pressure across the gate. The operator should be sized for these values.

2. Maximum allowable thrust and torque values are maximum allowable loads of the valve.

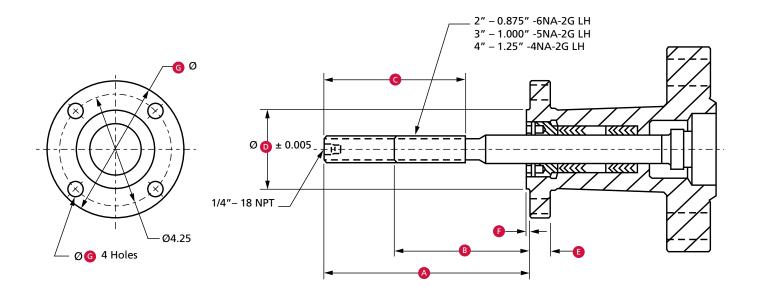
3. When block-and-bleed or double block-and-bleed service is specified, operators should be sized for these values.

4. Unless otherwise stated, handwheel rim pull for manual and motor operators shall not exceed 120 lb (54 kg).

5. All torque and thrust values are based on maximum working pressure at ambient temperature.

Valve Size	A C N 4 F	ASME Working	Ste	m Thre	ead		Recommended			Block- and-	Block- and-	Total	Stem Nut
in.	Class	Pressure	Size	Pitch	Lead	Operating Thrust	Operating Torque	Thrust	Allowable Torque	Bleed	Bleed	Stem Travel	Turns-to- Open
(mm)		(psig)	in.	in.	in.	(lbf)	(ft-lbf)	(lbf)	(ft-lbf)	Thrust (lbf)	Torque (ft-lbf)	in. (mm)	Valve
6 (150)	150	290	1.250	0.250	0.250	1902	18	31,785	307	2762	27	7.25 (184)	29
6 (150)	300	750	1.250	0.250	0.250	4919	47	31,785	307	7143	69	7.25 (184)	29
6 (150)	600	1500	1.250	0.250	0.250	9836	95	31,785	307	14,285	138	7.25 (184)	29
6 (150)	900	2250	1.250	0.250	0.250	14,757	142	31,785	307	21,428	207	7.25 (184)	29
8 (200)	150	290	1.500	0.250	0.250	3106	34	52,036	574	4153	46	9.25 (235)	37
8 (200)	300	750	1.500	0.250	0.250	8033	89	52,036	574	10,740	119	9.25 (235)	37
8 (200)	600	1500	1.500	0.250	0.250	16,067	177	52,036	574	21,481	237	9.25 (235)	37
8 (200)	900	2250	1.500	0.250	0.250	24,100	266	52,036	574	32,221	356	9.25 (235)	37
10 (250)	150	290	1.500	0.250	0.250	4413	49	52,036	574	5817	64	11.25 (286)	45
10 (250)	300	750	1.500	0.250	0.250	11,413	126	52,036	574	15,045	168	11.25 (286)	45
10 (250)	600	1500	1.500	0.250	0.250	22,828	252	52,036	574	30,090	332	11.25 (286)	45
10 (250)	900	2250	1.500	0.250	0.250	34,239	378	52,036	574	45,135	498	11.25 (286)	45
12 (300)	150	290	1.500	0.250	0.250	5993	66	52,036	574	7755	86	13.25 (337)	53
12 (300)	300	750	1.500	0.250	0.250	15,500	171	52,036	574	20,056	221	13.25 (337)	53
12 (300)	600	1500	1.500	0.250	0.250	30,999	342	52,036	574	40,113	443	13.25 (337)	53
12 (300)	900	2250	1.750	0.250	0.250	48,045	597	77,223	960	60,169	748	13.25 (337)	53
14 (350)	150	290	1.500	0.200	0.400	7149	95	54,521	722	9063	120	14.69 (373)	36.73
14 (350)	300	750	2.000	0.250	0.500	19,594	338	101,611	1754	23,439	405	14.69 (373)	29.38
14 (350)	600		2.000	0.250	0.500	39,187	676	101,611	1754	46,878	809	14.69 (373)	29.38
14 (350)	900		2.250	0.250	0.500	60,540	1129	135,875	2533	70,547	1315	14.69 (373)	29.38
16 (400)	150	290	1.500	0.200	0.400	9178	122	54,521	722	11,439	152	16.69 (424)	41.73
16 (400)	300	750	1.500	0.200		23,735	314	54,521	722	29,584	392	16.69 (424)	41.73
16 (400)	600	1500	2.000 2.750	0.250	0.500	49,680	857	101,611	1754 4546	59,168	1021	16.69 (424) 16.69 (424)	33.38 20.86
16 (400)	900	2250 290	1.500		0.800	81,146	2040	180,794	722	88,752	2232		46.10
18 (450) 18 (450)	150 300	290 750	1.750	0.200	0.400	11,594 30,500	154 484	54,521 72,304	1148	13,974 36,139	185 574	18.44 (468)	46.10 37.38
18 (450)	600		2.250	0.250	0.500	63,504	1184	135,875	2533	72,278	1347	18.69 (475)	37.38
18 (450)	900	2250	2.250	0.250	0.800	99,884	2512	180,794	4546	108,418	2726	18.69 (475) 18.69 (475)	23.36
20 (500)	150	2230	1.750	0.400	0.500	14,381	228	72,304	1148	17,245	2720	20.75 (527)	41.50
20 (300)	300	750	2.000	0.250	0.500	37,782	652	101,611	1754	44,600	770	20.75 (527)	41.50
20 (500)	600		2.750	0.200	0.800	79,982	2011	180,794	4546	89,200	2243	20.75 (527)	25.94
20 (300)	900	2250	3.000	0.400	0.800	122,624	3252	225,696	5986	133,801	3549	20.75 (527)	25.94
20 (500)	150	2230	1.750	0.400	0.500	17,243	274	72,304	1148	21,470	341	22.94 (583)	45.88
22 (550)	300		2.250	0.250	0.500	45,845	855	135,875	2533	55,526	1035	22.94 (583)	45.88
22 (550)	600		3.000	0.200	0.800	96,549	2561	225,696	5986	111,051	2945	22.94 (583)	28.68
24 (600)	150		2.000	0.250	0.500	20,605	356	101,611	1754	26,366	455	25.13 (638)	50.26
24 (600)	300		2.250	0.250	0.500	53,952	1006	135,875	2533	68,188	1271	25.13 (638)	50.26
24 (600)	600	1500		0.400		114,677	3200	275,560	7689	138,375	3806	25.13 (638)	31.41
24 (600)	900			0.400		178,422	5474	390,393	11,977	204,563	6276	25.13 (638)	31.41
30 (750)	150			0.250		31,396	585	135,875	2533	42,018	783	31.25 (794)	62.50
30 (750)	300	750		0.400		83,626	2218	225,698	5986	108,866	2882	31.25 (794)	39.06
30 (750)	600			0.400		173,437	5321	390,393	11,877	217,333	6668	31.25 (794)	39.06
36 (900)	150		2.750	0.400		44,184	1111	180,794	4546	57,303	1441	36.88 (937)	46.10
36 (900)	300			0.400		116,110	3240	275,560	7889	148,199	4135	36.88 (937)	46.10
36 (900)	600			0.400		241,350	8075	525,088	17,568	296,397	9317	36.88 (937)	46.10

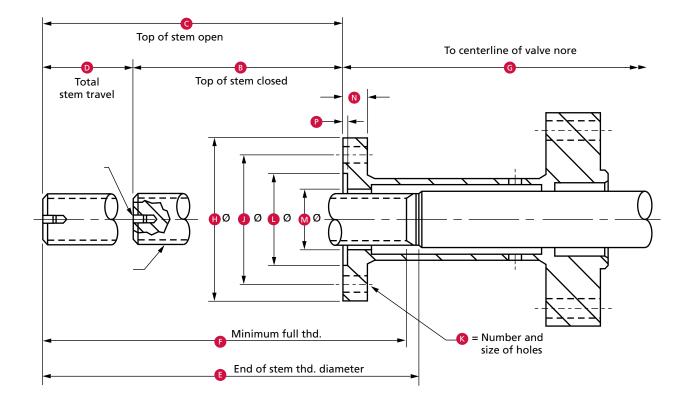
Models C6, C2B, C2C - 6" to 36" (150 mm to 900 mm) ASME Classes 150 to 900


Note: 1. Use recommended operating thrust and torque for sizing bevel gear operators.
 2. Use block-and-bleed thrust and torque for sizing power operators (electric, gas, hydraulic and more).
 3. Maximum operating thrust and torque are the maximum allowable for the valve.

TOPWORKS

Model M

Sizes 2" to 4" (50 mm to 100 mm) Classes 150, 600, 900 and 1500


Model M

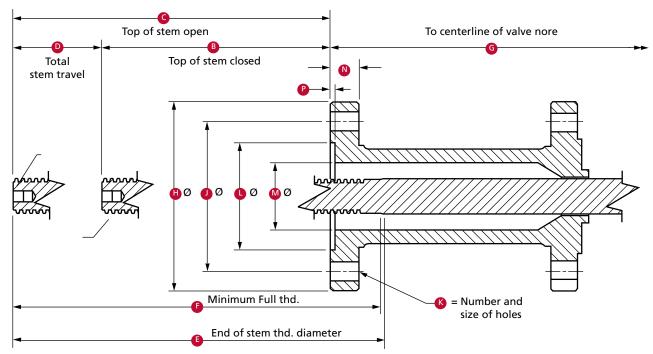
Size in.	ASME	Open				Clo	sed			
(mm)	Class	A	В	С	D	E	F	G	Н	J
2 (50)	600 and	9.25	6.56	6.44	2.808	0.63	0.12	5.00	4.00	4
	1500	(234.95)	(166.62)	(163.58)	(71.32)	(16.00)	(3.05)	(127.00)	(101.60)	(101.60)
3 (80)	150 and	12.00	7.97	7.75	2.808	0.63	0.12	5.00	4.00	4
	1500	(304.80)	(202.44)	(196.85)	(71.32)	(16.00)	(3.05)	(127.00)	(101.60)	(101.60)
4 (100)	150 and	15.00	10.12	9.95	3.308	0.625	0.12	5.25	4.25	4
	600	(381.00)	(257.05)	(252.73)	(84.02)	(15.88)	(3.05)	(133.35)	(107.95)	(101.60)
4 (100)	900 and	13.63	8.75	9.95	3.308	1.00	0.12	6.00	5.00	4
	1500	(346.20)	(222.25)	(252.73)	(84.02)	(25.40)	(3.05)	(152.40)	(127.00)	(101.60)

TOPWORKS

Model C6

Sizes 6" to 12" (150 mm to 300 mm) Class 150

Model C6


Sizo in		ISO	A -NA-2G-L.H.	Closed	ed Open											
Size in. (mm)	Series	FLG	Single Lead Thd.	В	с	D	E	F	G	н	J	к	L	М	N	Ρ
6 (150)	150/3C	F14	1-1/2 - 0.250P - 0.250L	8.50 (215.90)	15.75 (400.05)	7.25 (184.15)	16.83 (427.48)	16.31 (414.27)	27.38 (695.45)	6.88 (174.75)	5.50 (139.70)	4 - 0.658 (4 - 16.71)	3.942 (100.127) 3.952 (100.381)	2.62 (66.55)	1.00 (25.40)	0.169 (4.29) 0.183 (4.65)
8 (200)	150/3C	F14	1-1/2 - 0.250P - 0.250L	10.19 (258.83)	19.44 (493.78)	9.25 (234.95)	20.58 (522.73)	20.06 (509.52)	35.44 (900.18)	6.88 (174.75)	5.50 (139.70)	4 - 0.688 (4 - 17.48)	3.942 (100.127) 3.952 (100.381)	2.62 (66.55)	1.00 (25.40)	0.169 (4.29) 0.183 (4.65)
10 (350)	150/3C	F14	1-1/2 - 0.250P - 0.250L	8.19 (208.03)	19.44 (493.78)	11.25 (285.75)	20.58 (522.73)	20.06 (509.52)	38.50 (977.90)	6.88 (174.75)	5.50 (139.70)	4 - 0.688 (4 - 17.48)	3.942 (100.127) 3.952 (100.381)	2.62 (66.55)	1.00 (25.40)	0.169 (4.29) 0.183 (4.65)
12 (300)	150/3C	F14	1-1/2 - 0.250P - 0.250L	9.69 (246.13)	23.00 (584.20)	13.31 (338.07)	24.20 (614.68)	23.69 (601.73)	44.00 (1117.60)	6.88 (174.75)	5.50 (139.70)	4 - 0.688 (4 - 17.48)	3.942 (100.127) 3.952 (100.381)	2.62 (66.55)	1.00 (25.40)	0.169 (4.29) 0.183 (4.65)

TOPWORKS

Model C6B

Sizes 6" to 12" (150 mm to 600 mm) Classes 150, 600 and 900

Model C6B

Size		ISO	ACME Stem	Closed	Open											
in. (mm)	Class	FLG	А	В	с	D	E	F	G	н	J	К	L	М	Ν	Р
6 (150)	600 and 900	F14	1-1/4 - 0.250P - 0.250L	7.83 (198.88)	10.02 (254.51)	7.19 (182.63)	16.69 (423.93)	16.25 (412.75)	28.06 (712.72)	6.89 (175.01)	5.512 (140.00)	4 - 0.688 (4 - 17.48)	3.945 (100.203) 3.955 (100.457)	2.50 (63.50)	1.03 (26.16)	0.168 (4.267) 0.188 (4.775)
8 (200)	600 and 900	F14	1-3/4 - 0.250P - 0.250L	10.17 (258.32)	19.37 (492.00)	9.20 (233.68)	20.44 (519.18)	20.00 (508.00)	35.41 (899.41)	6.89 (175.01)	5.512 (140.00)	4 - 0.688 (4 - 17.48)	3.945 (100.203) 3.955 (100.457)	2.50 (63.50)	1.03 (26.16)	0.168 (4.267) 0.188 (4.775)
10 (250)	600	F14	1-3/4 - 0.250P - 0.250L	8.17 (207.52)	19.37 (492.00)	11.20 (284.48)	20.44 (519.18)	20.00 (508.00)	38.47 (977.14)	6.89 (175.01)	5.512 (140.00)	4 - 0.688 (4 - 17.48)	3.945 (100.203) 3.955 (100.457)	2.50 (63.50)	1.03 (26.16)	0.168 (4.267) 0.188 (4.775)
10 (250)	900	F16	1-3/4 - 0.250P - 0.250L	8.17 (207.52)	19.37 (492.00)	11.20 (284.48)	20.44 (519.18)	20.00 (508.00)	38.47 (977.14)	8.27 (210.06)	6.496 (165.00)	4 - 0.812 (4 - 20.62)	5.240 (133.096) 5.260 (133.604)	2.50 (63.50)	1.50 (38.10)	0.220 (5.588) 0.240 (6.096)
12 (300)	600	F16	1-3/4 - 0.250P - 0.250L	9.61 (244.09)	22.83 (579.88)	13.22 (335.79)	24.06 (611.12)	23.62 (599.95)	43.91 (1115.31)	8.27 (210.06)	6.496 (165.00)	4 - 0.812 (4 - 20.62)	5.240 (133.096) 5.260 (133.604)	2.50 (63.50)	1.50 (38.10)	0.220 (5.588) 0.240 (6.096)
12 (300)	900	F16	2 - 0.250P - 0.250L	9.55 (242.57)	22.67 (575.82)	13.12 (333.25)	24.06 (611.12)	23.62 (599.95)	44.47 (1129.54)	8.27 (210.06)	6.496 (165.00)	4 - 0.812 (4 - 20.62)	5.240 (133.096) 5.260 (133.604)	3.25 (82.55)	1.50 (38.10)	0.220 (5.588) 0.240 (6.096)
14 (350)	150	FA14	1-1/2 - 0.200P - 0.400L	10.68 (271.27)	25.34 (643.64)	14.66 (372.36)	26.39 (670.31)	25.69 (652.53)	46.50 (1181.10)	6.89 (175.01)	5.512 (140.00)	4 - 0.688 (4 - 17.48)	3.945 (100.203) 3.955 (100.457)	2.50 (63.50)	1.03 (26.16)	0.168 (4.267) 0.188 (4.775)
14 (350)	600	FA16	2 - 0.250P - 0.500L	10.68 (271.27)	25.34 (643.64)	14.66 (372.36)	27.27 (692.66)	26.69 (677.93)	49.75 (1263.65)	8.25 (209.55)	6.500 (165.10)	4 - 0.812 (4 - 20.62)	5.010 (127.254) 5.020 (127.508)	2.88 (73.15)	1.50 (38.10)	0.220 (5.588) 0.240 (6.096)
16 (400)	150	FA14	1-1/2 - 0.200P - 0.400L	10.38 (263.65)	27.07 (687.58)	16.69 (423.93)	28.14 (714.76)	27.56 (700.02)	51.37 (1304.80)	6.89 (175.01)	5.512 (140.00)	4 - 0.688 (4 - 17.48)	3.945 (100.203) 3.955 (100.457)	2.50 (63.50)	1.03 (26.16)	0.168 (4.267) 0.188 (4.775)
16 (400)	600	FA25	2 - 0.250P - 0.500L	10.19 (258.83)	28.86 (733.04)	16.67 (423.42)	28.20 (716.28)	27.59 (700.79)	53.56 (1360.42)	11.50 (292.10)	10.000 (254.00)	8 - 0.688 (8 - 17.48)	6.010 (152.654) 6.020 (152.908)	3.12 (79.25)	2.00 (50.80)	0.220 (5.588) 0.240 (6.096)
18 (450)	150	FA14	1-1/2 - 0.200P - 0.400L	11.68 (296.67)	30.09 (764.29)	18.41 (467.61)	31.14 (790.96)	27.56 (700.02)	57.00 (1447.80)	6.89 (175.01)	5.512 (140.00)	4 - 0.688 (4 - 17.48)	3.945 (100.203) 3.955 (100.457)	2.50 (63.50)	1.03 (26.16)	0.168 (4.267) 0.188 (4.775)
18 (450)	600	FA25	2-1/4 - 0.250P - 0.500L	11.93 (303.02)	30.62 (777.75)	18.69 (474.73)	32.39 (822.71)	31.81 (807.97)	60.19 (1528.83)	11.50 (292.10)	10.000 (254.00)	8 - 0.688 (8 - 17.48)	6.010 (152.654) 6.020 (152.908)	3.00 (76.20)	2.36 (59.94)	0.220 (5.588) 0.240 (6.096)
20 (500)	150	FA14	1-3/4 - 0.250P - 0.500L	10.97 (278.64)	31.69 (804.93)	20.72 (526.29)	32.83 (833.88)	32.25 (819.15)	62.28 (1581.91)	6.89 (175.01)	5.512 (140.00)		3.945 (100.203) 3.955 (100.457)	2.50 (63.50)	1.03 (26.16)	0.168 (4.267) 0.188 (4.775)
20 (500)	600	FA30	2-3/4 - 0.400P - 0.800L	12.57 (319.28)	33.30 (845.82)	20.73 (526.54)	34.88 (885.95)	34.31 (872.24)	65.67 (1668.02)	13.62 (345.95)	11.750 (298.45)	8 - 0.875 (8 - 22.23)	7.010 (178.054) 7.020 (178.308)	3.50 (89.90)	2.75 (69.85)	0.220 (5.588) 0.240 (6.096)
24 (600)	150	FA14	2 - 0.250P - 0.500L	11.03 (280.16)	36.14 (917.96)	25.11 (637.79)	37.02 (940.31)	36.44 (925.58)	75.61 (1920.49)	6.89 (175.01)	5.512 (140.00)	4 - 0.688 (4 - 17.48)	3.945 (100.203) 3.955 (100.457)	2.50 (63.50)	1.03 (26.16)	0.168 (4.267) 0.188 (4.775)
24 (600)	600	FA35	3-1/4 - 0.400P - 0.800L	13.12 (333.25)	38.26 (971.80)	25.14 (638.56)	39.95 (1014.73)	39.38 (1000.25)	80.00 (2032.00)	16.12 (409.45)	14.000 (355.60)	8 - 1.120 (8 - 28.45)	8.510 (216.154) 8.520 (216.408)	4.50 (114.30)	3.00 (76.20)	0.223 (5.664) 0.237 (6.020)

FLOW COEFFICIENTS (C_v)

The following chart outlines the C_v for through-conduit gate valves having end-to-end dimensions and bore diameters in compliance with API 6D standards.

 C_v is the flow of water through the valve at 1 psi pressure drop in gal/min. Since C_v is a calculated number, the actual value may vary.

Valve Size in. (mm)	150	300	400	600	900	1500	2500
2 (50)	476	432	378	378	337	337	218
3 x 2 (80 x 50)	-	-	165	165	203	239	-
2-1/2 (65)	-	-	682	682	558	558	305
3 (80)	1358	1155	1053	1109	1072	966	474
4 x 3 (100 x 80)	-	-	534	529	597	677	624
4 (100)	2508	2176	1925	1944	1890	1730	725
6 x 4 (150 x 100)	-	-	886	944	943	1231	-
6 (150)	5402	5300	4860	4577	4383	3622	2510
8 x 6 (200 x 150)	2583	2499	-	3240	3588	2137	-
8 (200)	11,261	11,054	9345	8886	8416	6879	5227
10 x 8 (250 x 200)	-	5218	-	5036	7975	4859	-
12 x 8 (300 x 200)	-	3302	-	3892	-	-	-
10 (250)	19,181	18,856	15,771	14,533	14,087	11,283	8313
12 (300)	29,435	28,980	23,834	22,729	21,025	16,843	12,282
12 x 10 (300 x 250)	7875	-	-	12,799	7299	-	-
14 (350)	35,605	30,883	29,921	28,837	23,846	20,336	-
16 x 14 (400 x 350)	-	-	-	21,096	-	-	-
16 (400)	49,979	42,224	41,022	39,144	33,358	27,548	21,396
20 x 16 (500 x 400)	13,060	-	15,761	-	-	-	-
18 (450)	66,156	55,740	54,277	51,368	45,004	-	-
20 (500)	83,865	70,386	68,680	64,559	56,871	-	-
22 (550)	-	86,869	85,422	80,279	-	-	-
24 (600)	127,916	106,835	103,504	97,240	84,836	-	-
26 (650)	149,428	123,222	120,829	114,905	-	-	-
28 (700)	176,798	144,355	142,391	135,267	-	-	-
30 (750)	212,313	170,229	163,776	157,401	133,706	-	-
36 (900)	322,548	245,362	236,147	224,424	-	-	-

FLOW COEFFICIENTS (K_v)

The following chart outlines the K_v for through-conduit gate valves having end-to-end dimensions and bore diameters in compliance with API 6D.

 K_v is the flow of water through the valve at 1 bar pressure drop in cu m/hr. Since K_v is a calculated number, the actual value may vary.

Valve Size in. (mm)	150	300	400	600	900	1500	2500
2 (50)	412	373	327	327	291	291	188
3 x 2 (80 x 50)	-	-	142	142	175	207	-
2-1/2 (65)	-	-	590	590	483	483	264
3 (80)	1175	999	911	959	927	835	410
4 x 3 (100 x 80)	-	-	462	458	516	585	540
4 (100)	2170	1882	1665	1682	1635	1496	627
6 x 4 (150 x 100)	-	-	766	817	816	1065	-
6 (150)	4673	4585	4204	3959	3792	3133	2172
8 x 6 (200 x 150)	2234	2162	-	2803	3103	1849	-
8 (200)	9742	9562	8084	7687	7280	5951	4522
10 x 8 (250 x 200)	-	4514	-	4356	6898	4204	-
12 x 8 (300 x 200)	-	2857	-	3367	-	-	-
10 (250)	16,592	16,312	13,643	12,572	12,186	9761	7191
12 (300)	25,463	25,070	20,617	19,662	18,188	14,570	10,624
12 x 10 (300 x 250)	6812	-	-	11,072	6314	-	-
14 (350)	30,800	26,715	25,883	24,945	20,628	17,591	-
16 x 14 (400 x 350)	-	-	-	18,249	-	-	-
16 (400)	43,234	36,526	35,486	33,862	28,856	23,831	18,509
20 x 16 (500 x 400)	11,298	-	13,634	-	-	-	-
18 (450)	57,228	48,218	46,953	44,436	38,930	-	-
20 (500)	72,547	60,888	59,412	55,847	49,196	-	-
22 (550)	-	75,147	73,894	69,445	-	-	-
24 (600)	110,654	92,417	89,536	84,117	73,388	-	-
26 (650)	129,263	106,593	104,523	99,399	-	-	-
28 (700)	152,939	124,874	123,175	117,013	-	-	-
30 (750)	183,661	147,257	141,674	136,160	115,662	-	-
36 (900)	279,021	212,251	204,279	194,138	-	-	-

TRIM CHART

Service	Trim Code	Body and Bonnet	Gate	Seat	Stem Seal	Stem	Bolting	Fittings	Temperature Range
Waterflood, Corrosive	T-10	WCC Carbon Steel, Internally Coated	Carbon Steel, ASME Classes 300-600, Low-Alloy Steel 900 Class, Nickel-Plated	Carbon Steel, Nickel-Plated PTFE Insert	PTFE	Low-Alloy Steel, Nickel- Plated	Alloy Steel, NACE	Stainless Steel	-20° F to 250° F (-29° C to 121° C)
Standard	T-11 2" to 4" only	WCC Carbon Steel	Carbon Steel, Low-Alloy Steel, Nickel-Plated	Carbon Steel, Nickel-Plated PTFE Insert	FKM Viton	Low-Alloy Steel, Nickel- Plated	Alloy Steel	Carbon Steel	-20° F to 250° F (-29° C to 121° C)
Corrosive Service	T-22	WCC Carbon Steel	410 Stainless Steel	410 Stainless Steel	PTFE	17-4 PH Stainless Steel	Alloy Steel	Stainless Steel	-20° F to 250° F (-29° C to 121° C)
Sour, Mildly Corrosive	T-24 2" and larger	WCC Carbon Steel	Carbon Steel, ASME Classes 300-600, Low-Alloy Steel 900 Class, Nickel-Plated	Carbon Steel, Nickel-Plated PTFE Insert	PTFE	Low-Alloy Steel, Nickel- Plated	Alloy Steel, NACE	Stainless Steel	-20° F to 250° F (-29° C to 121° C)
Low- Temperature, Non-Sour	T-36	LCC Carbon Steel, Impact- Tested	Carbon Steel, ASME Classes 300-600, Low-Alloy Steel 900 Class, Nickel-Plated	Carbon Steel, Nickel-Plated PTFE Insert	PTFE	Low-Alloy Steel, Impact-Tested, Nickel- Plated	Alloy Steel, Impact- Tested	Stainless Steel	-50° F to 250° F (-46° C to 121° C)
Low- Temperature, Sour	T-37	LCC Carbon Steel, Impact- Tested	Carbon Steel, ASME Classes 300-600, Low-Alloy Steel 900 Class, Nickel-Plated	Carbon Steel, Nickel-Plated PTFE Insert	PTFE	Low-Alloy Steel, Impact-Tested, Nickel- Plated	Alloy Steel, NACE, Impact- Tested	Stainless Steel	-50° F to 250° F (-46° C to 121° C)
Anhydrous Ammonia	T-88	WCC/A36 Carbon Steel	Carbon Steel, Low-Alloy Steel, Nickel-Plated	Carbon Steel, Nickel-Plated PTFE Insert	PTFE	Low-Alloy Steel, Nickel- Plated	Alloy Steel, NACE	Stainless Steel	-20° F to 250° F (-29° C to 121° C)
Standard	T-94	WCC Carbon Steel	Carbon Steel, ASME Classes 300-600, Low-Alloy Steel 900 Class, Nickel-Plated	Carbon Steel, Nickel-Plated PTFE Insert	Special	Low-Alloy Steel, Nickel- Plated	Alloy Steel	Carbon Steel	-20° F to 350° F (-29° C to 177° C)
МТВЕ	T-102 6" and larger	WCC Carbon Steel	Carbon Steel, ASME Classes 300-600, Low-Alloy Steel 900 Class, Nickel-Plated	Carbon Steel, Nickel-Plated PTFE Insert	PTFE	Low-Alloy Steel, Nickel- Plated	Alloy Steel	Carbon Steel	-20° F to 250° F (-29° C to 121° C)
Standard	T-101 6" and larger	WCC Carbon Steel	Carbon Steel, ASME Classes 300-600, Low-Alloy Steel 900 Class, Nickel-Plated	Carbon Steel, Nickel-Plated PTFE Insert	PTFE	Low-Alloy Steel, Nickel- Plated	Alloy Steel	Carbon Steel	-20° F to 250° F (-29° C to 121° C)

COMMON TRIMS

Waterflood (T-10) – Carbon steel body/bonnet with wetted surface, ENP-plated, internal parts of corrosion-resistant materials.

Model M (Sizes 2" to 4", (50 mm to 100 mm), Classes 600 through 1500) Standard (T-11) – For non-corrosive aromatic service with concentration of MTBE to 100%.

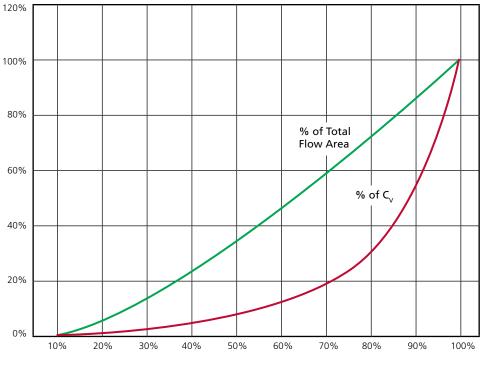
Corrosive Service – Internal Parts (T-22) – For substantially the same service as T-21, but where the corrosion resistance of internal parts is desirable. The valve internal sealing members are stainless steel to gain this corrosion resistance. This trim also is usable for mildly corrosive fluids and gases when limited corrosion of the internal body surfaces can be tolerated.

Sour Gas and Oil (NACE MR0175) (T-24) – Primarily for sour gas and oil (NACE MR0175) where resistance to H_2S embrittlement is required. Also suitable for other chemicals, products or hydrocarbons when H_2S is present. May be used when CO_2 is present in smaller amounts than H_2S .

Low-Temperature - 50° F (-46° C) NACE (T-36) – For essentially non-corrosive ladings, either liquid or gaseous. The pressure-retaining components (body, bonnet and bolting) are of impact-tested materials.

Low-Temperature Sour -50° F (-46° C) NACE (T-37) – Primarily for sour gas and oil (NACE MR0175) where resistance to H_2S embrittlement is required at -50° F (-46° C) service. The pressure-retaining components (body, bonnet and bolting) are of impact-tested materials. Also suitable for other chemicals, products or hydrocarbons when H_2S is present. Can be used when CO_2 is present in smaller amounts than H_2S .

Anhydrous Ammonia (T-88) – Special elastomers and stem nut for ammonia service


Fire-Tested to API 6FA (T-94) – These valves have been qualified as fire-tested and contain a special stem packing arrangement for essentially non-corrosive ladings. The elastomer O-rings used for seal and bonnet seals are of a material that will not swell and affect the operation of the valve. Typical examples of ladings are: gasoline, benzene, toluene, carbon-tetrachloride, 1,1, 1 trichloroethane, richloroethylene perchloroethylene and phosphate ester hydraulic fluids.

Aromatic (to 40% MTBE, Fire-Tested API 6FA or ISO 10497) (T-101) – For essentially non-corrosive, non-sour aromatic or non-aromatic service with methanol or ethanol based corrosion inhibitors where up to 40% MTBE may be present.

PARTIAL OPEN FLOW CHARACTERISTICS

The following graph approximates the flow coefficient, C_v or K_v , of gate valves as a function of the valve stroke going from closed to open. Note that this is an estimation only because of assumptions made in the valve stroke, as well as unpredictable flow characteristics around the gate-seat bore in the partially open position.

Gate valves are intended for on-off service. Intermittent throttling such as pressure equalization service is acceptable. Continuous throttling is not recommended. This information is provided only to facilitate the engineering of systems in the transition between open and closed positions of the valves. One example might be to evaluate the possibility of water hammer in liquid pipelines.

Partial Open Flow Characteristics (Through Conduit Gate Valves)

Percent of Valve Stroke

CAMSERV[™] Aftermarket Services for Valves and Actuation

WE BUILD IT. WE BACK IT.

Global Network and Local Support

Cameron is well-positioned to deliver total aftermarket support, quickly and efficiently, with unmatched OEM expertise. Our highly skilled engineers and technicians are available around the clock, seven days a week, to respond to customer queries, troubleshoot problems and offer reliable solutions.

Easily Accessible Parts and Spare Valves

- OEM spare valves, actuators and parts (including non-Cameron brands)
- Handling, storage, packaging and delivery
- Dedicated stocking program

Comprehensive Aftermarket Services Portfolio

- Parts and spare valves
- Repair
- Field services
- Preventative maintenance
- Equipment testing and diagnostics
- Remanufacturing
- Asset preservation
- Customer property management
- Training and recertification services
- Warranty

Customized Total Valve Care[™] (TVC) Programs

Customized asset management plans that optimize uptime, availability and dedicated services.

- Engineering consultancy
- Site management
- Flange management
- Startup and commissioning
- Spare parts and asset management
- Operational support

Trademark Information

WKM is a registered trademark of Cameron. CAMSERV is a trademark of Cameron.

This document contains references to registered trademarks or product designations, which are not owned by Cameron.

Trademark	Owner
Inconel	INCO Nickel Sales, Inc.
Monel	INCO Alloys International, Inc
Stellite	Stoody Deloro Stellite, Inc.
Teflon	E.I. Dupont De Nemours & Company
Viton	Dupont Dow Elastomers L.L.C.

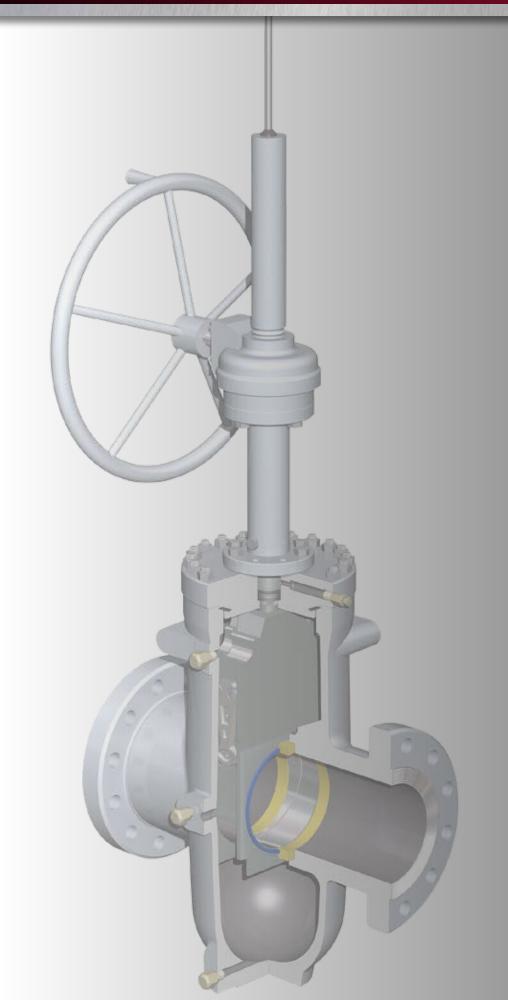
3250 Briarpark Drive, Suite 300 Houston, TX 77042 USA Toll Free 1 800 323 9160

Learn more about WKM gate valves at: www.c-a-m.com/WKM WKM@c-a-m.com

HSE Policy Statement

At Cameron, we are committed ethically, financially and personally to a working environment where no one gets hurt and nothing gets harmed.

©2013 Cameron | GROVE, CAMERON, RING-O, TOM WHEATLEY, TK and WKM are registered brands of Cameron. CAMSERV, TBV, TEXSTEAM, Saf-T-Seal and Saf-T-Gard are trademarks of Cameron. Total Valve Care is a service mark of Cameron. Viton and all other brands listed are trademarks of their respective companies. | SWP 1.5M 12/13 AD00912V



WKM Pow-R-Seal Gate Valves

High-quality, through-conduit, expanding gate valves engineered for performance in critical isolation applications where a tight mechanical seal that is normally unaffected by pressure variations and vibrations is needed.

Table of Contents

WKM POW-R-SEAL GATE VALVES

Introduction	2
Design	3
Features	4
Options	5
Operation	6
Single Spring-Loaded (SLS) Seal	7
Thermal Relief System	8
Models M (Handwheel Operated)	9
Models E1C (Handwheel and Bevel Gear Operated)	10
Model E1C (Bevel Gear Operated)	12
Operator Sizing Requirements	13
Operator Interface	14
Operator Interface Dimensions Topworks Data	15
Flow Coefficients (C _v)	16
Flow Coefficients (K $_{\rm v}$)	17
Pressure Temperature Ratings	18
Trim Chart	20
Common Trims	21
Partial Open Flow Characteristics	22
CAMSERV Aftermarket Services for Valves and Actuation	23
Trademark Information	24

WKM Pow-R-Seal Gate Valves

Ville Platte, La., USA

Cameron is a leading provider of valves and measurement systems to the oil and gas industry. Our products are primarily used to control, direct, and measure the flow of oil and gas as it is moved from individual wellheads through flowlines, gathering lines, and transmission systems to refineries, petrochemical plants, and industrial centers for processing.

Cameron provides a wide range of valves for use in natural gas, LNG, crude oil, and refined products transmissions lines. The traditional CAMERON® fully welded ball valve product line has been combined with the GROVE®, RING-O®, TOM WHEATLEY®, ENTECH™, and TK® product lines. This broad offering has strengthened Cameron's ability to serve as a single source for a wide scope of customer requirements. Cameron also provides critical service valves for refinery, chemical, and petrochemical processing businesses, and for associated storage terminal applications, particularly through the ORBIT® and GENERAL VALVE® lines. These brands are complemented by WKM®, TBV™, and TEXSTEAM™ valve products and considerably expand the scope of our product offerings.

Cameron's WKM Pow-R-Seal[™] gate valve's smooth continuous bore reduces turbulence. Additionally, the seat faces are outside the flow stream and are protected from contact with the lading whether the valve is in the open or closed position. The WKM Pow-R-Seal gate valve's full bore makes it possible to run pigs, scrapers, or hot tap cutters through the valves without danger of damaging the valve, lodging the scraper, or jamming it with metal cuttings.

DESIGN

Cameron's WKM Pow-R-Seal valve's design provides the following specific advantages for reliable performance and long life, even in fluid, gas, steam, and hot water critical services up to 1000° F (538° C).

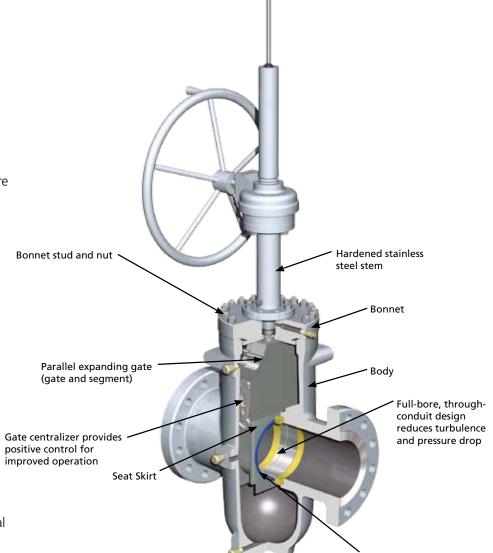
Protection of Seat Faces

Seat faces are outside the flow stream and in full contact with the gate, in both fully open and fully closed positions, greatly extending the seat life.

Smooth, Continuous Conduit for Flow

Destructive turbulence is nearly eliminated. In a full-bore valve, pressure drop through the valve is no greater than that through an equal length of equal diameter pipe.

Tight Mechanical Seal and Double Block-and-Bleed Capability


The WKM Pow-R-Seal valve's parallel expanding gate design provides a tight mechanical seal, upstream and downstream simultaneously, which is normally unaffected by pressure variations or vibration.

Metal-to-Metal Mechanical Sealing

The seal is unaffected by pressure surges, vibration, or heat under normal operating conditions. First, the seat insert contacts the gate. Then, the insert is compressed and a metal-tometal seal is established.

Commonly Used Applications

- Pumps station isolation
- Launchers and receivers
- Decoking systems
- Gathering lines

Protected seat faces

FEATURES

1. Through-Conduit Parallel Expanding Gate Valve

- Provides a tight mechanical seal
- Full-bore design reduces pressure drop and allows passage of all types of scrapers (pigs)
- Nickel-plated gate and segment standard

2. Fugitive Emissions-Tested SLS Stem Seal*

- Stem seal is completely contained in the bonnet
- Stem is centralized by bearings
- Nickel-plated stem standard
- Seal is self-adjusting and does not depend on plastic packing
- PTFE compound resists virtually all ladings
- Pedestal supports the seal and acts as a stem scraper
- 6" to 24" (150 mm to 600 mm) Class 300 to 900 valves are fire-tested to API 6FA 3rd Edition

3. Interference Fit Seats

- Double sealing and in-line replaceable
- Upstream and downstream sealing
- Block-and-bleed per API 6D standards
- Simple design is resistant to dirty service
- Insert initiates the seal and helps clean the gate**
- Seals are compatible with virtually all ladings
- Seats may be lubricated to promote long life, reduce operating torques or effect a seal in an emergency
- Fire-tested to API 6FA 3rd Edition

4. Bolted Bonnet Valve is In-Line Repairable

- Bonnet seal resists virtually all landings
- Design provides metal-to-metal, tight sealing ideal for high temperature applications

5. Yoke-Tube Upper Flanges Comply with MSS-SP102 Standards

- Simplifies operator mounting
- Can also be manufactured to comply with ISO 5240

6. Single-Piece Cast Body Center Section

- Provides the necessary strength to resist pipeline bending
- Smooth shape reduces stress concentrations
- Made from pressure vessel quality steel

7. Valve Stroke is Established by Manufacturing Tolerances

• Stays in adjustment

8. LeverLock[®] Gate Centralizer***

- Retains gate and segment assembly in a neutral position during opening and closing travel
- Permits expansion of the assembly at the proper moment for seating

* For Model E-1C; does not apply to high-temperature valves. In-house FE testing only. ** High-temperature valves do not have insert

*** Standard on 6" and larger valves

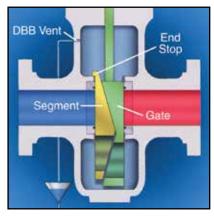
OPTIONS

Bonnet Seal

- 6" to 12" (150 mm to 300 mm): flat metal gasket
- 14" to 24" (350 mm to 600 mm): O-ring seal
- High-temperature valves: spiral-wound metal gasket with a non-asbestos filler

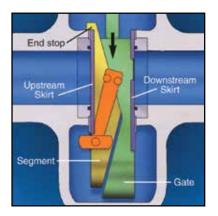
Options

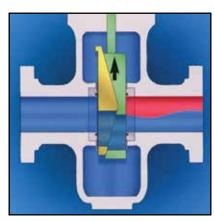
- Lubrication, packing, drain extensions
- Stem and yoke tube extensions
- Variety of coatings (coal tar epoxy for buried service, two- to three-part coating systems for marine environment, inorganic zinc rich epoxy, etc.)
- HF-6 overlay is available on request for the gate segment assembly and seat sealing surfaces
- Handwheel operator* (position indicator standard)
- Bevel gear operator (position indicator standard)
- Less gearing (bare stem)
- Electric motor operator
- Several types of body cavity thermal relief systems available
- Variety of paint and coatings
- * 6" through 10" (150 mm through 250 mm) Class 300 to 900 valves and 12" (300 mm) Class 300 to 600 valves only are available in selected sizes.



OPERATION

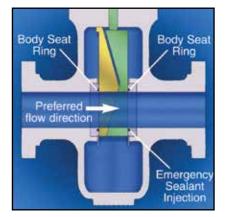
60 years of worldwide service in oil, gas, chemicals, water, slurry, and multiproduct applications has established the WKM Pow-R-Seal valve as one of the most trusted gate valves, where safety and seal reliability are critical.


The parallel expanding gate design provides a tight mechanical seal which is normally unaffected by vibrations or pressure variations.


The rigid, cast steel body resists pipeline bending

Sealed Closed

In the fully closed position, the segment has engaged with an end stop and the gate is wedged downward, expanding the segment and gate so that they form a tight mechanical closure against the upstream and downstream seats. Venting the body cavity will provide total, tight shutoff.


Mid-Travel

During travel towards opening, the gate slides across the wedge angle of the segment, collapsing the assembly so that it travels freely between the seal faces. The patented LeverLock gate centralizer holds the mechanism in the neutral position until seal expansion is required.

moments which could affect seat sealing in other valves.

PTFE seals on both faces of the valve provide drop tight sealing, while metal-to-metal contact between the seals and gate mechanism provides tight shutoff.

All-metal seals also are available for service to 1000° F (538° C), where leakage rates comply with API 6D and ISO 5208 standards.

Fully Open

When the bore in the segment is aligned with the conduit bore, an end stop prevents further travel and the gate slides across the wedge angle, expanding the gate and the segment, isolating the flow from the body. The preferred flow direction ensures easier operation.

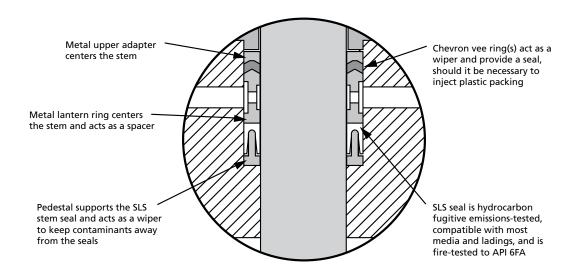
LeverLock Mechanism

The lever arm is held parallel to the gate faces by the skirt plates while the assembly is moving through its stroke. Near end-of-travel, the skirt allows the lever to tilt. The gate and segment slide against their angled faces, creating the expanding seal action. In their final position, the gate and segment are mechanically secured in place. The skirt plates are guide rails at the sides of the gate. The skirts align the gate and segments with the seats.

Single Spring-Loaded (SLS) Seal

The SLS stem seal system is designed to provide optimum performance while requiring minimal maintenance. Our in-house lab tests have shown FE leak rates below 500 ppm.

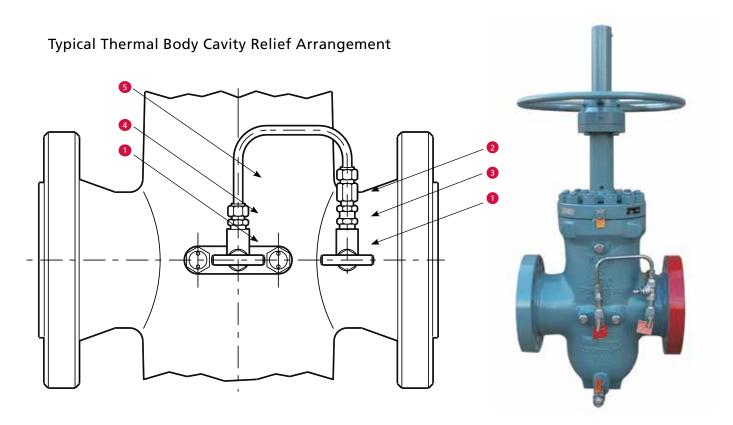
Testing and Certifications


- Fire tests per API 6FA, BS 6755 Part 11
- ISO 10497

Design

- Single spring-loaded lip seal
- Lantern ring
- Chevron ring(s)
- Lower pedestal
- Upper adapter

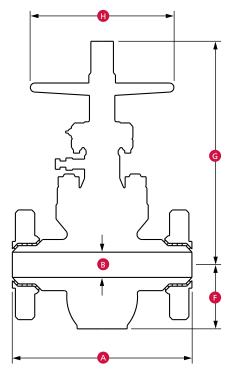
Features


- Self-adjusting seal designed to reduce maintenance
- No plastic packing required to establish an effective seal
- Four separate sealing bands to promote reliability
- Filled PTFE shell backed with a corrosion-resistant alloy spring (making it suitable for virtually all line media)
- Metal spring provides an initial seal and uniform loading over a wide temperature range
- Lantern ring acts as a spacer in conjunction with the upper adapter as a bearing to center the stem
- Lower pedestal support seal acts as a stem wiper to keep contaminants away from sealing members
- Chevron ring(s) act as an emergency seal, should it be necessary to inject plastic packing, and keeps foreign matter away from the seal

Thermal Relief System OPERATION

Because of the split gate design, it is possible for excess body pressure to develop in the body cavities of closed valves. This usually results from heating that takes place in the valves while in liquid service. A thermal body cavity relief system is provided to relieve this excess body pressure. Thermal relief systems which direct excess body pressure to the upstream conduit are standard. This system consists of two needle valves, a check valve,

tubing and two fittings. Body pressure greater than the segment conduit pressure causes the check valve to unseat and relieve excess pressure to the upstream conduit. The needle valves must be kept open while the valve is in service. These needle valves can be used to isolate the line pressure to service the relief systems, as needed.


Item	Part	Qty.
1	Needle Valve	2
2	Female Tubing Connector	1
3	Check Valve	1
4	Male Tubing Connector	1
5	Tubing	1
	Tag (Not Shown)	2
	Wire (Not Shown)	1

Notes: These items are on the lettered side of the valve (letters not shown in diagram above). Special thermal relief systems are available upon request.

2" to 4" (50 mm to 100 mm) Classes 600, 900, and 1500 MODELS M (HANDWHEEL OPERATED)

Max. WP a	nt 100° F (38° C)
Class 600:	1500 psi CWP 2250 psi Test
Class 900:	2250 psi CWP 3375 psi Test
Class 1500:	3750 psi CWP 5625 psi Test

PRINCIPAL DIMENSIONS N = Number of turns to fully open or close valve

Class 600

Size in.							Weight lb (kg)				
(mm)	A	В	F	G	H	N	FE	WE	F x W		
2	11-1/2	2-1/16	4-13/16	17-3/4	12	16	90	72	84		
(50)	(292)	(52)	(122)	(451)	(305)	-	(41)	(33)	(38)		
3	14	3-3/16	6-15/16	23-7/8	12	20	180	144	155		
(80)	(356)	(81)	(176)	(606)	(305)	-	(82)	1(65)	(70)		
4	17	4-1/8	8-5/8	27	14	20	345	259	245		
(100)	(432)	(105)	(219)	(686)	(356)	-	(156)	(117)	(111)		

Class 900

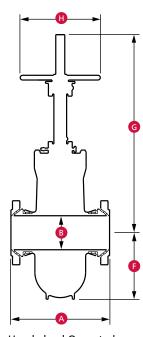
2	14-1/2	2-1/16	5-1/16	17-3/4	12	16	150	72	105
(50)	(368)	(52)	(129)	(451)	(305)	-	(68)	(33)	(48)
3	15	3-3/16	7-5/16	23-7/8	12	20	265	193	247
(80)	(381)	(81)	(186)	(606)	(305)	-	(120)	(88)	(112)
4	18	4-1/8	9-1/16	28-1/2	18	20	515	390	417
(100)	(457)	(105)	(230)	(724)	(457)	-	(234)	(177)	(189)

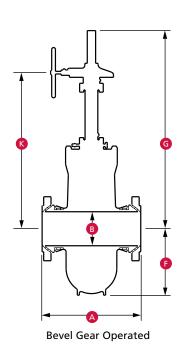
Class 1500

2	14-1/2	2-1/16	5-1/16	17-3/4	12	16	150	72	105
(50)	(368)	(52)	(129)	(451)	(305)	-	(68)	(33)	(48)
3	18-1/2	3-3/16	7-5/16	23-7/8	12	20	295	215	242
(80)	(470)	(81)	(186)	(606)	(305)	-	(134)	(98)	(110)
4	21-1/2	4-1/8	9-1/16	28-1/2	18	20	530	403	325
(100)	(546)	(105)	(230)	(724)	(457)	-	(240)	(183)	(147)

Flange dimensions conform to American National Standards Institute Standard B16.5, 1981. Information on power-actuated and other types of valves available on application.

CAMERON


6" to 12" (150 mm to 300 mm) Classes 300 and 600


MODELS E1C (HANDWHEEL AND BEVEL GEAR OPERATED)

Max. WP a	t 100° F (38° C)
Class 300:	750 psi CWP 1125 psi Test
Class 600:	1500 psi CWP 2250 psi Test
Class 900:	2250 psi CWP 3375 psi Test
Class 1500:	3750 psi CWP 5625 psi Test

PRINCIPAL DIMENSIONS

N = Number of turns of handwheel or bevel gear operator handwheel to fully open or close valve.

Handwheel Operated

Size in.	•	В	F	G	G	н	к	N N		Weigl	nt Ib (kg)	HWO	Weig	ht lb (kg)	BGO
(mm)	A	D		HWO	BGO		ĸ	HWO	BGO	FE	WE	F x W	FE	WE	F x W
6	15-7/8	6	12-1/2	45-1/4	46-1/4	24	30-11/16	29	114	472	397	400	500	445	470
(150)	(403)	(152)	(318)	(1149)	(1175)	(610)	(779)	-	-	(214)	(180)	(181)	(227)	(202)	(213)
8	16-1/2	8	16	57-1/4	56-1/4	24	36-11/16	37	146	853	751	805	903	845	895
(200)	(419)	(203)	(406)	(1454)	(1429)	(610)	(932)	-	-	(387)	(341)	(365)	(410)	(383)	(406)
10	18	10	20	63-1/4	64-1/4	24	44-11/16	45	180	1345	1200	1273	1475	1380	1448
(250)	(457)	(254)	(508)	(1607)	(1632)	(610)	(1135)	-	-	(610)	(544)	(577)	(669)	(626)	(657)
12*	30	12	22-3/4	73-3/8	74-5/8	30	51-11/16	40	239				1950	1670	1880
(300)	(762)	(305)	(578)	(1864)	(1895)	(762)	(1313)	-	-	-	-	-	(885)	(757)	(853)

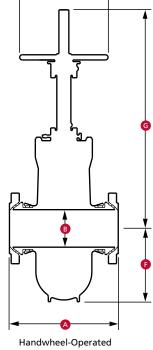
Class 600

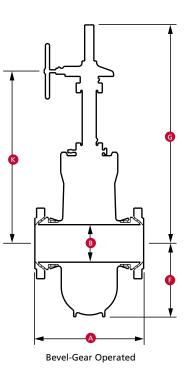
Class 300

6	22	6	12-5/8	45-1/4	46-1/4	24	30-11/16	29	114	595	495	545	695	575	635
(150)	(559)	(152)	(321)	(1149)	(1175)	(610)	(779)	-	-	(270)	(225)	(247)	(315)	(261)	(288)
8	26	8	15-1/2	57-1/4	56-1/4	24	36-11/16	37	146	1028	730	865	1075	895	990
(200)	(660)	(203)	(394)	(1454)	(1429)	(610)	(932)	-	-	(466)	(331)	(392)	(488)	(406)	(449)
10	31	10	19-3/4	64-7/8	66-1/8	24	45-3/16	34	203	1735	1370	1505	1895	1585	1835
(250)	(787)	(254)	(502)	(1648)	(1680)	(610)	(1148)	-	-	(787)	(621)	(683)	(860)	(719)	(832)
12	33	12	23	73-3/8	74-5/8	30	51-11/16	40	239	2525	2360	2480	3030	2250	2360
(300)	(838)	(305)	(584)	(1864)	(1895)	(762)	(1313)	-	-	(1145)	(1070)	(1125)	(1374)	(1021)	(1070)

* 12" (300 mm) Class 300 valves have Class 400 end-to-end dimensions.

6" to 12" (150 mm to 300 mm) Classes 900 and 1500 (RTJ)


MODELS E1C


(HANDWHEEL AND BEVEL GEAR OPERATED)

Max. WP	at 100° F (38° C)
Class 300:	750 psi CWP 1125 psi Test
Class 600:	1500 psi CWP 2250 psi Test
Class 900:	2250 psi CWP 3375 psi Test
Class 1500:	3750 psi CWP 5625 psi Test

PRINCIPAL DIMENSIONS

N = Number of turns of handwheel or bevel gear operator handwheel to fully open or close valve.

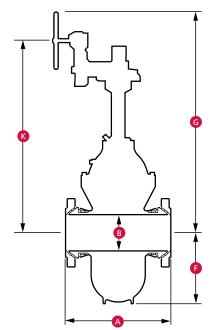
Class 900

Size in.				G	G			N		Weig	ht lb (kg)	HWO	Weight lb (kg) BGO		
(mm)	A	В	F	нwo	BGO	н	К	K HWO		FE	WE	F x W	FE	WE	F x W
6	24	6	12-7/8	45-1/4	46-1/4	24	30-3/4	29	114	743	577	625	805	565	680
(150)	(610)	(152)	(327)	(1149)	(1175)	(610)	(781)	-	-	(337)	(262)	(283)	(365)	(256)	(308)
8	29	8	15-3/4	57-1/4	56-1/4	24	36-3/4	37	146	1272	1040	1180	1329	1180	1238
(200)	(737)	(203)	(400)	(1454)	(1429)	(610)	(933)	-	-	(577)	(472)	(535)	(603)	(535)	(562)
10	33	10	20-1/8	64-7/8	66-1/8	30	45-1/4	34	203	2250	1930	2085	2315	1875	2185
(250)	(838)	(254)	(511)	(1648)	(1680)	(762)	(1149)	-	-	(1021)	(875)	(946)	(1050)	(850)	(991)
12	38	12	23-1/2	-	73-3/4	30	56-5/8	40	318	3392	2725	2860	3600	2880	3276
(300)	(965)	(305)	(597)		(1873)	(762)	(1438)	-	-	(1539)	(1236)	(1297)	(1633)	(1306)	(1486)

Class 1500 (RTJ)

6 (150)	28 (711)	5-3/4 (146)	14-5/8 (371)	-	61 (1549)	-	49 (1245)	22 -	-	-	-	-	1735 (788)	1486 (676)	1611 (732)
8 (200)	33-1/8 (841)	7-5/8 (194)	18-1/4 (464)	-	66-1/2 (1689)	-	54-1/2 (1384)	29 -	-	-	-	-	3181 (1446)	2979 (1354)	3080 (1400)
10 (250)	39-3/8 (1000)	9-1/2 (241)	22-1/4 (565)	-	79 (2007)	-	67 (1702)	36 -	-	-	-	-	4094 (1861)	3492 (1587)	3793 (1724)
12 (300)	45-1/8 (1146)	11-3/8 (289)	26-3/8 (670)	-	90 (2286)	-	72 (1829)	-	-	-	-	-	7603 (3456)	6443 (2929)	7028 (3195)

* 12" (300 mm) Class 300 valves have Class 400 end-to-end dimensions.


14" to 24" (350 mm to 600 mm) Classes 300, 600, and 900

MODELS E1C (BEVEL GEAR OPERATED)

Max. WP a	Max. WP at 100° F (38° C)									
Class 300:	750 psi CWP 1125 psi Test									
Class 600:	1500 psi CWP 2250 psi Test									
Class 900:	2250 psi CWP 3375 psi Test									

PRINCIPAL DIMENSIONS

N = Number of turns of handwheel or bevel gear operator handwheel to fully open or close valve.

Class 300

Size in.	А	В	F	G	к	N	Weight lb (kg)		
(mm)							FE	WE	F x W
14*	32-1/2	13-1/4	25-1/4	65-7/8	53	177	2632	2230	2500
(350)	(826)	(337)	(641)	(1673)	(1346)	-	(1194)	(1012)	(1134)
16	33	15-1/4	28-1/8	83-9/16	58-3/8	167	3450	3015	3310
(400)	(838)	(387)	(714)	(2122)	(1483)	-	(1565)	(1368)	(1501)
18	36	17-1/4	31	86-13/16	65-5/16	190	4650	4260	4375
(450)	(914)	(438)	(787)	(2205)	(1659)	-	(2109)	(1932)	(1984)
20	39	19-1/4	35-1/4	106-1/4	73-7/8	211	6248	5780	6000
(500)	(991)	(489)	(895)	(2699)	(1876)		(2834)	(2622)	(2722)
24*	48-1/2	23-1/4	42	115-3/4	86-3/8	253	10,678	9550	10,240
(600)	(1232)	(591)	(1067)	(2940)	(2194)	-	(4843)	(4332)	(4645)

Class 600

14	35	13-1/4	25-9/16	69-3/4	53-1/2	177	3240	2931	3000
(350)	(889)	(337)	(649)	(1772)	(1359)	-	(1470)	(1329)	(1361)
16	39	15-1/4	28-1/8	81-1/8	61-1/4	167	4420	3950	4160
(400)	(991)	(387)	(714)	(2061)	(1556)	-	(2005)	(1792)	(1887)
18	43	17-1/4	31-5/8	86-1/2	66-5/8	190	5705	5115	5200
(450)	(1092)	(438)	(803)	(2197)	(1692)	-	(2588)	(2320)	(2359)
20	47	19-1/4	36	98-1/8	73-7/8	211	7595	7115	6605
(500)	(1194)	(489)	(914)	(2492)	(1876)		(3445)	(3227)	(2996)
24	55	23-1/4	42-1/4	113-1/2	87-7/8	253	12,994	11,380	12,730
(600)	(1397)	(591)	(1073)	(2883)	(2232)	-	(5894)	(5162)	(5774)

Class 900

14	40-1/2	12-3/4	26-1/8	69-3/4	53-1/2	-	5200	4902	4902
(350)	(1029)	(324)	(664)	(1772)	(1359)		(2359)	(2224)	(2224)
16	44-1/2	14-3/4	30-1/4	81-1/8	66-5/8	174	7346	6435	6959
(400)	(130)	(375)	(768)	(2061)	(1692)	-	(3332)	(2919)	(3155)
18 (450)	48 (1219)	16-3/4 (425)	33 (838)	92 (2337)	-	-	11,814 (5359)	10,226 (4638)	11,020 (4999)
20 (500)	52 (1321)	18-5/8 (473)	36 (914)	103 (2616)	-	-	15,581 (7067)	14,265 (6470)	14,866 (6743)
24	61	22-1/2	44-1/2	113-1/2	87-7/8	-	20,467	18,561	19,887
(600)	(1549)	(572)	(1130)	(2883)	(2232)		(9284)	(8419)	(9021)

*14" to 24" (350 mm to 600 mm) Class 300 valves have Class 400 end-to-end dimensions.

Note: 30" and 36" (750 mm and 900 mm). Class 300 and 600 prices are available upon request.

OPERATOR SIZING REQUIREMENTS

Model M - 2" to 4" (50 mm to 100 mm) ASME Classes 150 to 1500

Valve	Valve A Size ASME Wo		Ste	m Thre	ead	Recommended Operating	Recommended Operating	Block- and-	Block- and-	Maximum Allowable	Maximum Allowable	Total Stem	Stem Nut Turns-to-
in. (mm)		Pressure (psig)	Size in.	Pitch in.	Lead in.	Thrust (lbf)	Torque (ft-lbf)	Bleed Thrust (lbf)	Bleed Torque (ft-lbf)	Thrust (lbf)	Torque (ft-lbf)	Travel in. (mm)	Open Valve
2 (50)	150	290	0.875	0.167	0.167	457	3	535	4	12,597	93	2.63 (67)	16
2 (50)	300	750	0.875	0.167	0.167	1183	9	1383	10	12,597	93	2.63 (67)	16
2 (50)	600	1500	0.875	0.167	0.167	2366	17	2766	20	12,597	93	2.63 (67)	16
2 (50)	900	2250	0.875	0.167	0.167	3549	26	4149	30	12,597	93	2.63 (67)	16
2 (50)	1500	3750	0.875	0.167	0.167	5914	43	6915	51	12,597	93	2.63 (67)	16
3 (80)	150	290	1.000	0.200	0.200	803	7	1115	9	16,027	136	4.03 (102)	21
3 (80)	300	750	1.000	0.200	0.200	2078	18	2884	25	16,027	136	4.03 (102)	21
3 (80)	600	1500	1.000	0.200	0.200	4155	35	5769	49	16,027	136	4.03 (102)	21
3 (80)	900	2250	1.000	0.200	0.200	6233	53	8653	74	16,027	136	4.03 (102)	21
3 (80)	1500	3750	1.000	0.200	0.200	10,388	88	14,422	123	16,027	136	4.03 (102)	21
4 (100)	150	290	1.250	0.250	0.250	1327	14	1783	19	25,442	271	4.88 (124)	20
4 (100)	300	750	1.250	0.250	0.250	3432	37	4610	49	25,442	271	4.88 (124)	20
4 (100)	600	1500	1.250	0.250	0.250	6864	73	9221	98	25,442	271	4.88 (124)	20
4 (100)	900	2250	1.250	0.250	0.250	10,297	110	13,831	147	25,442	271	4.88 (124)	20
4 (100)	1500	3750	1.250	0.250	0.250	17,161	183	23,052	245	25,442	271	4.88 (124)	20

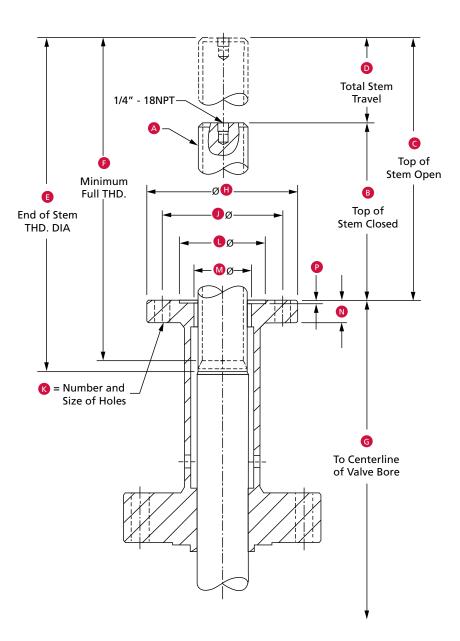
Model E1C - 6" to 24" (150 mm to 600 mm) ASME Classes 300 to 900

Valve		ASME	Ste	m Thre	ead	Recommended	Recommended	Block- and-	Block- and-	Maximum	Maximum	Total	Stem Nut
Size in. (mm)	ASME Class	Working Pressure (psig)	Size in.	Pitch in.	Lead in.	Operating Thrust (lbf)	Operating Torque (ft-lbf)	Bleed Thrust (lbf)	Bleed Torque (ft-lbf)	Allowable Thrust (lbf)	Allowable Torque (ft-lbf)	Stem Travel in. (mm)	Turns-to- Open Valve
6 (150)	300	750	1.50	0.250	0.250	6626	82	8179	101	21,711	267	7.19 (183)	29
6 (150)	600	1500	1.50	0.250	0.250	13,252	163	16,358	201	21,711	267	7.19 (183)	29
6 (150)	900	2250	1.50	0.250	0.250	19,878	245	24,538	302	33,158	408	7.19 (183)	29
8 (200)	300	750	1.75	0.250	0.250	10,705	149	12,626	176	23,678	329	9.12 (232)	36
8 (200)	600	1500	1.75	0.250	0.250	21,410	298	25,253	351	26,577	370	9.12 (232)	36
8 (200)	900	2250	1.75	0.250	0.250	32,115	447	37,879	527	42,377	590	9.12 (232)	36
10 (250)	300	750	2.25	0.333	0.333	16,462	296	19,385	349	36,141	651	11.31 (287)	34
10 (250)	600	1500	2.25	0.333	0.333	32,924	593	3871	698	46,433	836	11.31 (287)	34
10 (250)	900	2250	2.25	0.333	0.333	49,386	889	58,156	1047	76,635	1380	11.31 (287)	34
12 (300)	300	750	2.25	0.333	0.333	21,911	395	27,588	497	52,472	945	13.38 (340)	40
12 (300)	600	1500	2.25	0.333	0.333	43,822	789	55,175	994	64,733	1166	13.38 (340)	40
12 (300)	900	2250	2.25	0.333	0.333	65,732	1184	82,763	1490	84,560	1523	13.38 (340)	40
14 (350)	300	750	2.00	0.250	0.500	25,138	477	32,355	614	78,209	1485	14.88 (378)	30
14 (350)	600	1500	2.00	0.250	0.500	50,276	955	64,709	1229	78,209	1485	14.88 (378)	30
14 (350)	900	2250	2.25	0.333	0.333	72,608	1308	101,857	1835	110,039	1982	14.88 (378)	45
16 (400)	300	750	2.50	0.400	0.800	33,517	868	39,174	1015	108,946	2822	16.88 (429)	21
16 (400)	600	1500	2.50	0.400	0.800	67,035	1736	78,348	2029	108,946	2822	16.88 (429)	21
16 (400)	900	2250	2.75	0.400	0.800	97,481	2681	146,275	4022	162,485	4468	17.38 (441)	22
18 (450)	300	750	2.50	0.400	0.800	41,440	1073	48,846	1265	113,120	2930	18.94 (481)	24
18 (450)	600	1500	2.50	0.400	0.800	82,881	2147	97,691	2530	113,120	2930	18.94 (481)	24
18 (450)	900	2250	3.00	0.400	0.400	123,194	2901	173,424	4084	185,236	4362	19.88 (505)	50
20 (500)	300	750	2.75	0.400	0.800	51,116	1406	60,201	1655	113,120	3111	21.12 (536)	27
20 (500)	600	1500	2.75	0.400	0.800	102,231	2811	120,401	3311	129,553	3562	21.12 (536)	27
20 (500)	900	2250	3.5	0.400	0.800	153,347	4953	248,075	8031	253,737	8196	21.12	27
22 (550)	300						N	o Design					
22 (550)	600	1500	3.00	0.400	0.800	123,768	3601	149,487	4349	118,661	3453	23.25 (591)	29
22 (550)	900						No	o Design					
24 (600)	300	750	3.00	0.400	0.800	72,557	2111	91,789	2671	113,120	3291	25.25 (641)	32
24 (600)	600	1500	3.00	0.400	0.800	145,115	4222	183,577	5341	203,038	5908	25.25 (641)	32
24 (600)	900	2250	3.75	0.400	0.800	214,524	7273	356,572	12,089	351,789	11,927		

Note:

1. Use recommended operating thrust and torques for sizing bevel gear operators.

2. Use block-and-bleed thrusts and torques for sizing power operators (electric, gas, hydraulic, etc.).


3. Maximum operating thrust and torques are the maximum allowable for the valve.

OPERATOR INTERFACE

The operator interface on 6" through 12" (150 mm through 300 mm) valves is manufactured to comply with ISO 5210 and MSS-SP-102.

The operator interface on 14" (350 mm) and larger valves is manufactured to comply with MSS-SP-102.

OPERATOR INTERFACE DIMENSIONS TOPWORKS DATA

Imperial

Size in.	Class	MSS FLG	A-NA-2G-L.H.	В	с	D	E	F	G	н	J	K	L	М	N	Р
6	3-9C	FA14	1-1/2250P250L Single Lead Thread	8.31	15.50	7.19	16.44	16.06	26.88	7.00	5.50	4-0.69	3.955 3.945	2.50	1.03	0.178
8	3-9C	FA14	1-3/4250P250L Single Lead Thread	8.44	17.56	9.12	18.94	18.56	32.00	7.00	5.50	4-0.69	3.955 3.945	2.50	1.03	0.178
10	3-9C	FA16	2.25333P333L Single Lead Thread	9.38	20.69	11.31	24.38	24.00	42.13	8.38	6.50	4-0.81	5.230 5.220	3.12 3.75	1.50 2.75	0.230
12	3-6C	FA16	2.25333P333L Single Lead Thread	11.50	24.88	13.38	26.06	25.69	45.44	8.38	6.50	4-0.81	5.230 5.220	3.12	1.50	0.230
	9C	FA16	2.25333P333L Single Lead Thread	11.34	24.75	13.38	26.06	25.69	45.56	8.38	6.50	4-0.81	5.230 5.220	3.12	1.50	0.230
14	3-6C	FA16	2250P500L Double Lead Thread	9.56	24.38	14.81	27.50	26.88	50.44	8.38	6.50	4-0.81	5.230 5.220	3.12	1.50	0.230
16	3-6C	FA25	2-1/2400P800L Double Lead Thread	10.19	27.06	16.88	31.19	30.56	56.50	11.50	10.00	8-0.69	6.020 6.010	3.75	2.00	0.230
18	3-6C	FA25	2-1/2400P800L Double Lead Thread	9.31	28.25	18.94	32.69	32.19	63.88	11.50	10.00	8-0.69	6.020 6.010	3.75	2.00	0.230
20	3C	FA25	2-3/4400P800L Double Lead Thread	11.50	32.62	21.12	37.00	36.44	70.31	11.50	10.00	80.69	6.020 6.010	3.75	2.00	0.230
	6C	FA30	2-3/4400P800L Double Lead Thread	11.50	32.62	21.12	37.00	36.44	70.31	13.62	11.75	8-0.81	7.020 7.010	3.75	2.75	0.230
24	3C	FA25	3400P800L Double Lead Thread	12.37	37.62	25.25	43.06	42.56	85.19	11.50	10.00	8069	6.020 6.010	3.75	2.00	0.230
	6C	FA35	3400P800L Double Lead Thread	12.37	37.62	25.25	43.06	42.56	85.19	16.12	14.00	8-1.12	8.520 8.510	4.00	3.25	0.230

Metric

Size mm	Class	MSS FLG	A-NA-2G-L.H.	В	C	D	E	F	G	н	J	к	L	М	Ν	Р
150	3-9C	FA14	38.1250P250L Single Lead Thread	211	394	183	418	408	683	178	140	4-17.53	100.46 100.20	63.5	26.16	4.52
200	3-9C	FA14	44.45250P250L Single Lead Thread	214	446	232	481	471	813	178	140	4-17.53	100.46 100.20	63.5	26.16	4.52
250	3-9C	FA16	57.15333P333L Single Lead Thread	238	526	287	619	610	1070	213	165	4-20.57	132.84 132.59	79.25 95.25	38.1 69.85	5.84
300	3-6C	FA16	57.15333P333L Single Lead Thread	292	632	340	662	653	1154	213	165	4-20.57	132.84 132.59	79.25	38.1	5.84
	9C	FA16	57.15333P333L Single Lead Thread	288	629	340	662	653	1157	213	165	4-20.57	132.84 132.59	79.25	38.1	5.84
350	3-6C	FA16	50.8250P500L Double Lead Thread	243	619	376	699	683	1281	213	165	4-20.57	132.84 132.59	79.25	38.1	5.84
400	3-6C	FA25	63.5400P800L Double Lead Thread	259	687	429	792	776	1435	292	254	8-17.53	152.91 152.65	95.25	50.8	5.84
450	3-6C	FA25	63.5400P800L Double Lead Thread	9.31	718	481	830	818	1623	292	254	8-17.53	152.91 152.65	95.25	50.8	5.84
500	ЗC	FA25	69.85400P800L Double Lead Thread	292	829	536	940	926	1786	292	254	8-17.53	152.91 152.65	95.25	50.8	5.84
	6C	FA30	69.85400P800L Double Lead Thread	292	829	536	940	926	1786	346	298	8-20.57	178.31 178.10	95.25	69.85	5.84
600	ЗC	FA25	76.2400P800L Double Lead Thread	314	956	641	1094	1081	2164	292	254	8-17.53	152.91 152.65	95.25	50.8	5.84
	6C	FA35	76.2400P800L Double Lead Thread	314	956	641	1094	1081	2164	409	356	8-28.45	216.41 216.15	101.6	82.55	5.84

FLOW COEFFICIENTS (C_v)

The following chart outlines the C_v for through conduit gate valves having end-to-end dimensions and bore diameters in compliance with API 6D.*

Valve Size in. (mm)	300	400	600	900	1500	2500
2 (50)	432	378	378	337	337	218
3 x 2 (80 x 50)	-	165	165	203	239	-
2-1/2 (65)	-	682	682	558	558	305
3 (80)	1155	1053	1109	1072	966	474
4 x 3 (100 x 80)	-	534	529	597	677	624
4 (100)	2176	1925	1944	1890	1730	725
6 x 4 (150 x 100)	-	886	944	943	1231	-
6 (150)	5300	4860	4577	4383	3622	2510
8 x 6 (200 x 150)	2499	-	3240	3588	2137	-
8 (200)	11,054	9345	8886	8416	6879	5227
10 x 8 (250 x 200)	5218	-	5036	7975	4859	-
12 x 8 (300 x 200)	3302	-	3892	-	-	-
10 (250)	18,856	15,771	14,533	14,087	11,283	8313
12 (300) (Note 1)	228,980	23,834	22,729	21,025	16,843	12,282
12 x 10 (300 x 250)	-	-	12,799	7299	-	-
14 (350) (Note 1)	30,883	29,921	28,837	23,846	20,336	-
16 x 14 (400 x 350)	-	-	21,096	-	-	-
16 (400)	42,224	41,022	39,144	33,358	27,548	21,396
20 x 16 (500 x 400)	-	15,761	-	-	-	-
18 (450)	55,740	54,277	51,368	45,004	-	-
20 (500)	70,386	68,680	64,559	56,871	-	-
22 (550)	86,869	85,422	80,279	-	-	-
24 (600) (Note 1)	106,835	103,504	97,240	84,836	-	-
26 (650)	123,222	120,829	114,905	-	-	-
28 (700)	144,355	142,391	135,267	-	-	-
30 (750)	170,229	163,776	157,401	133,706	-	-
36 (900)	245,362	236,147	224,424	-	-	-

Since C_{v} is a calculated number, the actual value may vary.

* As Applicable.
 Notes: 1. Class 300 valves have Class 400 end-to-ends in these size Pow-R-Seal designs. Use the Class 400 C_v.

FLOW COEFFICIENTS (K $_{\rm v})$

The following chart outlines the K_v for through conduit gate valves having end-to-end dimensions and bore diameters in compliance with API 6D.*

Valve Size in. (mm)	300	400	600	900	1500	2500
2 (50)	373	327	327	291	291	188
3 x 2 (80 x 50)	-	142	145	175	207	-
2-1/2 (65)	-	590	590	483	483	264
3 (80)	999	911	959	927	835	410
4 x 3 (100 x 80)	-	462	458	516	585	540
4 (100)	1882	1665	1682	1635	1496	627
6 x 4 (150 x 100)	-	766	817	816	1065	-
6 (150)	4585	4204	3959	3792	3133	2172
8 x 6 (200 x 150)	2162	-	2803	3103	1849	-
8 (200)	9562	8084	7687	7280	5951	4522
10 x 8 (250 x 200)	4514	-	4356	6898	4204	-
12 x 8 (300 x 200)	2857	-	3367	-	-	-
10 (250)	16,312	13,643	12,572	12,186	9761	7191
12 (300) (Note 1)	25,070	20,617	19,662	18,188	14,570	10,624
12 x 10 (300 x 250)	-	-	11,072	6314	-	-
14 (350) (Note 1)	26,715	25,883	24,945	20,628	17,591	-
16 x 14 (400 x 350)	-	-	-	-	-	-
16 (400)	-	-	18,249	-	-	-
20 x 16 (500 x 400)	36,526	35,486	33,862	28,856	23,831	18,509
18 (450)	-	13,634	-	-	-	-
20 (500)	48,218	46,953	44,436	38,930	-	-
22 (550)	60,888	59,412	55,847	49,196	-	-
24 (600) (Note 1)	75,147	73,894	69,445	-	-	-
26 (650)	92,417	89,536	84,117	73,388	-	-
28 (700)	106,593	104,523	99,399	-	-	-
30 (750)	124,874	123,175	117,013	-	-	-
36 (900)	147,257	141,674	136,160	115,662	-	-
40 x 30 (1000 x 750)	-	-	-	60,464	-	-
36 (900)	212,251	204,279	194,138	-	-	-
42 x 36 (1050 x 900)	70,357	-	-	-	-	-
40 (1000)	266,697	265,814	265,814	-	-	-
42 (1050)	-	302,576	293,854	-	-	-
48 (1200)	-	-	408,871	-	-	-

Since K_{v} is a calculated number, the actual value may vary.

* As Applicable.

Notes: 1. Class 300 valves have Class 400 end-to-ends in these size Pow-R-Seal designs. Use the Class 400 K $_{
m v}$.

PRESSURE TEMPERATURE RATINGS

Standard WCC Material

Tempe	rature		V	Vorking Pressur	e by Class, psig		
°C	°F	150	300	400	600	900	1500
29° C to 38° C	20° F to 100° F	290	750	1000	1500	2250	3750
93° C	200° F	260	750	1000	1500	2250	3750
149° C	300° F	230	730	970	1455	2185	3640
204° C	400° F	200	705	940	1410	2115	3530
260° C	500° F	170	665	885	1330	1995	3325
316° C	600° F	140	605	805	1210	1815	3025
343° C	650° F	125	590	785	1175	1765	2940
371° C	700° F	110	570	755	1135	1705	2840
399° C	750° F	95	505	670	1010	1510	2520
427° C	800° F	80	410	550	825	1235	2060

Ref.: API 6D, ASME B16.34

Temper	rature			Working Pressure b	y Class, psig	
°C	°F	150	300	600	900	1500
-29° C to 38° C	-20° F to 100° F	19.8	51.7	103.4	155.1	258.6
50° C	122° F	19.5	51.7	103.4	155.1	258.6
100° C	212° F	17.7	51.5	103.0	154.6	257.6
150° C	302° F	15.8	50.2	100.3	150.5	250.8
200° C	392° F	13.8	48.6	97.2	145.8	243.2
250° C	482° F	12.1	46.3	97.2	139.0	231.8
300° C	572° F	10.2	42.9	85.7	128.6	214.4
325° C	617° F	9.3	41.4	82.6	124.0	206.6
350° C	662° F	8.4	40.0	80.0	120.1	200.1
375° C	707° F	7.4	37.8	75.7	113.5	189.2
400° C	752° F	6.5	34.7	69.4	104.2	173.6
425° C	797° F	5.5	28.8	57.5	86.3	143.8

General Notes: (a) Flanged end valve ratings terminate at 1000° F (538° C).

PRESSURE TEMPERATURE RATINGS

Standard WC6 Material

Tempe	erature		Worki	ng Pressure by Clas	s, psig	
°C	°F	150	300	600	900	1500
-29° C to 38° C	-20° F to 100° F	290	750	1500	2250	3750
93° C	200° F	260	750	1500	2250	3750
149° C	300° F	230	720	1445	2165	3610
204° C	400° F	200	695	1385	2080	3465
260° C	500° F	170	665	1330	1995	3325
316° C	600° F	140	605	1210	1815	3025
343° C	650° F	125	590	1175	1765	2940
371° C	700° F	110	570	1135	1705	2840
399° C	750° F	95	530	1065	1595	2660
427° C	800° F	80	510	1015	1460	2540
454° C	850° F	65	485	975	1350	2435
482° C	900° F	50	450	900	955	2245
510° C	950° F	35	320	640	650	1595
538° C	1000° F	20	215	430	430	1080

Tempe	erature		Worki	ng Pressure by Clas	s, psig	
°C	°F	150	300	600	900	1500
-28° C to 38° C	-20° F to 100° F	19.8	51.7	103.4	155.1	258.6
50° C	122° F	19.5	51.7	103.4	155.1	258.6
100° C	212° F	17.7	51.5	103.0	154.4	257.4
150° C	302° F	15.8	49.7	99.5	149.2	248.7
200° C	392° F	13.8	48.0	95.9	143.9	239.8
250° C	482° F	12.1	46.3	92.7	139.0	231.8
300° C	572° F	10.2	42.9	85.7	128.6	214.4
325° C	617° F	9.3	41.4	82.6	124.0	206.6
350° C	662° F	8.4	40.3	80.4	120.7	201.1
375° C	707° F	7.4	38.9	77.6	116.5	194.1
400° C	752° F	6.5	36.5	73.3	109.8	183.1
425° C	797° F	5.5	35.2	70.0	105.1	175.1
450° C	842° F	4.6	33.7	67.7	101.4	169.0
475° C	887° F	3.7	31.7	63.4	95.1	158.2
500° C	932° F	2.8	25.7	51.5	77.2	128.6
538° C	1000° F	1.4	14.9	29.8	44.7	74.5

General Notes: (a) Flanged end valve ratings terminate at 1000° F (538° C).

TRIM CHART

Service	Trim Code	Body and Bonnet	Gate and Segment	Seat	Stem Seal	Stem	Bolting	Fittings	Temperature Range
Waterflood, Corrosive	T-10	WCC Carbon Steel, Nickel- Plated	Carbon Steel 300- 600, Low Alloy 900 Nickel-Plated	Carbon Steel, Nickel-Plated PTFE Insert	PTFE	Low Alloy Steel, Nickel- Plated	Alloy Steel NACE	Stainless Steel	-20° F to 250° F (-29° C to 121° C)
Standard 2"- 4" only	T-11	WCC Carbon Steel	Carbon Steel, Low Alloy Steel, Nickel- Plated	Carbon Steel, Nickel-Plated PTFE Insert	FKM Viton	Low Alloy Steel, Nickel- Plated	Alloy Steel	Carbon Steel	-20° F to 250° F (-29° C to 121° C)
Sour, Mildly Corrosive 2" and larger	T-24	WCC Carbon Steel	Carbon Steel 300- 600, Low Alloy 900 Nickel-Plated	Carbon Steel, Nickel-Plated PTFE Insert	PTFE	Low Alloy Steel, Nickel- Plated	Alloy Steel NACE	Stainless Steel	-20° F to 250° F (-29° C to 121° C)
High-Temperature	T-30	WCC Carbon Steel	CA6NM Stainless Steel, HF-6 Hard Faced	Carbon Steel, HF-6 Hard Faced	Flexible Graphite	400 Series Stainless Steel	Alloy Steel	Stainless Steel	-20° F to 650° F (-29° C to 343° C)
High-Temperature	T-31	WC6 Carbon Steel	CA6NM Stainless Steel, HF-6 Hard Faced	A182 F11 Carbon Steel, HF-6 Hard Faced	Flexible Graphite	400 Series Stainless Steel	Alloy Steel	Stainless Steel	-20° F to 1000° F (-29° C to 538° C)
Low-Temperature, Non-Sour	T-36	LCC Carbon Steel Impact- Tested	Nickel-Plated Carbon Steel 300-600 Low Alloy Steel 900 Class	Carbon Steel, Nickel-Plated PTFE Insert	PTFE	Low Alloy Steel, Impact Nickel-Plated	Alloy Steel, Impact- Tested	Stainless Steel	-50° F to 250° F (-46° C to 121° C)
Low-Temperature, Sour	T-37	LCC Carbon Steel Impact- Tested	Nickel-Plated Carbon Steel 300-600 Low Alloy Steel 900 Class	Carbon Steel, Nickel-Plated PTFE Insert	PTFE	Low Alloy Steel, Impact Nickel-Plated	Alloy Steel, Impact- Tested	Stainless Steel	-50° F to 250° F (-49° C to 121° C)
Standard 6" and larger	T-101	WCC Carbon Steel	Carbon Steel 300- 600, Low Alloy 900 Nickel-Plated	Carbon Steel, Nickel-Plated PTFE Insert	PTFE	Low Alloy Steel, Impact Nickel-Plated	Alloy Steel	Carbon Steel	-20° F to 250° F (-29° C to 121° C)
Standard Special Services 6" and larger	T-102	WCC Carbon Steel	Carbon Steel 300- 600, Low Alloy 900 Nickel-Plated	Carbon Steel, Nickel-Plated PTFE Insert	PTFE	Low Alloy Steel, Impact Nickel-Plated	Alloy Steel	Carbon Steel	-20° F to 250° F (-29° C to 121° C)

COMMON TRIMS

Waterflood (Uninhibited) (T-10) – Carbon steel body/bonnet with wetted surface, ENP-plated, internal parts of corrosion-resistant materials.

Model M (Sizes 2" to 4", (50 mm to 100 mm), Classes 600 through 1500) Standard (T-11) – For non-corrosive aromatic service with concentration of MTBE to 100%.

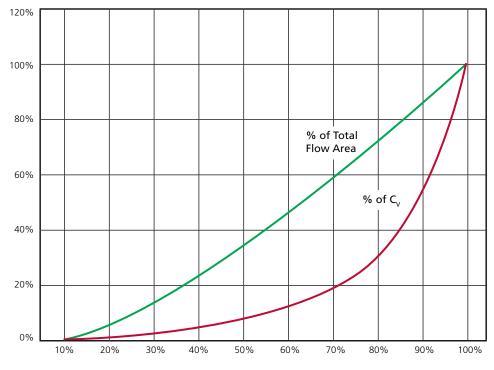
Sour Gas and Oil (NACE MR0175) (T-24) – Primarily for sour gas and oil (NACE MR0175) where resistance to H_2S embrittlement is required. Also suitable for other chemicals, products or hydrocarbons when H_2S is present. May be used when CO_2 is present in smaller amounts than H_2S .

High-Temperature -20° F to 650° F (-29° C to 343° C) (T-30) – For higher temperature service where the corrosion resistance and wire drawing resistance of the stainless internals with stellite overlay are suitable. The limiting temperature is a function of the body material which follows the appropriate pressure rating table. (Ref. ASME Std. B16.34, 1977).

High-Temperature Up to 1000° F (538° C) (T-31) – For service above 550° F (288° C). Same qualifications as T-30, except metal-to-metal seating is only required for temperatures from 650° F to 1000° F (343° C to 538° C).

Low-Temperature -50° F (-46° C) NACE (T-36) – For essentially non-corrosive ladings, either liquid or gaseous. The pressureretaining components (body, bonnet and bolting) are of impact-tested materials.

Low-Temperature Sour -50° F (-46° C) NACE (T-37) – Primarily for sour gas and oil (NACE MR0175) where resistance to H_2S embrittlement is required at -50° F (-46° C) service. The pressure-retaining components (body, bonnet and bolting) are of impact-tested materials. Also suitable for other chemicals, products or hydrocarbons when H_2S is present. Can be used when CO₂ is present in smaller amounts than H_2S .


Aromatic (to 40% MTBE, Fire-Tested API 6FA or ISO 10497) (T-101) – For essentially non-corrosive, non-sour aromatic or non-aromatic service with methanol or ethanol based corrosion inhibitors where up to 40% MTBE may be present.

High-Aromatic (Special Services for 6" to 24" [150 mm to 600 mm], Classes 300 to 1500) (T-102) – For non-corrosive aromatic service with concentration of MTBE, Ethanol, Methanol to 100 percent.

PARTIAL OPEN FLOW CHARACTERISTICS

The following graph approximates the flow coefficient, C_v or K_v , of gate values as a function of the value stroke going from closed to open. Note that this is an estimation only because of assumptions made in the value stroke, as well as unpredictable flow characteristics around the gate-seat bore in the partially open position.

Gate valves are intended for on-off service. Intermittent throttling such as pressure equalization service is acceptable. Continuous throttling is not recommended. This information is provided only to facilitate the engineering of systems in the transition between open and closed positions of the valves. One example might be to evaluate the possibility of water hammer in liquid pipelines.

Partial Open Flow Characteristics (Through-Conduit Gate Valves)

Percent of Valve Stroke

CAMSERV[™] Aftermarket Services for Valves and Actuation

WE BUILD IT. WE BACK IT.

Global Network and Local Support

Cameron is well-positioned to deliver total aftermarket support, quickly and efficiently, with unmatched OEM expertise. Our highly skilled engineers and technicians are available around the clock, seven days a week, to respond to customer queries, troubleshoot problems, and offer reliable solutions.

Easily Accessible Parts and Spare Valves

- OEM spare valves, actuators, and parts (including non-Cameron brands)
- Handling, storage, packaging, and delivery
- Dedicated stocking program

Comprehensive Aftermarket Services Portfolio

- Parts and spare valves
- Repair
- Field services
- Preventative maintenance
- Equipment testing and diagnostics
- Remanufacturing
- Asset preservation
- Customer property management
- Training and recertification services
- Warranty

Customized Total Valve Care[™] (TVC) Programs

Customized asset management plans that optimize uptime, availability, and dedicated services.

- Engineering consultancy
- Site management
- Flange management
- Startup and commissioning
- Spare parts and asset management
- Operational support

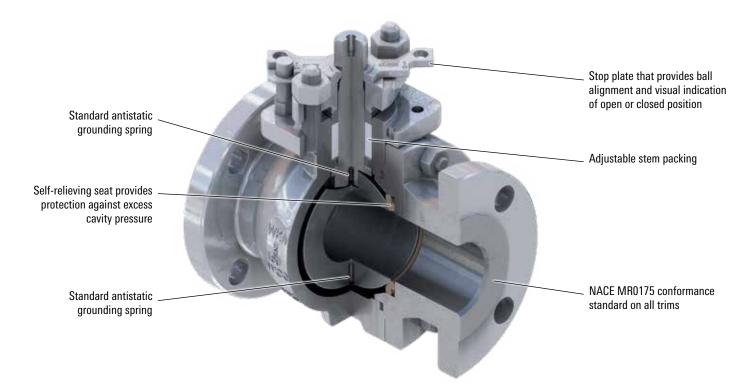
3250 Briarpark Drive, Suite 300 Houston, TX 77042 USA Toll Free 1 800 323 9160

Learn more about WKM gate valves at: www.c-a-m.com/WKM/gate WKM@c-a-m.com

HSE Policy Statement At Cameron, we are committed ethically, financially and personally to a working environment where no one gets hurt and nothing gets harmed.

Flanged floating ball valves

Contents


WKM 320F Flanged Floating Ball Valves

Features and benefits	3
Exploded views and specifications	5
Materials list	6
Actuator trim codes	6
How to order	7
Trim codes	7
Dimensional data— $\frac{1}{2}$ -in full port through 8-in × 6-in reduced port	8
Dimensions	9
Torque estimation and MAST	11
Weights	11

Features and Benefits

The handle can be correctly installed only in alignment with the ball port. The valve is open when the handle is aligned with piping and is closed when the handle is perpendicular to piping.

ASME Classes 150 through 600 1/2-in full port through 8-in reduced port NACE MR0175/ISO 15156

WKM 320F* flanged floating ball valves satisfy a wide range of applications. Available in a variety of standard and optional materials, the valves are engineered for heavy-duty, maintenance-free performance and serve a variety of applications in virtually any industry.

Chemical and petrochemical plants

There is a wide range of chemical and petrochemical applications for WKM 320F ball valves. They serve in plastic plants, handling such slurries as 40% vinyl chloride in high-pressure catalyst lines, and in processes, handling dry lading such as polyethylene and polystyrene powders.

Refining

The WKM 320F ball valve is ideal for the refining industry. The many seats, seals, and trims available offer the versatility to handle the wide variety of products used in the refining process.

Low-temperature service

Standard trims accommodate temperatures to -20 degF [-29 degC], and temperature trims are available to -50 degF [-46 degC].

Maintenance-free performance

Under most conditions, the WKM 320F ball valve will provide years of trouble-free service with no maintenance required. In some severe applications, such as handling extremely abrasive slurries at high temperature, it may be necessary to replace the seats occasionally. Seat and seal kits are available, and replacement can be done easily with ordinary tools.

Sour oil and gas service

WKM* valves have served for years in gathering lines, manifolds, and field processing units in sour oil and gas fields. All trim combinations conform with NACE MR0175/ISO 15156.

Self-relieving seats

A patent-pending seat design provides automatic cavity relief without requiring a vented ball or external relief valve. API Spec 6D monogram is available upon request.

Actuation friendly

A variety of actuator types, including pneumatic, hydraulic, diaphragm, vane, electromechanical, and electrohydraulic, can be easily installed.

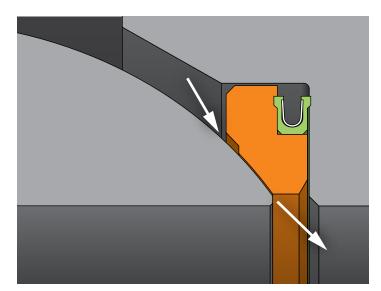
Fire tested for safety

All WKM 320F ball valves are qualified under API Standard 607 7th Ed. The seat and locked-in stem design contributes to its fire-tested characteristics. Should the soft seats be destroyed by fire, the ball floats downstream, providing a tight metal-to-metal seal against the lip of the seat pocket. If the tailpiece seals are destroyed, the metal-to-metal tailpiece-to-body connection retards external leakage.

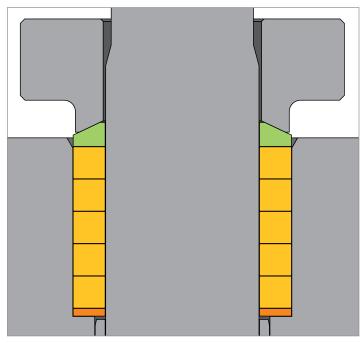
Adjustable, replaceable packing

The inline valve stem packing options consist of PTFE and graphite. The packing is field adjustable and virtually never requires lubrication.

Fugitive emissions


WKM 320F ball valves can be supplied and certified to meet the requirements of fugitive emissions (FE) as regulated by ISO and API.

Positively retained stem


The stem is positively retained and cannot be removed with the valve in service.

Tight-sealing floating ball design

The ground, polished ball is free to float and mates perfectly with the conical seats for a positive, leak-proof seal. Self-cleaning and self-adjusting, the ball also is pressure activated—the higher the line pressure, the tighter the seal.

Seat that relieves excess cavity pressure to the upstream side of the valve.

Fugitive-emissions packing arrangement.

Specifications

ASME Classes 150 through 600

Operating temperatures

- From –50 to 500 degF [–46 to 260 degC]
- Standard material
- Body
 - Carbon steel and stainless steel
- Ball and stem
 - Carbon steel and stainless steel
 - Optional materials available upon request

Industry compliance

 American Society of Mechanical Engineers (ASME) Standards B16.5 and B16.34

Bill of Materials

Quantity

1

1

_†

_†

1

1

2

2

1

1

2

1

Description

Body

Tailpiece

Body stud

Body nut

body to tail

Seat lip seal

Stem bearing

Ball

Seat

Stem

Spiral-wound (SW) gasket,

Packing set (PTFE or graphite)

Stem thrust washer

Part No.

101

102

151

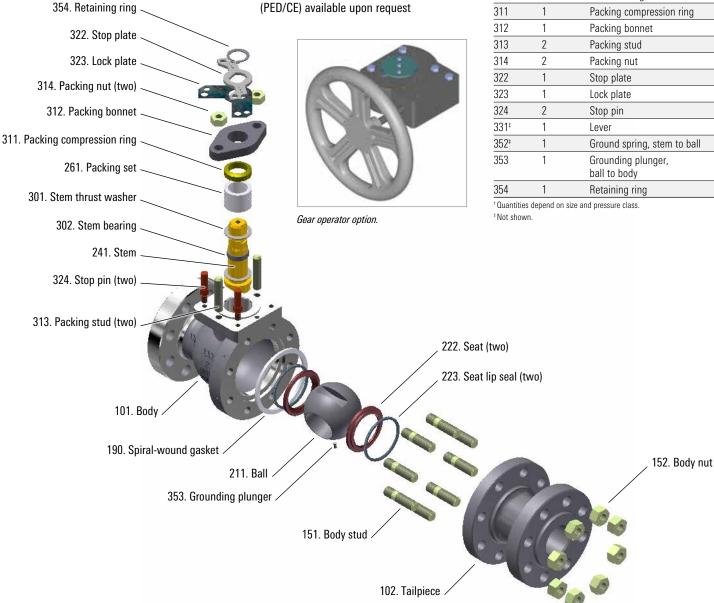
152

190

211

222

223


241

261

301

302

- Manufacturers Standardization Society Specifications MSS SP-25, 55, and 72
- API Spec 607 7th Ed. fire-test specification
- Canadian Registration Number (CRN)
- API Spec 608
- NACE MR0175
- ANSI Standard B16.34
- API Spec 6D upon request
- ISO or API fugitive emissions upon request
- European Pressure Equipment Directive (PED/CE) available upon request

Materials List

Body Group Trim Number

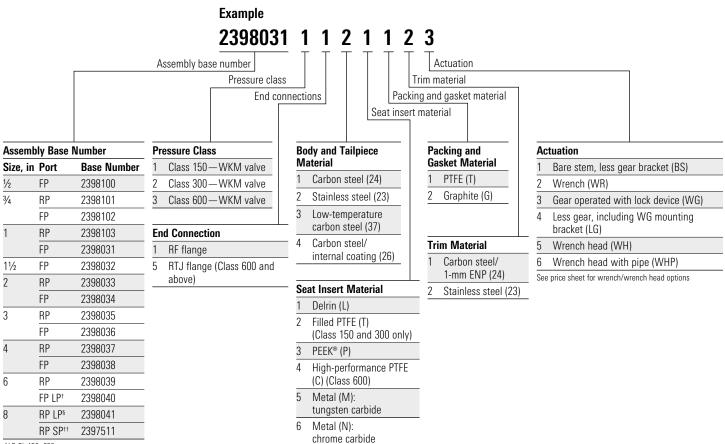
Part	Carbon Steel (NACE) 24	Carbon Steel for Low Temperature (NACE) 37	Stainless Steel (NACE) 23	Carbon Steel with Coating (NACE) 26
Body	A216 Grade wrought carbon (WCC)	A352 Grade low-temperature wrought carbon (LCC)	A351 Grade CF8M	A216 Grade WCC, ZPEX [®] coating
Tailpiece	A216 Grade WCC	A352 Grade LCC	A351 Grade CF8M	A216 Grade WCC, ZPEX coating
Bonnet cap		Low-alloy carbo	n steel (CS) zinc plated	
Studs		A320 Grade L7M	zinc plated with e-coat	
Nuts		A194 Grade 7M	zinc plated with e-coat	
Packing studs		A320 Grade L7M	zinc plated with e-coat	
Packing nuts		A194 Grade 7M	zinc plated with e-coat	

NACE indicates compliance with NACE MR0175/ISO 15156.

Internal Group Trim Number				
Ball	A105 CS ENP	_ [†]	A351 CF8M or 316 SS	A105 CS ENP
Stem	A105 CS ENP	_†	316 stainless steel (SS)	A105 CS ENP
Ground spring	INCONEL [®] material	_†	INCONEL	INCONEL
Compression ring	316 SS	_†	316 SS	316 SS
Thrust washer	CS and TFE	_†	SS and TFE	CS and TFE

[†] Low-temperature model requires 23 stainless internal group.

Seal Group Trim Code				
Part	LTF	TTF	CGF	PGF
Temperature limits	–20 to 220 degF [–29 to 104 degC]	–50 to 300 degF [–46 to 149 degC]	–50 to 500 degF [–46 to 260 degC]	–50 to 500 degF [–46 to 260 degC]
Seat	Delrin [®] material	Filled PTFE	High-performance PTFE	PEEK
Packing	PTFE	PTFE	Graphite	Graphite
Body seal	Spiral-wound gasket Grafoil® and SS	Spiral-wound gasket Grafoil and SS	Spiral-wound gasket Grafoil and SS	Spiral-wound gasket Grafoil and SS

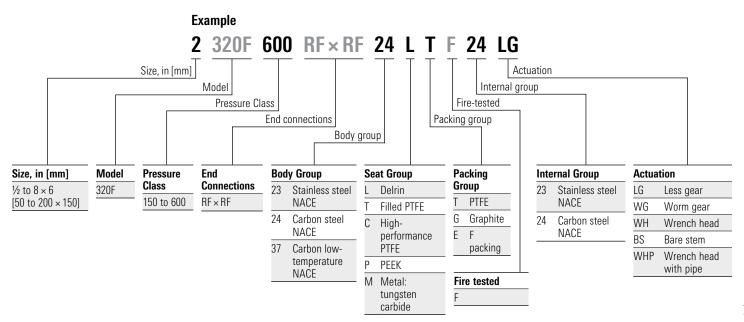

Actuator Trim Codes

Actuator Codes	
Part (Body)	Worm Gear—For All Body Material Codes
Mounting bracket	Carbon steel
Bolting	Carbon steel
Set screw	Carbon steel
Stem adapter	Carbon steel
Actuator	As selected
Handwheel	Carbon steel

Actuator Codes (Wrend	ches)
Part (Body)	Wrench—For All Body Material Codes
Wrench head	Steel
Wrench handle	Carbon steel
Wrench handle pin	Carbon steel
Capscrew	Alloy steel
Stop plate	Carbon steel

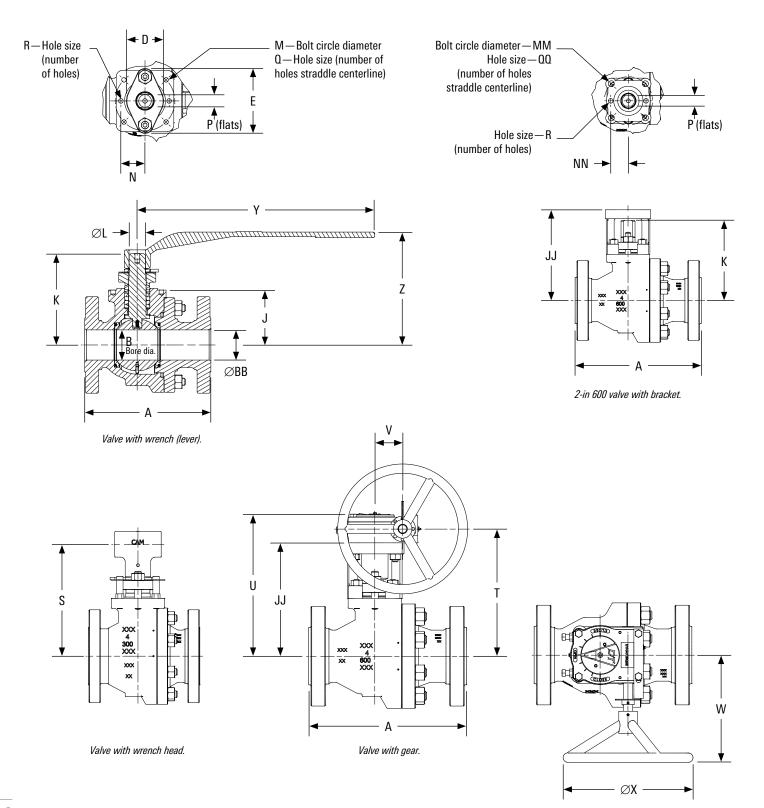
How to Order

Flanged (two-piece cast)


⁺LP CL 150-600

[±]SP CL 150 only

[§]LP CL 150 and 600 only


 $^{\rm tt}\,{\rm SP}$ 300 only

Trim Codes

Dimensional Data

¹/₂-in full port through 8-in reduced port ASME Classes 150, 300, and 600

Dimensions

WKM 320F Valve Class 150 Dimensions

Size,	Α	ØB	BB	D	Е	J	JJ	К	ØL	ØM	MM	Ν	NN	Ρ	ØQ	Ø 00	ØR	ØRR	S	Т	U	V	W	Х	Y	Ζ
in [mm]	RF	-																								
½ [13]	4.25 [108]	0.51 [13]	0.51 [13]	1.12 [28.5]		1.51 [38.4]			0.47 [11.9]			0.69 [17.5]		0.35 [8.9]	10-24 unc (4) 0.38 dp	-	0.13-(2) 0.19 dp	-	-	-	-	-	-	-	6 [152]	3.37 [85.6]
³ ⁄4 × ¹ ⁄2 [19 × 13]	4.625 [117.5]	0.51 [13]	0.76 [19.3]	1.12 [28.5]		1.513 [38.4]			0.47 [11.9]			0.69 [17.5]		0.35 [8.9]	10-24 unc (4) 0.38 dp	-	0.13-(2) 0.19 dp	-	-	-	-	-	-	-	6 [152]	3.37 [85.62
³ ⁄4 × ³ ⁄4 [19 × 19]	4.625 [117.5]		0.76 [19.3]			1.73 [43.9]		2.88 [73]	0.47 [11.9]			0.69 [17.5]		0.35 [8.9]	10-24 unc (4) 0.38 dp	-	0.13-(2) 0.25 dp	-	-	-	-	-	-	-	6 [152]	3.59 [91]
1 × ¾ [25 × 19]	5 [127]		1.01 [25.7]			1.73 [43.9]		2.88 [73]	0.47 [11.9]	1.88 [47.6]		0.69 [17.5]		0.35 [8.9]	10-24 unc (4) .025 dp	-	0.13-(2) 0.25 dp	-	-	-	-	-	-	-	6 [152]	3.59 [91]
1 [25]	5 [127]	1.01 [26]	1.01 [26]		2.66 [67.6]	1.99 [51]	-	3.54 [90]	0.55 [14]	2.13 [54]	-	0.81 [21]	-	0.43 [11]	0.25-20 (4) 0.38 dp	-	0.19-(2) 0.31 dp	-	-	_	_	_	-	-	8 [203]	4.65 [118]
1½ [38]	6.50 [165]	1.51 [38]	1.51 [38]		3.37 [85.6]		_	4.50 [114]	0.71 [18]	2.76 [70]	-	1.21 [31]	-	0.55 [14]	0.25-20 (4) 0.44 dp	-	0.19-(2) 0.31 dp	-	-	_	_	-	-	-	10 [254]	5.85 [149]
2 × 1½ [50 × 38]	7 [178]	1.51 [38]	2.03 [52]		3.37 [85.6]		-	4.50 [114]		2.76 [70]	-	1.21 [31]	-	0.55 [14]	0.25-20 (4) 0.44 dp	-	0.19-(2) 0.31 dp	-	-	-	-	-	-	-	10 [254]	5.85 [149]
2 [50]	7 [178]	2.03 [52]	2.03 [52]	2.24 [57]	3.88 [98.6]	3.46 [88]	-	5.65 [143]	0.86 [22]	3.38 [86]	-	1.38 [35]	-	0.67 [17]	0.38-16 (4) 0.41 dp	-	0.25-(2) 0.38 dp	-	-	-	-	-	-	-	12 [305]	7.27 [185]
3 × 2 [80 × 50]	8 [200]	2.03 [52]	3.03 [77]	2.24 [57]	3.88 [98.6]	3.46 [88]	-	5.65 [143]		3.38 [86]	-	1.38 [35]	-	0.67 [17]	0.38-16 (4) 0.41 dp	-	0.25-(2) 0.38 dp	-	-	-	-	-	-	-	12 [305]	7.27 [185]
3 [80]	8 [200]	3.03 [77]	3.03 [77]	2.5 [63.5]	4.38 [111]	4.51 [115]	8 [200]	7 [178]	1.10 [28]	4.02 [102]	4.02 [102]	1.63 [41]	1.63 [41]	0.86 [22]	0.38-16 (4) 0.63 dp	0.44-(4) thru	0.31-(2) 0.38 dp	0.31-(2) 0.53 dp	7.91 [201]	9.12 [232]	10.68 [271]		9.08 [231]	6 [152]	16 [406]	8.42 [214]
4 × 3 [100 × 80]	9 [229]	3.03 [77]	4.03 [102]	2.5 [63.5]	4.38 [111]	4.51 [115]	8 [200]	7 [178]	1.10 [28]	4.02 [102]		1.63 [41]	1.63 [41]	0.86 [22]	0.38-16 (4) 0.63 dp	0.44-(4) thru	0.31-(2) 0.38 dp	0.31-(2) 0.53 dp		9.12 [232]			9.08 [231]	6 [152]	16 [406]	8.42 [214]
4 [100]	9 [229]	4.03 [102]	4.03 [102]	-	5.38 [137]	5.89 [150]	10.51 [267]			4.92 [125]	4.92 [125]		1.94 [49]	1.06 [27]	0.50-13 (4) 0.75 dp	0.56-(4) thru	0.44-(2) 0.63 dp	0.44-(2) 0.63 dp		11.88 [302]			9.22 [2341	10] [254]	24 [610]	11.50 [292]
6 × 4 [150 × 100]	10.50 [267]		6 [150]	3 [76]	5.38 [137]	5.89 [150]	10.51 [267]		1.41 [36]	4.92 [125]		1.94 [49]	1.94 [49]	1.06 [27]	0.50-13 (4) 0.75 dp	0.56-(4) thru	0.44-(2) 0.63 dp	0.44-(2) 0.63 dp		11.88 [302]			12.08 [307]	10 [254]	24 [610]	11.50 [292]
6 [150]	15.50 [394]	6 [150]	6 [150]	3.5 [89]	6.25 [159]	7.72 [196]	13.72 [349]			5.51 [140]	6.47 [165]		2.38 [60]	1.41 [36]	0.63-11 (4) 1.00 dp	0.81-(4) thru	0.63-(2) 0.75 dp	0.63-(2) 0.81 dp	-		16.97 [431]		11.56 [294]	14 [356]	-	-
8 × 6 [200 × 150]	18 [457]	6 [150]	8 [200]	3.5 [89]	6.25 [159]	7.72 [196]	13.72 [349]	12.31 [313]		5.51 [140]		2.38 [60]	2.38 [60]	1.41 [36]	0.63-11 (4) 1.00 dp	0.81-(4) thru	0.63-(2) 0.75 dp	0.63-(2) 0.81 dp	-		16.98 [431]		11.56 [294]	14 [356]	-	-

WKM 320F	Valve C	lass 3	300 D	imens	sions																					
Size,	Α	ØB	BB	D	Ε	J	JJ	К	ØL	ØM	MM	Ν	NN	Р	ØQ	Ø QQ	ØR	ØRR	S	Т	U	V	W	Х	Y	Z
in [mm]	RF																									
½ [13]	5.50 [139.7]	0.51 [13]	0.51 [13]	1.12 [28]	2.35 [59.7]	1.51 [38.4]		2.66 [67.6]	0.47 [12]	1.88 [47.6]		0.69 [17.5]		0.35 [8.9]	10-24 unc (4) 0.38 dp	-	0.13-(2) 0.19 dp	-	-	-	-	-	-	-	6 [150]	3.37 [85.6]
³ / ₄ × ¹ / ₂ [193 × 13]	6.00 [152.4]	0.51 [13]	0.76 [19.3]			1.51 [38.4]		2.66 [67.6]		1.88 [47.6]		0.69 [17.5]		0.35 [8.9]	10-24 unc (4) 0.38 dp	-	0.13-(2) 0.19 dp	-	-	-	-	-	-	-	6 [150]	3.37 [85.6]
³ ⁄4 × ³ ⁄4 [193 × 19.3]	6 [152.4]		0.76 [19.3]	1.25 [32]		1.80 [45.7]		3.34 [84.9]		2.13 [54]	-	0.81 [20.6]		0.43 [10.2]	0.250-20 (4) 0.44 dp	-	0.19-(2) 0.31 dp	_	-	-	-	_	_	-	8 [200]	4.18 [106]
1 × ¾ [25 × 19]	6.5 [165.1]	0.76 [19.3]	1.01 [25.7]	1.25 [32]	2.66 [67.6]	1.80 [45.7]		3.34 [84.9]		2.13 [54]	-	0.81 [20.6]			0.250-20 (4) 0.44 dp	-	0.19-(2) 0.31 dp	-	-	-	-	_	-	-	8 [200]	4.18 [106]
1 [25]	6.50 [165]	1.01 [26]	1.01 [26]	1.76 [45]	3.37 [85.6]		-	4.12 [105]		2.76 [70]	-	1.21 [31]	-	0.55 [14]	0.25-20 (4) 0.38 dp	-	0.19-(2) 0.31 dp	-	-	-	-	-	-	-	10 [254]	5.48 [139]
1½ [38]	7.50 [191]	1.51 [38]	1.51 [38]	2.24 [57]	3.88 [98.6]		-	5.27 [134]	0.86 [22]	3.38 [86]	-	1.38 [35]	_	0.67 [17]	0.38-16 (4) 0.63 dp	_	0.25-(2) 0.38 dp	_	-	-	_	_	_	-	12 [305]	6.89 [175]
2 × 1½ [50 × 38]	8.50 [216]	1.51 [38]	2.03 [52]	2.24 [57]	3.88 [98.6]	3.08 [78]	-	5.27 [134]		3.38 [86]	_	1.38 [35]	-	0.67 [17]	0.38-16 (4) 0.63 dp	-	0.25-(2) 0.38 dp	-	-	-	-	_	-	-	12 [305]	6.89 [175]
2 [50]	8.50 [216]	2.03 [52]	2.03 [52]	2.5 [63.5]	4.38 [111]		-	6.16 [156]	1.10 [28]	4.02 [102]	-	1.63 [41]	-	0.86 [22]	0.38-16 (4) 0.63 dp	_	0.31-(2) 0.38 dp	_	-	-	_	_	-	-	16 [406]	7.61 [193]
3 × 2 [80 × 50]	11.12 [282]	2.03 [52]	3.03 [77]	2.5 [63.5]	4.38 [111]		-	6.19 [157]	1.10 [28]	4.02 [102]	-	1.63 [41]	-	0.86 [22]	0.38-16 (4) 0.63 dp	-	0.31-(2) 0.38 dp	-	-	-	-	-	-	-	16 [406]	7.61 [193]
3 [80]	11.13 [283]	3.03 [77]	3.03 [77]	3 [77]	5.38 [137]	5.14 [131]	9.76 [248]	8.57 [218]	1.41 [36]	4.92 [125]	4.92 [125]	1.94 [49]	1.94 [49]	1.06 [27]	0.50-13 (4) 0.75 dp	0.56-(4) thru	0.44-(2) 0.63 dp	0.44-(2) 0.63 dp	9.56 [243]	11.13 [283]	12.83 [326]		12.08 [307]	14 [356]	24 [610]	10.75 [273]
4 × 3 [100 × 80]	12 [305]	3.03 [77]	4.08 [104]	3 [77]	5.38 [137]	5.14 [131]	9.76 [248]	8.57 [218]	1.41 [36]	4.92 [125]	4.92 [125]	1.94 [49]	1.94 [49]	1.06 [27]	0.50-13 (4) 0.75 dp	0.56-(4) thru	0.44-(2) 0.63 dp	0.44-(2) 0.63 dp	9.56 [243]	11.26 [286]			11.56 [294]		24 [610]	10.75 [273]
4 [100]	12 [305]	4.03 [102]	4.08 [104]	3.5 [89]	6.25 [159]	6.22 [158]	12.22 [310]	10.81 [275]		5.51 [140]	6.5 [165]	2.38 [60]	2.38 [60]	1.41 [36]	0.63-(4) 1.00 dp	0.81-(4) thru	0.63-(2) 0.81 dp	0.63-(2) 0.75 dp	12.06 [306]	13.72 [349]			13.31 [338]		-	-
6 × 4 [150 × 100]	15.88 [403]	4.03 [102]	6 [150]	3.5 [89]	6.25 [159]	6.22 [158]		10.81 [275]		5.51 [140]	6.5 [165]	2.38 [60]	2.38 [60]	1.41 [36]	0.63-(4) 1.00 dp	0.81-(4) thru	0.63-(2) 0.81 dp	0.63-(2) 0.75 dp	12.06 [306]	13.72 [349]			13.31 [338]		-	-
6 [150]	15.88 [403]	6 [150]	6 [150]	4.25 [108]	7.75 [197]	8.05 [205]		14.09 [358]		6.5 [165]	6.5 [165]	3 [76]	3 [76]	_	0.75-(4) 0.81 dp	0.81-(4) thru	0.75-(2) 1.06 dp	0.75-(2) 1.06 dp	-		18.98 [482]		13.21 [336]		-	-
8 × 6 [200 × 150] Short pattern	16.5 [419]	6 [150]	8 [200]	4.25 [108]	7.75 [197]	8.05 [205]		14.09 [358]		6.5 [165]	6.5 [165]	3 [76]	3 [76]	-	0.75-(4) 0.81 dp	0.81-(4) thru	0.75-(2) 1.06 dp	0.75-(2) 1.06 dp	-	17.05 [433]	18.98 [482]		13.21 [336]	14 [356]	-	-

WKM 32	OF Va	ve Cla	ass 60	0 Din	nensio	ons																					
Size,	Α		ØB	BB	D	Ε	J	JJ	K	ØL	ØM	MM	N	NN	Р	ØQ	Ø 00	ØR	ØRR	S	Т	U	۷	W	X	Y	Z
in [mm]	RF	RJ	_																								
½ [13]	6.5 [165]	6.5 [165]	0.51 [13]	0.51 [13]			1.51 [38.4]	-		0.47 [11.9]	1.88 [47.6]	-	0.69 [17.5]	-		10-24 unc (4) 0.38 dp	-	0.125-(2) 0.19 dp	-	-	-	-	-	-	-	6 [152]	3.37 [85.6]
³ / ₄ × ¹ / ₂ [19 × 13]	7.5 [191]	7.5 [191]	0.51 [13]	0.76 [19.3]	1.12 [28.5]		1.51 [38.4]				1.88 [47.6]		0.69 [17.5]	-	0.35 [8.92]	10-24 unc (4) 0.38 dp		0.125-(2) 0.19 dp	-	-	-	-	-	-	-	6 [152]	3.37 [85.6]
³ ⁄4 × ³ ⁄4 [19 × 19]	7.5 [191]	7.5 [191]	0.76 [19.3]		1.25 [31.8]			-		0.55 [13.9]	2.13 [54]	-	0.81 [20.6]	-		0.25-(4) 0.44 dp	-	0.187-(2) 0.31 dp	-	-	-	-	-	-	-	8 [203]	4.18 [106]
1 × ¾ [25 × 19]	8.5 [216]	8.5 [216]	0.76 [19.3]		1.25 [31.8]					0.55 [13.9]		-	0.81 [20.6]	-		0.25-(4) 0.44 dp	-	0.187-(2) 0.31 dp	-	-	-	-	-	-	-	8 [203]	4.18 [106]
1 [25]	8.5 [216]	8.5 [216]	1.01 [26]	1.01 [25.7]	1.76 [44.7]		2.39 [61]	-	4.12 [105]		2.76 [70]	-	1.21 [31]	-	0.55 [14]	0.25-(4) 0.38 dp	-	0.19-(2) 0.31 dp	-	-	-	-	-	-	-	10 [254]	5.48 [139]
1½ [38]	9.5 [241]	9.5 [241]	1.51 [38]	1.51 [38.4]	2.24 [56.9]	3.88 [98.6]		-		0.86 [22]	3.38 [86]	-	1.38 [35]	-	0.67 [17]	0.38-(4) 0.63 dp	-	0.25-(2) 0.38 dp	-	-	-	-	-	-	-	12 [305]	6.89 [175]
2 × 1½ [50 × 38]	11.5 [292]	11.6 [295]	1.51 [38]		2.24 [56.9]			-		0.86 [22]	3.38 [86]	-	1.38 [35]	-	0.67 [17]	0.38-(4) 0.63 dp	-	0.25-(2) 0.38 dp	-	-	-	-	-	-	-	12 [305]	6.89 [175]
2 [50]	11.5 [292]	11.6 [295]	2.03 [51.6]	2.03 [51.6]	2.5 [63.5]			7.2 [183]	6.19 [157]	1.10 [28]	4.02 [102]	4.02 [102]	1.63 [41]	1.63 [41]	0.86 [22]	0.38-(4) 0.63 dp	0.44-(4) thru	0.31-(2) 0.38 dp	0.31-(2) 0.53 dp	-	8.3 [211]	9.85 [250]	1.75 [44.5]	9.08 [231]		16 [406]	7.61 [193]
3 × 2 [80 × 50]	14 [356]	14.1 [359]	2.03 [51.6]	3.03 [77]	2.5 [63.5]	4.38 [111]	3.70 [94]	7.2 [183]	6.19 [157]	1.10 [28]	4.02 [102]	4.02 [102]	1.63 [41]	1.63 [41]	0.86 [22]	0.38-(4) 0.63 dp	0.44-(4) thru	0.31-(2) 0.38 dp	0.31-(2) 0.53 dp	-	8.3 [211]	9.85 [250]	1.75 [44.5]		6 [152]	16 [406]	7.61 [193]
3 [80]	14 [283]	14.1 [359]	3.03 [77]	3.03 [77]	3 [76.2]	5.38 [137]	5.14 [131]	9.76 [248]		1.41 [36]	4.92 [125]	4.92 [125]	1.94 [49]	1.94 [49]	1.06 [27]	0.50-(4) 0.75 dp	0.56-(4) thru	0.44-(2) 0.63 dp	0.44-(2) 0.63 dp	9.56 [243]	11.1 [283]	12.8 [326]	2.51 [63.8]	12.2 [310]		24 [610]	10.8 [273]
4 × 3 [100 × 80]	17 [432]	17.1 [435]	3.03 [77]	4.08 [104]	3 [76.2]	5.38 [137]	5.14 [131]	9.76 [248]	8.57 [217]	1.41 [36]	4.92 [125]	4.92 [125]	1.94 [49]	1.94 [49]	1.06 [27]	0.50-(4) 0.75 dp	0.56-(4) thru	0.44-(2) 0.63 dp	0.44-(2) 0.63 dp		11.3 [286]	13.0 [331]	3 [76.2]	11.7 [297]	12 [305]	24 [610]	10.8 [273]
4 [100]	17 [432]	17.1 [435]	4.03 [102]	4.03 [102]	3.5 [88.9]	6.25 [159]	6.22 [158]	12.2 [310]	10.8 [275]	1.89 [48]	5.51 [140]	6.5 [165]	2.38 [60]	2.38 [60]	1.41 [36]	0.63-(4) 1.00 dp	0.81-(4) thru	0.63-(2) 0.75 dp	0.63-(2) 0.81 dp	12.1 [306]	13.7 [348]	15.5 [393]	3 [76.2]	11.6 [294]	14 [356]	-	-
6 × 4 [150 × 100]	22 [559]	22.1 [562]	4.03 [102]	6.00 [152]		6.25 [159]		12.2 [310]	10.8 [275]	1.89 [48]	5.51 [140]	6.5 [165]	2.38 [60]	2.38 [60]	1.41 [36]	0.63-(4) 1.00 dp	0.81-(4) thru	0.63-(2) 0.75 dp	0.63-(2) 0.81 dp		13.7 [348]	15.5 [393]	3 [76.2]		14 [356]	-	-
6 [150]	22 [559]	22.13 [562]	6.00 [152]	6.00 [152]	4.25 [108]	7.75 [197]	15.4 [392]	15.4 [392]	14.1 [358]	2.36 [60]	6.5 [165]	6.5 [165]	3 [76]	3 [76]	-	0.75-(4) 0.81 dp	0.81-(4) thru	0.75-(2) 1.00 dp	0.75-(2) 1.06 dp	-	17.1 [433]		3.63 [92.1]	13.2 [336]	20 [508]	-	-
8 × 6 [200 × 150]	26 [660]	-	6.00 [152]	8.06 [205]	4.25 [108]	7.75 [197]	15.4 [392]	15.4 [392]	14.1 [358]	2.36 [60]	6.5 [165]	6.5 [165]	3 [76]	3 [76]	-	0.75-(4) 0.81 dp	0.81-(4) thru	0.75-(2) 1.00 dp	0.75-(2) 1.06 dp	-	17.1 [433]		3.63 [92.1]		20 [508]	-	-

Torque Estimation and MAST

Valve Port Size, in [mm]	Pressure Class	Gauge Pressure (P), psi	Run Torque at Max. P, Ibf.in	Break Torque at Max. P, Ibf.in	MAST, [†] Ibf.in
1⁄2 [13]	150	80-290	11	20	228
	300	286-750	14	31	228
	600	741–1,500	19	45	228
3⁄4 [19]	150	80-290	17	37	228
	300	286-750	27	65	401
	600	741-1,500	37	97	401
1 [25]	150	80-290	29	69	401
	300	286-750	52	125	881
	600	741-1,500	73	187	881
1½ [38]	150	80-290	67	185	881
	300	286-750	117	335	1,549
	600	741-1,500	164	506	1,549
2 [50]	150	80-290	136	385	1,549
	300	286-750	215	677	3,290
	600	741-1,500	301	1,026	3,290
3 [80]	150	80-290	301	1,037	3,290
	300	286-750	498	1,865	6,944
	600	741-1,500	696	2,843	6,944
4 [100]	150	80–290	611	2,158	6,944
	300	286-750	995	3,866	16,747
	600	741-1,500	1,392	5,899	16,747
6 [150]	150	80–290	1,562	6,013	16,747
	300	286-750	2,439	10,699	40,040
	600	741–1,500	3,372	16,339	40,040

Valve Port Size, in [mm]	Pressure Class	Gauge Pressure (P), psi	Run Torque at Max. P, Ibf.in	Break Torque at Max. P, lbf.in	MAST, Ibf.in
1⁄2 [13]	150	80-290	42	51	228
	300	286-750	45	61	228
	600	741-1,500	49	74	228
3⁄4 [19]	150	80-290	48	68	228
	300	286-750	88	126	401
	600	741-1,500	94	154	401
1 [25]	150	80–285	90	129	401
	300	286-740	183	256	881
	600	741–1,480	196	311	881
1½ [38]	150	80–285	198	315	881
	300	286-740	391	609	1,549
	600	741-1,480	423	764	1,549
2 [50]	150	80–285	410	659	1,549
	300	286-740	652	1,114	3,290
	600	741-1,480	713	1,438	3,290
3 [80]	150	80–285	738	1,474	3,290
	300	286-740	1,367	2,734	6,944
	600	741-1,480	1,516	3,662	6,944
4 [100]	150	80–285	1,480	3,027	6,944
	300	286-740	2,540	5,411	16,747
	600	741-1,480	2,850	7,356	16,747
6 [150]	150	80–285	3,108	7,559	16,747
	300	286-740	5,343	13,603	40,040
	600	741-1,480	6,110	19,077	40,040

⁺Maximum-allowable stem torque (MAST) for standard material option. Consult factory for high MAST options.

Weights

Valve Size, in [mm]	Weight, Ibm [kg]		
	150	300	600
1⁄2 [13]	5.6 [2.5]	7.6 [3.4]	9.0 [4.1]
³ / ₄ × ¹ / ₂ [19 × 13]	6.6 [3]	9.9 [4.5]	11.7 [5.3]
³ ⁄ ₄ × ³ ⁄ ₄ [19 × 19]	7.2 [3.3]	11.7 [5.3]	14.3 [6.5]
1 × ¾ [25 × 19]	8.4 [3.8]	13.2 [6]	16.3 [7.4]
1 [25]	9.7 [4.4]	17.1 [7.8]	22.9 [10.4]
1½ [38]	20.1 [9.1]	32.1 [14.5]	40.9 [18.5]
2 × 1½ [50 × 38]	24.4 [11.1]	37.1 [16.8]	46.9 [21.3]
2 [50]	33.4 [15.1]	44.4 [20.1]	57.3 [26]
3 × 2 [80 × 50]	44.3 [20.1]	63.3 [28.7]	80.2 [36.3]
3 [80]	82.5 [37.4]	96.8 [43.9]	118.6 [53.7]
4×3 [100×80]	73.1 [33.1]	118.9 [53.9]	165.4 [74.9]
4 [100]	110.0 [49.8]	162.2 [73.5]	236.3 [107]
6 × 4 [150 × 100]	132.9 [60.2]	213.2 [96.6]	335.6 [152]
6 [150]	251.2 [113.8]	332.9 [150.8]	487.8 [221]
8×6 [200×150]	356 [161.5]	452.6 [205.3]	599.7 [271.7]

slb.com/valves

WKM DynaSeal 210 and 310 Floating Ball Valves

Industry-recognized flanged and threaded end floating ball valves for oilfield and industrial applications

Table of Contents

WKM DYNASEAL 210 AND 310 FLOATING BALL VALVES

WKM DynaSeal 210 Floating Ball Valves	
How to Order	1
Features and Benefits	2
Exploded View and Specifications	4
Materials List	5
Dimensions and Weights	6
WKM DynaSeal 310 Floating Ball Valves	
Trim Guidelines for All DynaSeal 310 Valves	7
How to Order	8
Features and Benefits	9
Exploded Views and Specifications	
Socket Weld Ends	12
Threaded Connections	13
Flanged Connections	14
Materials List – Threaded and Flanged Ends	15
Dimensional Data – 4" Reduced Port and Smaller	
1/4" Full Port through 4" Reduced Port:	
Flanged, Threaded and Socket Weld	16
Features and Benefits	18
Exploded Views and Specifications	21
Materials List	23
Dimensional Data – 4" Full Port and Larger	
4" Full Port through 8" Reduced Port	24
Pressure/Temperature for All DynaSeal 310 Valves	26
Weights	29
Flow Characteristics	30
Stem Torques	31
WKM DynaSeal 210 and 310 Floating Ball Valves	
Material Selection Guide	33
Services for Valves and Actuation	40
Trademark Information	41

WKM DynaSeal 210 Floating Ball Valves HOW TO ORDER

XXX0L	xx	-	2			1	x		х		x		0	x	
Base P	Part		Pressure	Rating		Body	Seat		Sea	al	Ball a	nd		Handle	
Numb	ber		(CV	VP)	Ν	/laterial	Trim		Mate	erial	Sten	n			
		7				↓ ↓			Ņ						
Female Thre 750/1000# N		Ţ			Duct	tile Iron 1		-	Buna	1				No Handle	0
Siz	ze —		Base						FKM	2				Handle	1
in.	(mm)	Ν	lumber	750 p	si	1	Ļ					1		No Handle with Seal Pin	2
2 x 1-1/2	(50 x 40)		24925	1000		2	Acetal Plastic (43)	3	-	Carbon S	Steel		1	Handle with	3
2 x 2	(50 x 50)		25144	1500		3	Filled Teflon (42)	5		Stainless	Steel		2	Seal Pin	5
3 x 2	(80 x 50)		24926	2000		4			-	Carbon S	Steel Unidirect	ional	3		
3 x 3	(80 x 80)		25145	2000	hai	4				Stainless	Steel Unidired	tional	4		
4 x 3	(100 x 80))	25154							* See page	e 4 for details.				

1500/2000# MOP

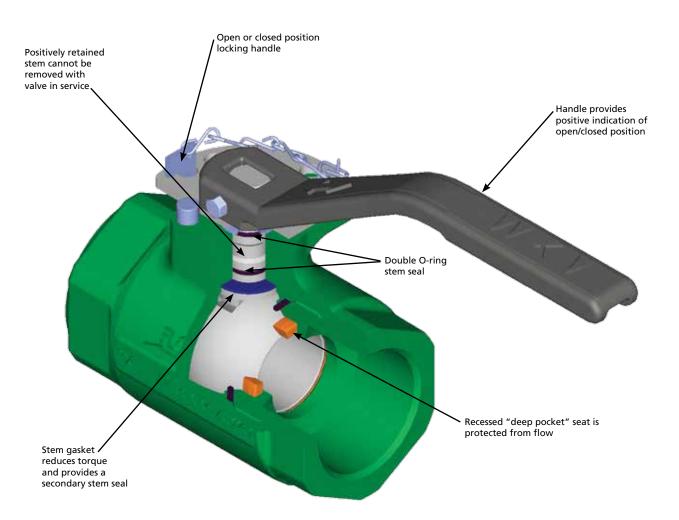
1 x 1	(25 x 25)	24190
2 x 1-1/2	(50 x 40)	24132
2 x 2	(50 x 50)	24056
2-1/2 x 2	(65 x 50)	24059
3 x 2	(80 x 50)	24063
3 x 3	(80 x 80)	24178*
4 x 3	(100 x 80)	24211*

* Maximum pressure rating of 1500 psi for 4" x 3" (100 mm x 80 mm) and 3" x 3" (80 mm x 80 mm).

2 x 1-1/2 (50 x 40) 25111	Examples:		
	•	Standard Trim 2" (50 mm)	J024925-213110
3 x 2 (80 x 50) 25112		H ₂ S, NACE Trim Suffix Code	= standard -21322
4 x 3 (100 x 80) 25113			= unidirectional -2

NACE MR0175/ISO 15156 Compliance – Materials of construction shall be in compliance with the pre-qualified material requirements specified by NACE MR0175/ISO 15156. According to NACE MR0175/ISO 15156, it is the manufacturer's responsibility for meeting metallurgical requirements and the customer/user responsibility to ensure that a material will be satisfactory in the intended environment. When given the application requirements (environment) by the customer/user, Cameron can make technical recommendations in accordance with NACE MR0175/ISO 15156, but that in no way certifies or warrants the product or materials for the application.

FEATURES AND BENEFITS


This rugged yet economical ductile iron ball valve is ideal for threaded end oilfield applications where carbon steel body material is not a requirement.

Cameron's WKM[®] DynaSeal[™] 210 ball valve is a two-piece design with a ductile iron body and tailpiece. This valve is economical and includes many of the premium design features found in the WKM DynaSeal 310 carbon steel ball valve.

It is available in 1" to 4" x 3" (25 mm to 100 mm x 80 mm) sizes. Working pressures offered are 750, 1000, 1500 and 2000 psi. (See size/pressure table on page 5.)

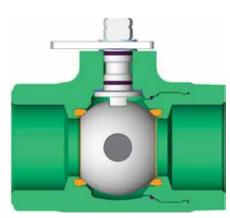
This valve is used primarily in the oilfield market for the following applications:

- Production wing valves on low-pressure gas wells
- Production flowlines
- Production gathering systems for water, oil and gas
- Gas blowdown service
- Tank batteries for storage or production
- Frac water tanks

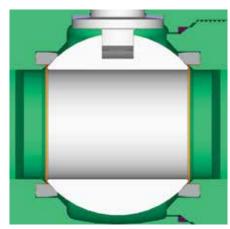
Locking Capability is Standard

• The valve can be locked in the open or closed position.

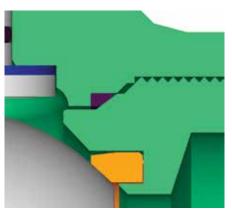
Positively Retained Stem


• The stem is positively retained. It is designed to prevent stem blowout while the valve is in service.

Color-coded Working Pressures


The lock plates are color-coded so pressure ratings are quickly identified.

- 750/1000 psi: green
- 1500 psi: blue
- 2000 psi: red


Unidirectional Ball (Option)

The WKM DynaSeal 210 unidirectional valve option provides relief to valves that might have water trapped in the body cavity and then are exposed to a temporary freeze. Since this option relies on a relief hole in the ball to relieve the excess pressure, the valve is stamped with a directional flow arrow to be sure the side of the ball with the hole is installed upstream.

Fire-tested Design

The WKM DynaSeal 210 ball valves are qualified under API Standard 607.

The deep-pocketed seat, locked in stem and body/tailpiece designs give this valve excellent fire-tested characteristics.

Superior Stem Journal Design Prevents Stem Seizure

The stem is designed with two internal O-ring grooves located on either side of a shallow grease groove.

The top O-ring is a weather seal while the bottom one seals the stem bore against the line media. The stem gasket provides a backup seal.

The shallow groove between the O-rings provides three benefits:

- Prevents stem seizure
- Reduces torque
- Provides a space for lubricating grease applied at the factory during assembly

TFE Body Seal

A TFE body seal is positioned between the line bore and tailpiece threads, isolating the threads from the line media.

Deep Recessed Seats

The seat is recessed into a deep machined pocket, which serves to surround and protect the seat on all sides. This design eliminates cold flow into the valve conduit where it can be damaged by the action of the ball or the flow medium. The result is long and extended service life.

Seal Pin Device Provided as Standard on 750 and 1000 psi; 2", 3" and 4" (50 mm, 80 mm and 100 mm) Reduced Port Valves

A secondary seal pin device for applying tamper detection is provided on these valves. They are a popular choice for production tank batteries where tamper detection often is required.

SPECIFICATIONS

1" Full Port through 4" x 3" Reduced Port

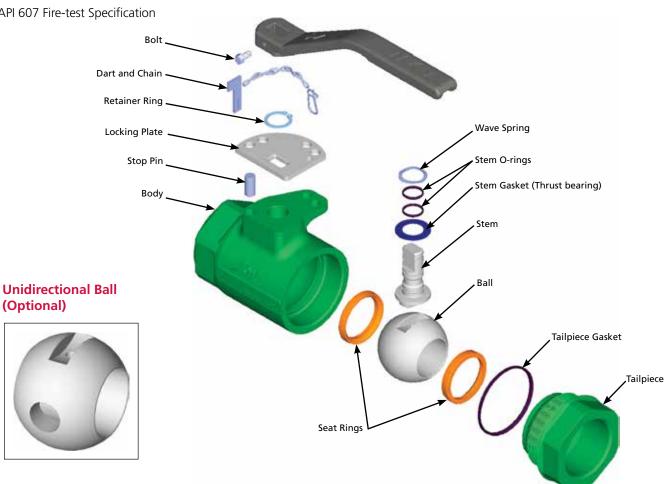
Standards and Specifications

WKM DynaSeal 210 ball valves conform to the following design and testing standards:

Standard Materials

- API line pipe threads •
- Body: Ductile iron •
- Ball and Stem: Carbon steel or stainless steel •
- Seat and Seals: Acetal plastic/Buna-N ٠

Optional Materials


- Ball and Stem: Stainless steel
- Seat and Seals: TFE/FKM •

Compliances

- ASME B16.5 •
- MSS-SP-6, 25, 55, 72 and 61
- NACE MR0175/ISO 15156
- API 607 Fire-test Specification •

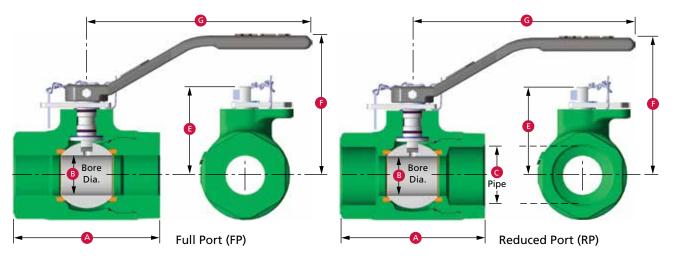
ASME Pre	ssure Classes
----------	---------------

S	ize —			——— Clas	sses ——	
in.	(mm)		750	1000	1500	2000
1	(25)	FP			•	•
2 x 1-1/2	(50 x 40)	RP	•	•	•	•
2	(50)	FP	•		•	•
2-1/2 x 2	(65 x 50)	RP			•	•
3 x 2	(80 x 50)	RP	•	•	•	•
3	(80)	FP	•	•	•	
4 x 3	(100 x 80)	RP	•	•	•	

MATERIALS LIST

1" Full Port through 4" x 3" Reduced Port

750, 1000, 1500 and 2000 psig Working Pressure


Standard Materials

Qty.	Description	Material
1	Body	ASTM A395 Ductile Iron
1	Tailpiece	ASTM A395 Ductile Iron
1	Ball	Carbon Steel Chrome-plated 316 SS
1	Stem	AlSI 1213/1215, Steel, Zinc-plated 316 SS (Type 630 on 2" x 1-1/2" (50 mm x 40 mm))
2	Seat Ring	Acetal Plastic (43) Filled TFE (42)
1	Tailpiece Gasket	PTFE
2	Stem O-ring	Buna-N FKM
1	Stem Gasket (Thrust Bearing)	Filled TFE
1	Locking Plate	Steel 1018/26
1	Locking Plate Retaining Ring	Spring Steel
1	Wave Spring	Spring Steel
1	Stop Pin	Spring Steel
1	Handle	ASTM A395 Ductile Iron
1	Seal Pin/Dart	Brass or Aluminum

NOTE: For H₂S service, use Trim Code -X13220X. Meets NACE MR0175/ISO 15156 (see "How to Order" on page 2).

DIMENSIONS AND WEIGHTS

1" Full Port through 4" x 3" Reduced Port

Dimensions

Size in.	Dimen	sion A	В	c	E	F	G
(mm)	Threaded	Grooved	D D	C	-		9
1 FP	4.00	-	1.00	1.00	2.77	4.0	7.1
(25 FP)	(102)	-	(25)	(25)	(70)	(102)	(180)
2 RP	5.55	5.25	1.50	2.00	3.56	4.9	7.1
(50 RP)	(141)	(133)	(38)	(50)	(90)	(124)	(180)
2 FP	6.00	-	2.00	2.00	4.50	4.9	15.0
(50 FP)	(152)	-	(51)	(50)	(114)	(124)	(381)
2-1/2 RP	7.00	-	2.00	2.50	4.50	4.9	15.0
(65 RP)	(178)	-	(51)	(65)	(114)	(124)	(381)
3 RP	7.25	7.25	2.00	3.00	4.50	4.9	15.0
(80 RP)	(184)	(184)	(51)	(80)	(114)	(124)	(381)
3 FP	8.75	-	3.00	3.00	5.66	6.0	15.0
(80 FP)	(222)	-	(76)	(80)	(144)	(152)	(381)
4 RP	8.75	8.88	3.00	4.00	5.66	6.0	15.0
(100 RP)	(222)	(226)	(76)	(100)	(144)	(152)	(381)

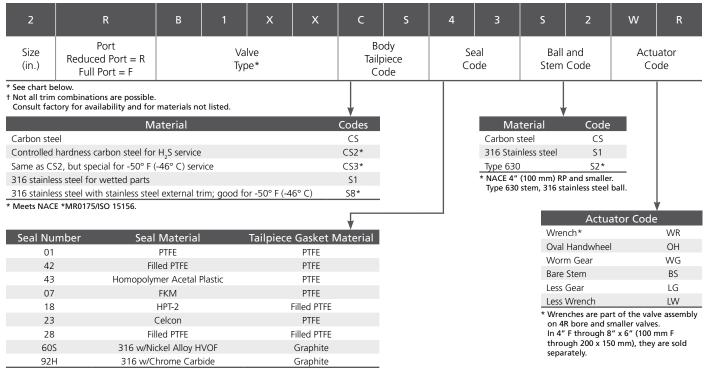
NOTE: The dimensions are approximated.

Weights – Full Port

		Valve Size (in.) and Weight (lb)						
Operation	1 x 1	2 x 2	3 x 3					
Without Handle	4.0	14.4	42.8					
With Handle	4.5	17.6	46.0					
	Valve Size (mm) and Weight (kg)							
Operation	25 x 25	50 x 50	80 x 80					
Without Handle	25 x 25 1.8	50 x 50 6.5	80 x 80 19.4					

Weights – Reduced Port

		Valve Size (in.) a	nd Weight (lb) ————	
Operation	2 x 1-1/2	2-1/2 x 2	3 x 2	4 x 3
Without Handle	9.4	15.5	16.6	35.5
With Handle	9.9	18.0	19.8	38.7
		Valve Size (mm) a	and Weight (kg)	
Operation	50 × 40	65 x 50	80 x 50	100 x 80
Without Handle	4.3	7.0	7.5	16.1
With Handle	4.5	8.2	9.0	17.6


WKM DynaSeal 310 Floating Ball Valves TRIM GUIDELINES FOR ALL DYNASEAL 310 VALVES

This chart is an abbreviated guide to the chemical resistance and pressure/temperature limitations of the seal materials used in the WKM DynaSeal 310 floating ball valve. Consult Cameron regarding questions about trim selections.

Seal Code	Seat Material	Tailpiece Gasket	Service Application
01	TFE	TFE	Seat and tailpiece gaskets are of virgin TFE. Use where lading contamination from glass or other fillers is not desirable, such as in food service. Recommended for low-temperature service to -50° F (-46° C). Also recommended for vacuum service.
42	Filled TFE	TFE	Seat material is TFE filled with inert materials for use at elevated temperatures and pressures. Same chemical resistance as virgin TFE except slightly affected by hot concentrated alkaline solutions. Some chlorinated compounds can cause swelling. Good for vacuum service. Also recommended for low-temperature service -50° F (-46° C).
43	Homopolymer Acetal Plastic	TFE	For general use at high pressures to a temperature of 220° F (104° C).
48	Homopolymer Acetal Plastic	Filled TFE	For general use at high pressures to a temperature of 220° F (104° C). Used on socket weld end valves 3" (80 mm) bore size and smaller.
07	*FKM/SS	TFE	High- and low-pressure block-and-bleed. General use for low-pressure and abrasion resistance. Not suitable for steam. Good for vacuum service. Available in bore sizes to 3" (80 mm).
18	HPT-2	Filled TFE	 HPT-2 is a special TFE formulation for use at temperatures above trim 42 capability. Best suited for constant temperature or constant pressure applications. Proven service in steam, hot oil, heat transfer fluids, hot resins and boiler feed water. Same chemical resistance as TFE. Slightly affected by hot, concentrated alkaline solutions. Some fluorinated compounds cause swelling.
23	Celcon	TFE	For use in high-pressure applications. Temperature limited to 225° F (107° C) (1/4" to 3/4" (8 mm to 20 mm) bores only).
28	Filled TFE	Filled TFE	Same as 42, except tailpiece gasket is filled TFE. Used on weld end valves 4" (100 mm) and larger.
60S	Nickel Alloy HVOF/316	Graphite	Metal-to-metal QPQ ball and seat made of nickel alloy over 316 SS.
92H	Chrome Carbide/316	Graphite	Metal-to-metal ball and seat made of chrome carbide over 316 SS.

NOTE 1: Trim 07 and 18 should be tested for each application by actual use. NOTE 2: All seal codes, with the exception of 07, have been fire-tested (and qualified) to API 607 4th edition requirements. * Trim sizes smaller than 1-1/2" (40 mm) in trim 07 are 100% elastomeric. Sizes 1-1/2" (40 mm) and larger are elastomeric with a metal insert.

HOW TO ORDER

310 Two-piece Valve Type

S	ize —		150	RF	300	RF	600 RF	600 RJ
in.	(mm)		LP	SP	LP	SP		
1	(25)	FP	B110	-	B128	-	B182	B172
1-1/2	(40)	FP	B110	-	B128	-	B182	B172
2	(50)	RP	B100	-	B120	-	B114	B170
2	(50)	FP	B110	-	B128	-	B182	B172
3 x 2	(80 x 50)	RP	B100	-	B120	-	B114	B170
3	(80)	FP	B110	-	B128	-	B182	B172
4	(100)	RP	B100	-	B120	-	B114	B170
4	(100)	FP	B110	-	B128	-	B182***	B172***
6	(150)	RP	-	B102	B120	-	B114***	B170***
6	(150)	FP	B110	B113	B128	-	B182***	B172***
8	(200)	RP	B100	B102	-	B122	B114***	B170***

*** The 4" (100 mm) and larger sizes are available in trim CS2-43-S2-WGA (worm gear-operated) only.

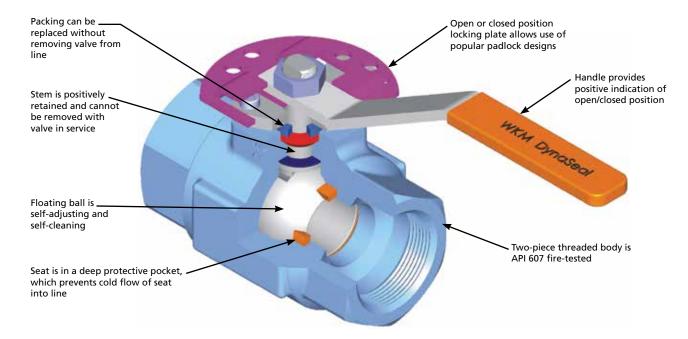
NACE MR0175/ISO 15156 Compliance – Materials of construction shall be in compliance with the pre-qualified material requirements specified by NACE MR0175/ISO 15156. According to NACE MR0175/ISO 15156, it is the manufacturer's responsibility for meeting metallurgical requirements and the customer/user responsibility to ensure that a material will be satisfactory in the intended environment. When given the application requirements (environment) by the customer/user, Cameron can make technical recommendations in accordance with NACE MR0175/ISO 15156, but that in no way certifies or warrants the product or materials for the application.

310 Two-piece Valve Type

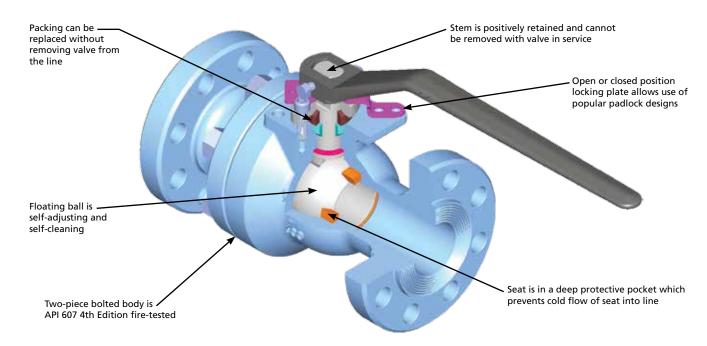
in.	ize (mm)		Female Thread	Male X Female
1/4	(8)	FP	B138	-
3/8	(10)	FP	B138	-
1/2	(15)	RP	B136	-
1/2	(15)	FP	B138	-
3/4	(20)	FP	B138	B138 (M x F)**
1	(25)	RP	B136	B136 (M x F)**
1	(25)	FP	B138	-
1-1/2	(40)	FP	B138	-
2	(50)	RP	B136	-
2	(50)	FP	B138	-
3	(80)	RP	B138	-
3	(80)	FP	B138	-
4	(100)	RP	B136	-

** Available in body tailpiece code S8 only.

NOTE: Threaded end valves have NPT internal pipe thread in full conformance with ASME B2.1 and Federal Thread Handbook H-28.


310 Three-piece Valve Type

	ze		Socket Weld
i'n.	(mˈm)		
1/4	(8)	FP	B103
3/8	(10)	FP	-
3/4	(20)	FP	B103
1	(25)	RP	B106
1-1/2	(40)	FP	B103
2	(50)	RP	B106


FEATURES AND BENEFITS

A premium quality floating ball valve that has proven itself in a wide variety of oilfield, chemical, petrochemical and hydrocarbon processing applications.

Threaded Valve Assembly 1/4" Full Port through 4" x 3" Reduced Port

Flanged Valve Assembly 1" Full Port through 4" x 3" Reduced Port

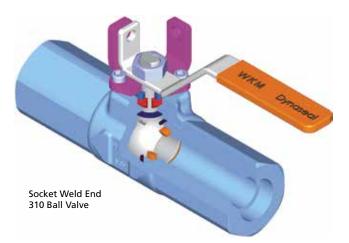
FEATURES AND BENEFITS (CONTINUED)

WKM DynaSeal 310 floating ball valves satisfy a wide range of applications and are available in a variety of standard and optional materials, in sizes from 1/4" (8 mm) to 4" x 3" (100 mm x 80 mm) and working pressures to 5000 psi. Engineered for heavy-duty, maintenance-free performance, the DynaSeal 310 ball valve is preferred for use in critical applications.

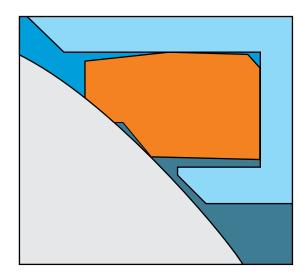
Sour Oil and Gas Service

WKM DynaSeal ball valves are suited to applications within gathering lines, manifolds and field processing units in sour oil and gas fields. They can be trimmed to conform with NACE MR0175/ISO 15156.

Deep-recessed Seats


The WKM DynaSeal 310 seat is protected in a machined recess or deep pocket that surrounds and protects the seat. This design eliminates cold flow into the valve conduit and avoids potential seat damage from ball movement or flow media.


Trim 42 Seats


Seats are manufactured of filled TFE and rated to 1500 psi MOP. With working temperatures to 500° F (260° C) and low-torque operation, these seats satisfy even the most difficult of processing requirements.

Trim 43 Seats

Seats are manufactured of acetal plastic and are rated to 3000 psi MOP and working temperatures to 220° F (104° C). These seats are designed to handle the most demanding applications. They can flex under pressure and provide a consistent range of low-torque operations. They also provide a full face seal against the ball and multiple seals against the top and back of the pocket to provide a positive seal.

Adjustable, Replaceable Packing

The in-line valve stem packing consists of PTFE impregnated graphite with an impervious metal barrier and a secondary tapered metal backup. The packing is field-adjustable and never requires lubrication. The packing and the stainless steel cap can be replaced without removing the valve from the line.

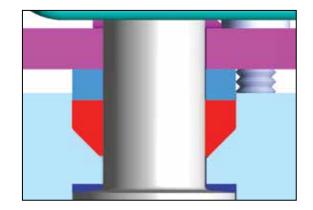
Positively Retained Stem

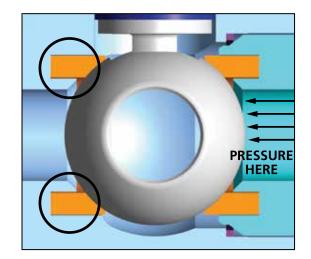
The stem is positively retained with a shoulder. It cannot be removed with the valve in service. There are no O-rings used in this design.

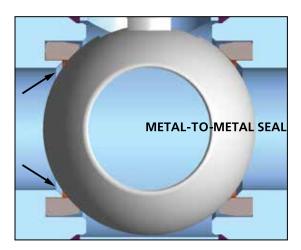
Floating Ball Design Delivers Tight Seal

The ground and polished ball is free to float and mates perfectly with the conical seats for a positive, leakproof seal. Self-cleaning and self-adjusting, the ball also is pressure activated – the higher the line pressure, the tighter the seal.

Fire-tested for Safety


All WKM DynaSeal 310 ball valves are qualified under API Standard 607. The pocketed seat and locked-in stem design contributes to its fire-tested characteristics. Should the soft seats be destroyed by fire, the ball floats down stream, providing a tight metal-to-metal seal against the lip of the seat pocket. If the tailpiece seals are destroyed, the metal-to-metal tailpiece-to-body connection retards external leakage.


Indicator Handle


The design of the handle permits installation on the stem in the correct position only, in alignment with the ball port. When the handle is aligned with the pipe, the valve is open. When the handle is perpendicular to the pipe, the valve is closed.

Locking Devices

Locking devices are standard on all 4" x 3" (100 mm x 80 mm) and smaller manually operated valves and permit locking in either the open or closed positions.

SPECIFICATIONS

Socket Weld Ends

Standards and Specifications Sizes

- 1/4" (8 mm) full port
- 3/4" (20 mm) full port
- 1" (25 mm) reduced port
- 1-1/2" (40 mm) full port
- 2" (50 mm) reduced port

Working Pressure

• 3000 psi with trim 48

Operating Temperatures

• From -20° F to 220° F (-29° C to 104° C)

End Connections

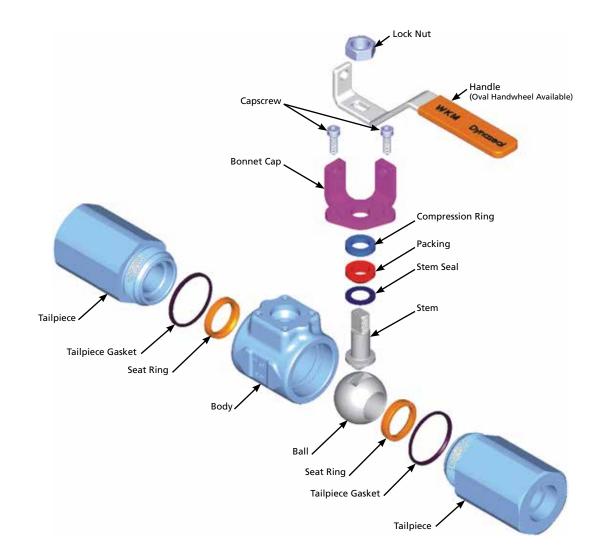
Socket weld ends

Standard Material

Body

 Carbon steel and carbon steel NACE MR0175/ ISO 15156

Ball/Stem


• Carbon steel or stainless steel

Seats

• Trim 48 (acetal plastic seats)

Industry Standards Compliance

- ASME B16.34
- MSS-SP-25, 55, 72
- API 607 Fire-test Specification

Threaded Connections

Standards and Specifications

- To 5000 psi in small sizes ٠
- Trim 43 pressure range to 3000 psi in 1/4" (8 mm) to • 3" x 2" (80 mm x 50 mm) threaded end valves

Operating Temperatures

From -50° F to 600° F (-46° C to 316° C) ٠

Standard Material

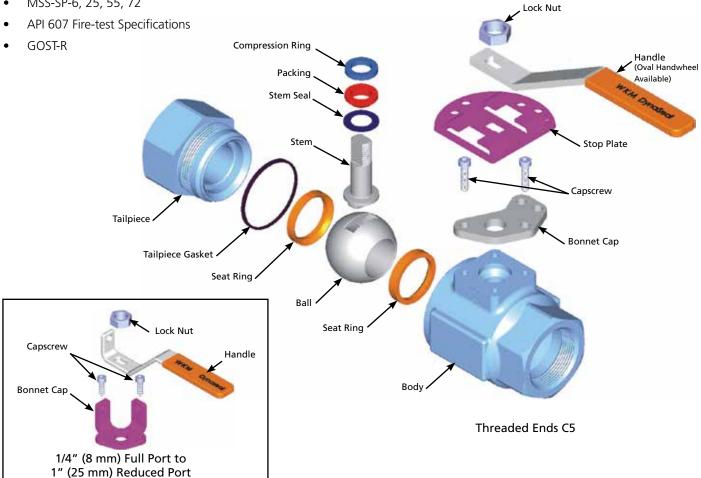
Body

Carbon steel and stainless steel •

Ball/Stem

Carbon steel and stainless steel .

Seat/Seal Trims


TFE, filled TFE, acetal plastic, HPT-2 and 316 stainless • steel with chromium carbide and FKM

Industry Compliance

- ASME B16.5, B16.34 ٠
- MSS-SP-6, 25, 55, 72

Threaded Connections

Full I			ed Port ze
in.	(m ['] m)	i'n.	(mm)
1/4	(8)	1/2	(15)
3/8	(10)	1	(25)
1/2	(15)	2	(50)
3/4	(20)	3	(80)
1	(25)	4	(100)
1-1/2	(40)		
2	(50)		
3	(80)		

SPECIFICATIONS

Flanged Connections

Operating Temperatures

• From -50° F to 600° F (-46° C to 316° C)

Standard Material

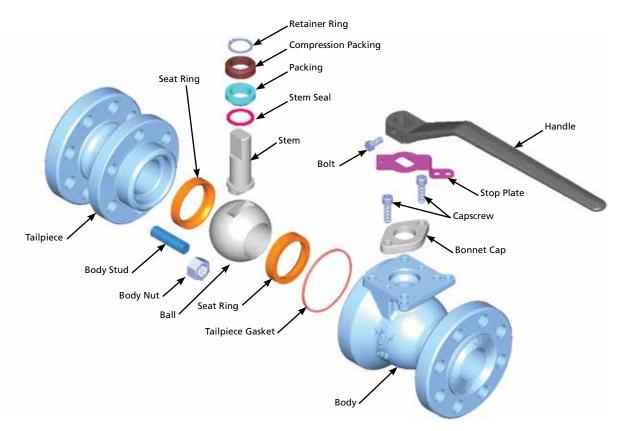
Body

• Carbon steel and stainless steel

Ball/Stem

• Carbon steel and stainless steel

Seat/Seal Trims


• TFE, filled TFE, acetal plastic, HPT-2 and 316 stainless steel with chromium carbide and FKM

Industry Compliance

- ASME B16.5, B16.34
- MSS-SP-6, 25, 55, 72
- API 607 Fire-test Specifications
- GOST-R

Flanged Connections ASME Pressure Class

Si	ze			Class	
in.	(mm)		150	300	600
1	(25)	FP	•	•	•
1-1/2	(40)	FP	•	•	•
2 x 1-1/2	(50 x 40)	RP	•	•	•
2	(50)	FP	•	•	•
3 x 2	(80 x 50)	RP	•	•	•
3	(80)	FP	•	•	•
4 x 3	(100 x 80)	RP	•	•	•

Flanged Ends 310F

MATERIALS LIST - THREADED AND FLANGED ENDS

1/4" Full Port through 4" Reduced Port

Body / Tailpiece Material Code

Part	CS	CS2*	CS3*	S8*
Body	ASTM A105/A216 Gr. WCC	ASTM A105/A216 Gr. WCC	ASTM A350 LF2	316 SS/A351 CF8M
Studs	A193 Gr. B7	A193 Gr. B7M	A320 Gr. L7M	A193 Gr. B8
Nuts	A194 Gr. 2H	A194 Gr. 2HM	A194 Gr. 7ML	A194 Gr. 8
Body plug**	Carbon Steel	Carbon Steel	Carbon Steel	Stainless Steel
Tailpiece	ASTM A105/A216 Gr. WCC	ASTM A105/A216 Gr. WCC	ASTM A350 LF2	316 SS/A351 CF8M
Nameplate	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
Bonnet cap	Carbon Steel	Carbon Steel	Carbon Steel	Stainless Steel
Packing adjusting screws	Alloy Steel-plated	18-8 SS	18-8 SS	18-8 SS

* CS2/CS3/S8 to be used for H₂S service with S2 internal trim only. Meets NACE MR0175/ISO 15156.

** When body drain is specified.

Seat Seal Material Code

Part	01	42	43	48***	07	18	605			
Seat TFE		Acetal	Acetal	FIZNA	Special	316/HVOF Nickel				
	IFE	Filled TFE	Plastic	Plastic	FKM	Filled TFE	-			
Tailpiece gasket	TFE	TFE	TFE	Filled TFE	TFE	Filled TFE	Graphite			
Stem Seal	TFE	Filled TFE	Filled TFE	Filled TFE	Filled TFE	Filled TFE	Graphite			
Packing			Graphite/TFE w/SS Cap							

*** Socket weld end valves only.

Ball / Stem Material Code

Part	CS	S1	S2*	60S
Ball	AISI 1213 CS Chrome Plate	316 Stainless Steel	316 Stainless Steel	316 QPQ Nitride
Stem	AISI 1213 Zinc Plate	316 Stainless Steel	Type 630	Type 630
Compression Ring	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel

* S2 trim (Type 630 stem and 316 SS ball) is required for H₂S service per NACE MR0175/ISO 15156 to be used with body/tailpiece codes CS2/CS3/S8.

Actuator Code

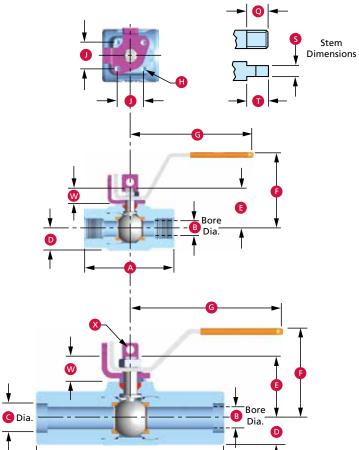
Part (Body)	CS	CS2	CS3	S1	58
Lock Nut*	Alloy Steel	Alloy Steel	Alloy Steel	Alloy Steel	Stainless Steel
Handle*	CS Zinc Plated	CS Zinc Plated	CS Zinc Plated	CS Zinc Plated	Stainless Steel
Handle Grip*	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl
Wrench Handle**	Ductile Iron				
Wrench Head Bolt and Nut**	Alloy Steel				
Stop Plate	Stainless Steel				

* 2" (50 mm) reduced port and smaller.

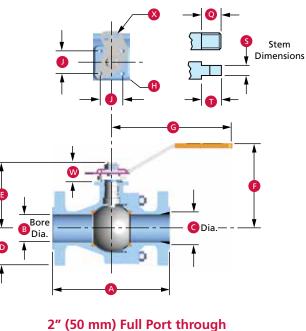
** 2" (50 mm) full port and larger.

DIMENSIONAL DATA - 4" REDUCED PORT AND SMALLER

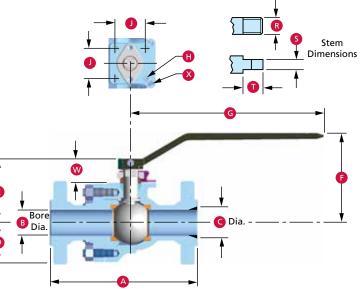
1/4" Full Port through 4" Reduced Port: Flanged, Threaded and Socket Weld


B136/B138 Threaded

B100/B110 Class 150 Raised-face Flanges B170/B172 Class 600 Ring joint Flanges


B120/B128 Class 300 Raised-face Flanges B106/B103 Socket Weld

B114/B182 Class 600 Raised-face Flanges


1" (25 mm) Reduced Port and Smaller

1" (25 mm) Full Port through 2" (50 mm) Reduced Port

4" (100 mm) Reduced Port

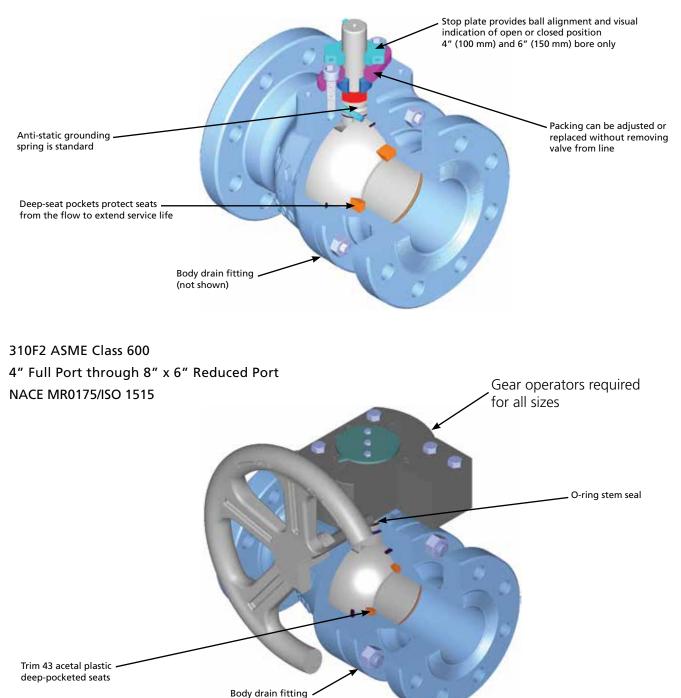
1

Threaded	and	Flanged	Ends
----------	-----	---------	-------------

Size			— A			В	С		— D			Е	F	G	H*	J	Q*	R	S	Т	W	Х
in.	THD	150	300	600	600RJ			THD	150	300	600											
1/4 FP	3.00	-	-	-	-	0.38	-	0.69	-	-	-	1.4	2.8	4.3	#8-32 .26 DP	0.88	5/16-24	-	0.18	0.25	0.55	0.38
3/8 FP	3.25	-	-	-	-	0.38	-	0.69	-	-	-	1.4	2.8	4.3	#8-32 .26 DP	0.88	5/16-24	-	0.18	0.25	0.55	0.38
1/2 RP	3.75	-	-	-	-	0.38	-	0.69	-	-	-	1.4	2.8	4.3	#8-32 .26 DP	0.88	5/16-24	-	0.18	0.25	0.55	0.38
1/2 FP	4.00	-	-	-	-	0.50	-	0.81	-	-	-	1.8	3.5	5.7	#10-24 .26 DP	1.00	7/16-20	-	0.26	0.34	0.72	0.38
3/4 FP	4.25	-	-	-	-	0.75	-	1.06	-	-	-	1.9	3.5	5.7	#10-24 .26 DP	1.00	7/16-20	-	0.26	0.34	0.72	0.38
1 RP	4.50	-	-	-	-	0.75	-	1.06	-	-	-	1.9	3.5	5.4	#10-24 .26 DP	1.00	7/16-20	-	0.26	0.34	0.72	0.38
1 FP	4.50	5.0	6.50	8.5	8.50	1.00	-	1.32	2.12	2.44	2.44	2.8	4.1	7.0	1/4-20 .39 DP	1.25	5/8-18	-	0.36	0.63	1.25	0.38
1-1/2 FP	5.25	6.5	7.50	9.5	9.50	1.50	-	1.81	2.50	3.06	3.06	3.7	5.0	9.5	5/16-18 .45 DP	1.50	3/4-16	-	0.45	0.81	1.50	0.38
2 RP	6.25	7.0	8.50	11.5	11.62	1.50	2.0	1.81	3.00	3.25	3.25	3.7	5.0	9.5	5/16-18 .45 DP	1.50	3/4-16	-	0.45	0.81	1.50	0.38
2 FP	6.25	7.0	8.50	11.5	11.62	2.00	-	2.38	3.00	3.25	3.25	5.0	5.4	15.0	1/2-13 .50 DP	2.44	-	1.12	0.69	1.37	1.88	0.38
3 x 2 RP	9.00	8.0	11.12		14.12	2.00	3.0	2.38	3.75	4.12	4.12	5.0	5.4	15.0	1/2-13 .50 DP	2.44	-			1.37		
3 FP	10.00	8.0	11.12	14.0	14.12	3.00	-	3.28	3.75	4.12	4.12	6.4	7.1	15.0	1/2-13 .50 DP	3.00	-			1.75		
4 RP	10.25	9.0	12.00	17.0	17.12	3.00	4.0	3.28	4.50	5.00	5.38	6.4	7.1	15.0	1/2-13 .50 DP	3.00	-	1.12	0.74	1.75	2.31	0.38
Size m																						
6 FP	76	-	-	-	-	10	-	18	-	-	-	35		108	#8-32 6.6 DP	22	5/16-24	-	5	6	14	10
10 FP	83	-	-	-	-	10	-	18	-	-	-	35	70	108	#8-32 6.6 DP	22	5-16-24	-	5	6	14	10
15 RP	95	-	-	-	-	10	13	18	-	-	-	35	70	108	#8-32 6.6 DP	22	5/16-24	-	5	6	14	10
15 FP	102	-	-	-	-	13	-	20	-	-	-	45	89	145	#10-24 6.6 DP	25	7/16-20	-	7	9	18	10
20 FP	108	-	-	-	-	19	-	27	-	-	-	48	89	145		25	7/16-20	-	7	9	18	10
25 RP	114	-	-	-	-	19	25	27	-	-	-	48	89		#10-24 6.6 DP	25	7/16-20	-	7	9	18	10
25 FP	114	127	165	216	216	25	-	34	54	62	62	71		178		32	5/8-18	-	9	16	31	10
40 FP	133	165	190	241	241	38	-	46	64	78	78				5/16-18 11.4 DP		3/4-16	-	11	21	38	10
50 RP	159	178	216	292	295	38	51	46	76	83	83				5/16-18 11.4 DP		3/4-16	-	11	21	38	10
50 FP	159	178	216	292	295	51	-	60	76	83	83				1/2-13 12.7 DP	62	-	28	18	35	48	10
80 x 50 RP	229	203	283	356	359	51	76	60	95	105					1/2-13 12.7 DP	62	-	28	18	35	48	10
80 FP	254	203	283	356	359	76	-	83	95	105					1/2-13 12.7 DP	76	-	28	19	44	59	10
100 RP	260	229	305	432	435	76	102	83	114	127	137	164	180	381	1/2-13 12.7 DP	76	-	28	19	44	59	10

Socket Weld End

Size in.		А	В	С	D	E	F	G	н	J	Q*	S	Т	W	Х
1/4 FP	B103	7.00	0.38	1.41	0.62	1.41	2.84	4.25	#8-32 .25 DP	0.88	5/16-24	0.18	0.25	0.56	0.38
3/4 FP	B103	8.25	0.75	1.94	1.00	1.94	3.75	5.75	#10-24 .25 DP	1.00	7/16-20	0.26	0.34	0.75	0.38
1 RP	B106	8.25	0.75	1.94	1.00	1.94	3.75	5.75	#10-24 .25 DP	1.00	7/16-20	0.26	0.34	1.14	0.38
1-1/2 FP	B103	9.25	1.50	3.56	1.75	3.56	5.00	9.50	5/16-18 .44 DP	1.50	3/4-16	0.45	0.81	1.34	0.38
2 RP	B106	10.25	1.50	3.56	1.75	3.56	5.00	9.50	5/16-18 .44 DP	1.50	3/4-16	0.45	0.81	1.34	0.38
Size mm															
8 FP	B103	177.80	9.65	35.81	15.75	35.81	72.14	107.95	#8-32 6.4 DP	22.35	5/16-24	4.57	6.35	14.22	9.65
20 FP	B103	209.55	19.05	49.28	25.40	49.28	95.25	146.05	#10-24 6.4 DP	25.40	7/16-20	6.60	8.64	19.05	9.65
25 RP	B106	209.55	19.05	49.28	25.40	49.28	95.25	146.05	#10-24 6.4 DP	25.40	7/16-20	6.60	8.64	28.96	9.65
40 FP	B103	234.95	38.10	90.42	44.45	90.42	127.00	241.30	5/16-18 11.2 DP	38.10	3/4-16	11.43	20.57	34.04	9.65
50 RP	B106	260.35	38.10	90.42	44.45	90.42	127.00	241.30	5/16-18 11.2 DP	38.10	3/4-16	11.43	20.57	34.04	9.65


* American National Thread in inches.

FEATURES AND BENEFITS

Handle can be installed in correct position only in alignment with the ball port. Handle aligned with piping shows valve is open. Handle perpendicular to piping shows valve is closed. 4" (100 mm) and 6" (150 mm) bore only.

310C ASME Classes 150 and 300 4" Full Port through 8" Reduced Port NACE MR0175/ISO 15156

(not shown)

WKM DynaSeal 310 ball valves satisfy a wide range of applications. Available in a variety of standard and optional materials, they may be specified in sizes from 4" (100 mm) to 8" x 6" (200 mm x 150 mm) and ASME Class 150 and 300. ASME Class 600 is available in sizes 4" (100 mm) through 8" x 6" (200 mm x 150 mm). Engineered for heavy-duty, maintenance-free performance, the WKM DynaSeal 310 ball valve is commonly selected for a variety of applications in virtually any industry.

Chemical and Petrochemical Plants

There is a wide range of chemical and petrochemical applications for WKM DynaSeal 310 ball valves. They are serving in many plastic plants, handling such slurries as 40% vinyl chloride in high-pressure catalyst lines; and in processes, handling dry lading such as polyethylene and polystyrene powders.

There are hundreds of applications in such plants where WKM DynaSeal 310 ball valves are providing efficient service.

Refining

The WKM DynaSeal 310 ball valve is ideal for the refining industry. The many metal seats, seals and available trims offer the versatility needed to handle the wide variety of products used in the refining process.

High-temperature Service

Special high-temperature trims are available for WKM DynaSeal 310 ball valves, which provide for service to 600° F (316° C). This trim is designed for steam service, hot oil, heat transfer fluids, boiler feed water and similar applications.

Low-temperature Service

Standard trims accommodate temperatures to -20° F (-29° C). For temperatures to -50° F (-46° C), please consult factory.

Maintenance-free Performance

Under most conditions, the WKM DynaSeal 310 ball valve will provide years of trouble-free service with no maintenance required.

In some severe applications, such as handling extremely abrasive slurries at high temperature, it may be necessary to replace the seats occasionally.

Seat and seal kits are available, and replacement can be done easily with ordinary tools.

Sour Oil and Gas Service

WKM DynaSeal 310 ball valves have served for years in gathering lines, manifolds and field processing units in sour oil and gas fields. They can be trimmed to conform with NACE MR0175/ISO 15156.

Actuation-friendly

A variety of actuator types can be installed easily, including pneumatic, hydraulic, diaphragm, vane, electromechanical and electrohydraulic.

Fire-tested for Safety

All WKM DynaSeal 310 ball valves are qualified under API Standard 607. The pocketed seat and locked-in stem design contributes to its fire-tested characteristics. Should the soft seats be destroyed by fire, the ball floats down stream, providing a tight metal-to-metal seal against the lip of the seat pocket. If the tailpiece seals are destroyed, the metal-to-metal tailpiece-to-body connection retards external leakage.

WKM DynaSeal 310 ball valve with pneumatic actuator

FEATURES AND BENEFITS (CONTINUED)

Deep-recessed Seats

The seat is recessed into a deep machined pocket that surrounds and protects the seat on all sides. This design eliminates cold flow into the valve conduit, where it can be damaged by the action of the ball or the flow medium. The result is long and extended service life.

Teflon Body Seal _

A Teflon body seal is used between the valve body and tailpiece.

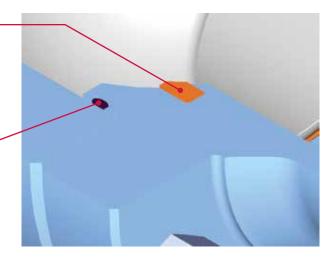
Adjustable, Replaceable Packing

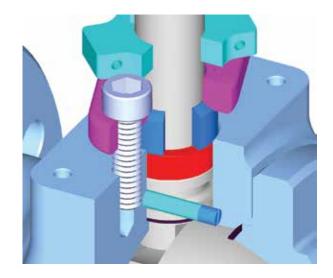
The in-line valve stem packing through ASME class 300 consists of PTFE impregnated graphite with a metal barrier. The packing is field-adjustable and virtually never requires lubrication. The packing and the stainless steel cap can be replaced without removing the valve from line.

Fugitive Emissions

WKM DynaSeal 310 ball valves through ASME Class 300 can be supplied and certified to meet the requirements of fugitive emissions as regulated by The 1990 Amendment to The Clean Air Act to 100 ppm.

Positively Retained Stem


The stem is positively retained and cannot be removed with the valve in service.


Indicator Handle

The design of the handle ASME class 300 permits installation on the stem in the correct position only, in alignment with the ball port. When the handle is aligned with the pipe, the valve is open. When the handle is perpendicular to the pipe, the valve is closed.

Floating Ball Design Delivers Tight Seal

The ground and polished ball is free to float and mates perfectly with the conical seats for a positive, leakproof seal. Self-cleaning and self-adjusting, the ball also is pressure activated – the higher the line pressure, the tighter the seal.

Gear Mounting Brackets For:

4" FP to 8" RP (100 mm FP to 200 mm RP) ASME Classes 150/300

SPECIFICATIONS

ASME Classes 150 and 300

Operating Temperatures

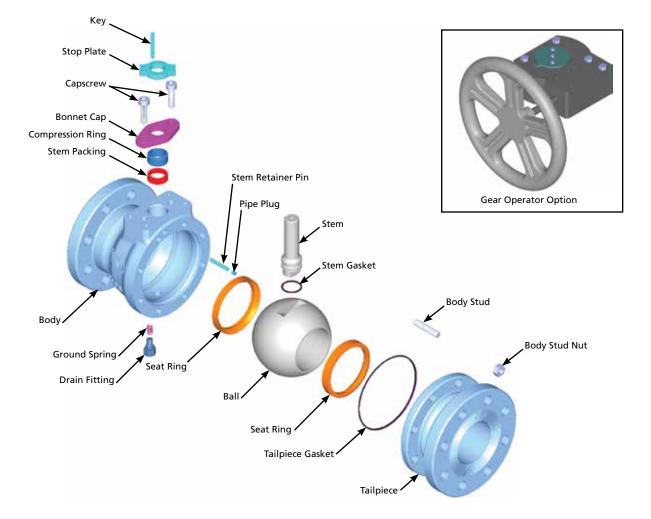
• From -50° F to 600° F (-46° C to 316° C)

Standard Material

Body

• Carbon steel and stainless steel

Ball/Stem


• Carbon steel and stainless steel

Industry Compliance

- ASME B16.5, B16.34
- MSS-SP-25, 55, 72
- API 607 Fire-test Specification
- GOST-R

ASME Pressure Class

	Size —	Class —			
in.	(m ['] m)		150	300	
4	(100)	FP	•	•	
6 x 4	(150 x 100)	RP	•	•	
6	(150)	FP	•	•	
8 x 6	(200 x 150)	RP	•	•	

SPECIFICATIONS

ASME Class 600

Operating Temperatures

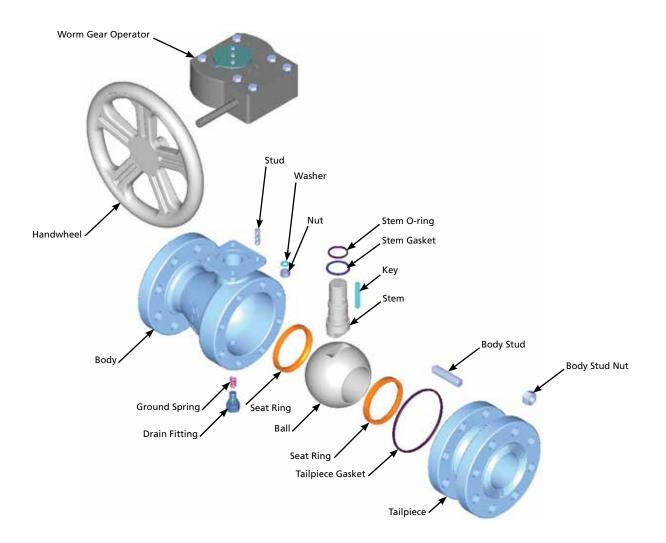
• From -20° F to 220° F (-29° C to 104° C)

Standard Material

Body

• Carbon steel

Ball/Stem


• Carbon steel and stainless steel

Industry Compliance

- ASME B16.5, B16.34
- MSS-SP-25, 55, 72
- API 607 Fire-test Specification
- GOST-R

ASME Pressure Class

	Size		Class
in.	(mm)		600
4	(100)	FP	•
6 x 4	(150 x 100)	RP	•
6	(150)	FP	•
8 x 6	(200 x 150)	RP	•

MATERIALS LIST

4" Full Port through 8" Reduced Port

ASME Classes 150, 300 and 600

Body / Tailpiece Material Code

Part	CS	CS1*‡	CS2*	S1	S8*
Body	A216 Gr. WCC	A216 Gr. WCC	A216 Gr. WCC	A351 Gr. CF8M	A351 Gr. CF8M
Studs	A193 Gr. B7	A192 Gr. B7	A193 Gr. B7 †	A193 Gr. B7 Plated	A193 Gr. B8
Nuts	A194 Gr. 2H	A194 Gr. 2H	A194 Gr. 2H †	A194 Gr. 2H Plated	A194 Gr. B8
Body Drain Fitting	Carbon Steel	Carbon NACE	Stainless Steel	Stainless Steel	Stainless Steel
Tailpiece	ASTM A105/A216 Gr. WCC	ASTM A216 Gr. WCC	ASTM A105/A216 Gr. WCC	A351 Gr. CF8M	A351 CF8M
Packing Adjust Studs	A193 Gr. B7	N/A	A193 Gr. B7	A193 Gr. B7 Plated	A193 Gr. B8
Packing Adjust Nuts	A194 Gr. 2H	N/A	A194 Gr. 2H	A194 Gr. 2H Plated	A194 Gr. B8
Packing Adjusting Screws**	Alloy Steel	N/A	Alloy Steel	Alloy Steel Plated	Stainless Steel
Bonnet Cap	A216 Gr. WCC Plated	N/A	A216 Gr. WCC Plated	A216 Gr. WCC Plated	A351 Gr. CF8M

* CS1, CS2 and S8 to be used for H₂S service. Meets NACE MR0175/ISO 15156.

** Use only for 4" (100 mm) through 8" x 6" (200 mm x 150 mm) ASME Classes 150 and 300.

t 4" (100 mm) through 8" x 6" (200 mm x 150 mm) ASME Class 600 uses A193 Gr. B7M studs and A194 Gr. 2HM nuts.

+ Available in 4" (100 mm) through 8" x 6" (200 mm x 150 mm) ASME Class 600 only.

Seat / Seal Material Code

Part	01	42	43*	18	28	60S
Seat	TFE	Filled TFE	_	Special Filled TFE	Filled TFE	Nickel Alloy HVOF
Tailpiece Gasket	TFE	TFE	FKM O-ring	Filled TFE	Filled TFE	Graphite
Stem Gasket	TFE	Filled TFE	Nylon Washer	Filled TFE	Filled TFE	Graphite
Packing	Graphite/TFE	with SS Cap	FKM O-ring**		Graphite/TFE with SS Cap	

* Specify code 43 as standard trim for ASME class 600. Seal set consists of: acetal plastic seats, high-fluorine FKM O-ring for tailpiece and stem.

** ASME Class 600 valves have FKM O-ring stem seal.

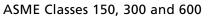
Ball / Stem Material Code

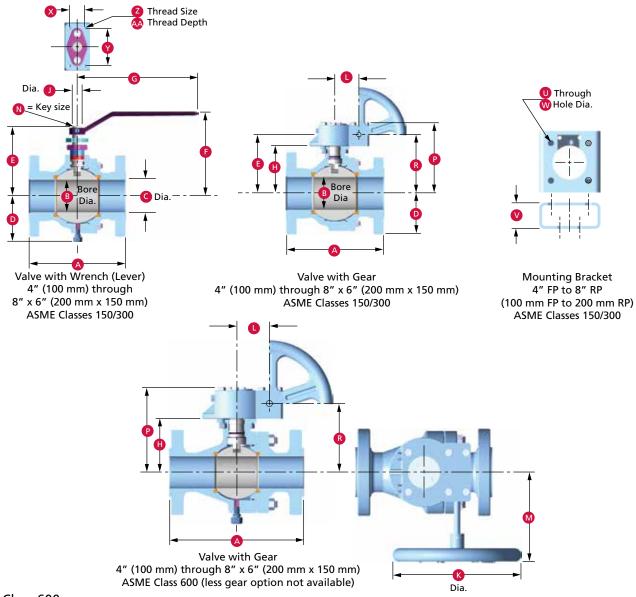
Part	CS	S1	S2*	60S
Ball	ASTM A105 Hard Chrome Plate	316 SS	316 SS	316 SS w/QPQ Nitride
Grounding Spring	304 SS	304 SS	304 SS	304 SS
Stem	Carbon Steel ENP	316 SS	Type 630	Type 630
Compression Ring	304 SS	304 SS	304 SS	304 SS
Stem Retainer Pin	Carbon Steel	316 SS	316 SS	304 SS
Stem Retainer Pipe Plug	Carbon Steel	316 SS	316 SS	304 SS

Actuator Codes*

Part (Body)	Worm Gear – For All Body Material Codes
Mounting Bracket	Carbon Steel
Bolting	Carbon Steel
Set Screw	Carbon Steel
Stem Adapter	Carbon Steel
Actuator	As Selected
Handwheel	Carbon Steel

* 4" (100 mm) through 8" (200 mm) ASME Class 600 sold with worm gear option only.


Actuator Codes (Wrenches)**


Part (Body)	Wrench – For All Body Material Codes
Wrench Head	Steel
Wrench Handle	Carbon Steel
Wrench Handle Pin	Carbon Steel
Capscrew	Alloy Steel
Stop Plate	Carbon Steel

** 4" (100 mm) through 8" x 6" (200 mm x 150 mm) ASME Class 150 and 300.

DIMENSIONAL DATA - 4" FULL PORT AND LARGER

4" Full Port through 8" Reduced Port

ASME Class 600

Full P	ort Dimen	sions													
Size	in.	А	В	С	D	Н	к	L	М	Р	R				
	4	17.00	4.00	4.00	6.52	6.81	16.00	2.50	9.72	9.79	8.18				
	6	22.00	6.00	6.00	8.17	9.28	20.00	4.84	14.26	13.43	11.25				
Size	mm														
	100	432	102	102	166	173	508	64	247	249	208				
	150	559	152	152	208	236	610	123	362	341	286				
Redu	Reduced Port Dimensions														
Size	in.	А	В	С	D	Н	К	L	М	Р	R				
	6 x 4	22.00	4.00	6.00	6.52	6.81	16.00	2.50	9.72	9.79	8.18				
	8 x 6	26.00	6.00	8.00	8.17	9.28	20.00	4.84	14.26	13.43	11.25				
Size	mm														
	150 x 100	559	102	152	166	173	508	64	247	249	208				
	200 x 150	660	152	203	208	236	610	123	362	341	286				

Full Port Dimensions

			A	* Clas	s																						
	Size	150	RF	300) RF	300																					
ï	۲ L	ong	Short	Long	Short	BW	В	С	D	Е	F	G	Н	J	К	L	М	Ν	Ρ	R	U	V	W	х	Y	Z	AA
ir	ח. B	3110	B113	B128	B134	B150																					
_		9.00	N/A	-	N/A	-	4.0	4.0	6.47	8.63	9.88	36.0	7.56	1.250	6.0	2.80	7.88	0.250	10.84	9.15	0.56	2.44	4.921	1.88	4.63	3/8-16NC	0.63
	*	-	IVA	12.00	IWA	12.00	4.0	4.0	6.47	8.63	9.88	36.0	7.56	1.250	6.0	2.80	8.12	0.250	10.84	9.15	0.56	2.44	4.921	1.88	4.63	3/8-16NC	0.63
	5 1	5.50	10.50	-	N/A	-	6.0	6.0	8.20	11.38	12.63	48.0	9.44	1.500	12.0	2.80	10.95	0.375	12.72	11.03	0.56	2.44	4.921	1.88	4.63	3/8-16NC	0.63
		-	-	15.88	IVA	15.88	6.0	6.0	8.20	11.38	12.63	48.0	9.44	1.500	14.0	4.11	13.24	0.375	13.28	11.33	0.56	2.44	4.921	1.88	4.63	3/8-16NC	0.63

mm

		A	* Clas	s																						
Size	150) RF	300) RF	300																					
Siz	Long	Short	Long	Short	BW	В	С	D	Ε	F	G	Н	J	к	L	М	Ν	Ρ	R	U	V	W	Х	Y	Z	AA
	B110	B113	B128	B134	B150																					
100	229	N/A	_	N/A	-	102	102	164	219	251	914	192	31.75	150	71	200	6.35	275	232	14	62	124.99	48	118	3/8-16NC	16
100	-	INA	305	IWA	305	102	102	164	219	251	914	192	31.75	150	71	206	6.35	275	232	14	62	124.99	48	118	3/8-16NC	16
150	394	267	-	N/A	-	152	152	208	289	321	1219	240	38.1	356	71	278	9.53	323	280	14	62	124.99	48	118	3/8-16NC	16
150	0 403	IWA	403	152	152	208	289	321	1219	240	38.1	300	104	336	9.53	337	280	14	62	124.99	48	118	3/8-16NC	16		

Reduced Port Dimensions

		A* (Class																						
Size	150) RF	300) RF																					
Si	Long	Short	Long	Short	В	С	D	Е	F	G	н	J	К	L	М	Ν	Ρ	R	U	V	W	Х	Y	Z	AA
in.	B100	B102	B120	B122																					
6 x 4	N/A	10.5	-	N/A	4.0	6.0	6.45	8.63	9.88	36.0	7.56	1.25	6.0	2.8	7.88	0.25	10.84	9.15	0.56	2.44	4.921	1.88	4.63	3/8-16NC	0.63
0 X 4	IWA	-	15.88	IWA	4.0	6.0	6.45	8.63	9.88	36.0	7.56	1.25	6.0	2.8	8.12	0.25	10.84	9.15	0.56	2.44	4.921	1.88	4.63	3/8-16NC	0.63
8 x 6	18.0	11.5	N/A	-	6.0	8.0	8.2	11.38	12.63	48.0	9.44	1.5	14.0	2.8	10.95	0.375	12.72	11.03	0.56	2.44	4.921	1.88	4.63	3/8-16NC	0.63
0 X 0	-	-	N/A	16.50	6.0	8.0	8.2	11.38	12.63	48.0	9.44	1.5	16.0	4.11	11.11	0.375	13.28	11.33	0.56	2.44	4.921	1.88	4.63	3/8-16NC	0.63

mm

		A* (Class																						
Size	150) RF	300) RF																					
Si	Long	Short	Long	Short	В	С	D	Е	F	G	н	J	К	L	М	Ν	Ρ	R	U	V	W	х	Y	Z	AA
	B100	B102	B120	B122																					
150 x 100	N/A	267	-	N/A	102	152	164	219	251	914	192	31.75	150	71	200	6.35	275	232	14	62	124.99	48	118	3/8-16NC	16
100		-	403		102	152	164	219	251	914	192	31.75	150	71	206	6.35	275	232	14	62	124.99	48	118	3/8-16NC	16
200 x	457	292	N/A	_	152	203	208	289	321	1219	240	38.1	356	71	278	9.53	323	280	14	62	124.99	48	118	3/8-16NC	16
150	-	-	IWA	419	152	203	208	289	321	1219	240	38.1	406	104	282	9.53	337	288	14	62	124.99	48	118	3/8-16NC	16

* Center line-to-face dimension is half of dimension A, except:

4" (100 mm) ASME class 150 Full Port – stem is offset 1/2" (12.7 mm) towards body end and 6" (150 mm). ASME class 150 Full Port Long Pattern – stem is offset 2-1/2" (63.5 mm) towards body end.

PRESSURE/TEMPERATURE FOR ALL DYNASEAL 310 FLOATING BALL VALVES

WKM DynaSeal 310 ball valves are rated for high performance and long life. The ratings shown here are based on tests that indicate good seat performance and acceptable wear. This rating is determined by the lower of the valve's pressure or seat rating. The seat rating is the maximum differential pressure to which the valve should be subjected on a continuous basis. Seal codes 01, 42 and 07 are suitable for vacuum service to 20 microns, absolute (minimum temperature 0° F (-18° C)).

Seal Code 01

			— Valve Pc	ort Siz	ze in. (mm)	
_ Ter	np –	1/4 to 3/4	1 to 1-1/2	2	3 to 4	6 to 12
°F	°Ċ	(80 to 20)	(25 to 40)	(50)	(80 to 100)	(150 to 300)
-50 to 100	-46 to 38	1500	1000	750	600	285
200	93	1500	1000	750	600	285
250	121	1400	900	700	550	150
300	149	1100	650	500	425	50
350	177	600	375	300	250	-
400	204	100	100	100	100	-

Seal Codes 42 and 28

		Valve Port S	ize in. (mm)
Te	mp	4	6
°F	° C	(100)	(150)
-50 to 100	-46 to 38	740	740
250	121	740	675
300	149	740	550
350	177	590	410
400	204	400	300
450	232	325	175
500	260	200	65

Seal Code 42

		┌── Valve F	Port Size in.	(mm) _
Ter	mp —	1/4 t ['] o 1-1/2	2	3
°F	°Ċ	(8 to 40)	(50)	(80)
-50 to 100	-46 to 38	1500	1500	740
200	93	1400	1325	740
250	121	1250	1150	740
300	149	1090	975	740
350	177	930	800	590
400	204	770	640	450
450	232	610	475	325
500	260	450	300	200

Seal Codes 43 and 48

			Valve P			
Tei	mp	1/4 to 1-1/2	2	3	4	6
°F	°Ċ	(8 to 40)	(50)	(80)	(100)	(150)
-50 to 100	-46 to 38	3000	3000	1500	1500	1500
200	93	3000	3000	1500	1500	1500
220	104	3000	3000	1375	1375	1375

Seal Code 07*

		\square Valve Port Size in. (mm) \neg					
┌── Temp ──┐		1/4 to 1-1/2	2	3			
° [′] F	°Ċ	(8 to 40)	(50)	(80)			
-20 to 100	-29 to 38	740*	500*	285*			
350	177	500	350	200			
400	204	250	190	100			

* Block-and-bleed range.

Seal Code 18

		Valve Port Size in. (mm)							
Ter	mp —	1/4 to 1-1/2 2		3	4 to 6				
°F	°Ċ	(8 to 40)	(50)	(80)	(100 to 150)				
-50 to 100	-46 to 38	*	*	*	*				
200	93	*	*	*	*				
250	121	1775	1250	*	*				
300	149	1650	1175	740	600				
350	177	1575	1075	700	500				
400	204	1500	1000	650	400				
450	232	1300	875	600	300				
500	260	1075	725	550	200				
550	288	850	600	500	100				
600	316	350	100	75	0				
625	329	100	0	0	0				

* On application.

Seal Code 23

		Valve Port Size in. (mm)					
Ter	np	1/4 to 3/8	1/2 to 3/4				
°F	°Ċ	(8 to 10)	(15 to 20)				
-50 to 100	-46 to 38	5000	3750				
200	93	3250	2000				
225	107	2500	1500				

Seal Code 60S and 92H

Follows B16.34 rating for body material shown on pages 27 and 28.

BODY ASSEMBLIES

Flanged Valves

Data are maximum working pressure ratings for the valve body assembly at various temperatures. Practical pressure limitations according to actual service conditions are determined by the seal and tailpiece gasket materials. These pressure/temperature ratings are in conformance with ASME B16.5 and B16.34.

Maximum Working Pressures – psig

		Body Material Codes						
Temp ° F		CS, CS2 and CS3			S1 and S8			
Valve Class	150	300	600	150	300	600		
-20 to 100	285	740	1480	275	720	1440		
150	272	707	1415	255	670	1340		
200	260	675	1350	235	620	1240		
250	245	665	1332	225	590	1180		
300	230	655	1315	215	560	1120		
350	215	645	1292	205	537	1073		
400	200	635	1270	195	515	1025		
450	185	617	1235	182	497	990		
500	170	600	1200	170	480	955		
550	155	575	1147	155	465	928		
600	140	550	1095	140	450	900		

Maximum Working Pressures – bars (1 bar = 14.5 psi)

	Body Material Codes							
Temp ° C		— CS, CS2 and CS3 —			— S1 and S8 —			
Valve Class	20PN	50PN	100PN	20PN	50PN	100PN		
-29 to 38	20	51	102	19	50	100		
66	19	49	98	18	46	92		
93	18	47	93	16	43	85		
121	17	46	92	16	41	81		
149	16	45	91	15	39	77		
177	15	44	89	14	37	74		
204	14	44	88	13	36	71		
232	13	43	85	13	34	68		
260	12	41	83	12	33	66		
288	11	40	79	11	32	64		
316	10	38	75	10	31	62		

BODY ASSEMBLIES (CONTINUED)

Threaded Valves

Body Trim Code S8 and CS3 are suitable for service to -50° F (-46° C). All other trims are limited to operating temperatures no lower than -20° F (-29° C). These pressure/temperature ratings are in conformance with ASME B16.5, B16.34.

Maximum Working Pressures – psig

Temp ° F		Body Material Codes								
Valve Bore		C	S, CS2 and CS	3				- S1 and S8 —		
Size in.	1/4 to 3/8	1/2 to 3/4	1 to 1-1/2	2	3	1/4 to 3/8	1/2 to 3/4	1 to 1-1/2	2	3
-20 to 100	5000	3750	3000	2000	1500	5000	3750	3000	2000	1500
150	4779	3583	2867	1912	1434	4650	3487	2790	1861	1396
200	4557	3416	2734	1824	1368	4301	3224	2580	1722	1292
250	4494	3368	2696	1800	1350	4092	3068	2455	1639	1229
300	4431	3320	2658	1775	1333	3884	2912	2330	1556	1167
350	4355	3264	2613	1744	1310	3725	2794	2236	1491	1117
400	4278	3209	2567	1713	1287	3566	2677	2141	1426	1068
450	4161	3120	2496	1665	1252	3442	2583	2066	1377	1031
500	4043	3031	2425	1618	1216	3317	2489	1992	1328	995
550	3868	2900	2320	1548	1163	3225	2419	1936	1291	966
600	3694	2768	2215	1478	1110	3134	2349	1880	1254	938

Maximum Working Pressures – bars (1 bar = 14.5 psi)

Temp ° C		Body Material Codes								
Valve Bore		C	S, CS2 and CS3	3				– S1 and S8 –		
Size mm	8 to 10	15 to 20	25 to 40	50	80	8 to 10	15 to 20	25 to 40	50	80
-29 to 38	345	259	207	138	103	345	259	207	138	103
66	330	247	198	132	99	321	240	192	128	96
93	314	236	189	126	94	297	222	178	119	89
121	310	232	186	124	93	282	212	169	113	85
149	306	229	183	122	92	268	201	161	107	80
177	300	225	180	120	90	257	193	154	103	77
204	295	221	177	118	89	246	185	148	98	74
232	287	215	172	115	86	237	178	143	95	71
260	279	209	167	112	84	229	172	137	92	69
288	267	200	160	107	80	222	167	134	89	67
316	255	191	153	102	77	216	162	130	86	65

WEIGHTS

Va	lve Size —	End	Full Po	rt Weight –	Reduced Po	ort Weight
in.	(m ['] m)	Connection	ĺb	kġ	lb	kg
1/4	(6)	Threaded	1.50	0.68	-	-
3/8	(10)	Threaded	1.50	0.68	-	-
1/2	(15)	Threaded	1.50	0.68	1.50	0.68
3/4	(20)	Threaded	3.25	1.47	-	-
	(25)	Threaded	5.00	2.30	3.00	1.36
1		150 (20 PN) Flanged	8.50	3.86	6.3	2.86
1		300 (50 PN) Flanged	12.00	5.44	-	-
		600 (100 PN) Flanged	32.00	14.50	-	-
	(40)	Threaded	12.00	5.44	-	-
1 1/2		150 (20 PN) Flanged	17.00	7.71	-	-
1-1/2		300 (50 PN) Flanged	24.00	10.90	-	-
		600 (100 PN) Flanged	32.00	14.50	-	-
	(50)	Threaded	23.00	10.40	12.50	5.67
2		150 (20 PN) Flanged	33.00	15.00	23.00	10.40
2		300 (50 PN) Flanged	38.00	17.20	25.00	11.30
		600 (100 PN) Flanged	47.00	21.30	33.00	15.00
	(80)	Threaded	56.00	25.40	36.00	16.30
2		150 (20 PN) Flanged	64.00	29.00	51.00	23.10
3		300 (50 PN) Flanged	81.00	36.70	76.00	35.00
		600 (100 PN) Flanged	87.00	39.50	81.00	36.70
	(100)	Threaded	-	-	67.00	30.40
4		150 (20 PN) Flanged	-	-	80.00	36.30
4		300 (50 PN) Flanged	-	-	127.00	57.60
		600 (100 PN) Flanged	-	-	130.00	59.00

Valve	e Size	End	Full Por	t Weight –	Reduced P	ort Weight
in.	(m ['] m)	Connection	lb	kġ	lb	kg
	(100)	150 (L) Flanged	113	51	-	-
4	WGA	300 (L) Flanged	144	65	-	-
		600 Flanged	257	117	-	-
	(150)	150 (L) Flanged	162	73	-	-
6		150 (S) Flanged	144	65	125	57
		300 (L) Flanged	273	124	193	88
	(150)	150 (L) Flanged	176	80	-	-
6	WGA	150 (S) Flanged	158	72	133	60
O		300 (L) Flanged	313	142	223	101
		600 Flanged	545	247	363	165
	(200)	150 (L) Flanged	-	-	217	98
8		150 (S) Flanged	-	-	197	89
		300 (S) Flanged	-	_	293	133

(S) Short pattern. (L) Long pattern.

WEIGHTS (CONTINUED)

			Male x Female Threaded Ends				
Valv	e Size 🦳		Full Port	t Weights	Reduced P	ort Weights	
in.	(mm)	MOP	lb	kg	lb	kg	
1/2	(15)	3000	-	-	3	1.36	
1/2	(15)	5000	-	-	3	1.36	
3/4	(20)	3000	6	2.72	-	-	
3/4	(20)	3750	6	2.72	-	-	
1	(25)	3000	-	-	7	3.18	
1	(25)	3750	-	-	7	3.18	
				Socket W	eld Ends		
1/4	(8)	3000	2	0.91	-	-	
3/4	(20)	3000	6	2.72	-	-	
1	(25)	3000	-	-	6	2.72	
1-1/2	(40)	3000	19	8.62	-	-	
2	(50)	3000	-	-	21	9.53	

FLOW CHARACTERISTICS (C_v)*

__ _Valve Size a	nd Port Size \neg	Threaded		— Valve Pressure Class —	
in.	(mm)	End Valves	150	300	600
1/4 x 1/4	(8 x 8)	9	-	-	-
3/8 x 3/8	(10 x 10)	9	-	-	-
1/2 x 3/8	(15 x 10)	5	-	-	-
1/2 x 1/2	(15 x 15)	16	16	14	-
3/4 x 1/2	(20 x 15)	-	10	10	-
3/4 x 3/4	(20 x 20)	45	-	-	-
1 x 3/4	(25 x 20)	20	35	34	-
1 x 1	(25 x 25)	93	88	77	68
1-1/2 x 1-1/2	(40 x 40)	248	223	208	184
2 x 1-1/2	(50 x 40)	80	102	101	99
2 x 2	(50 x 50)	491	464	421	362
3 x 2	(80 x 50)	107	117	133	133
3 x 3	(80 x 80)	1099	1228	1042	928
4 x 3	(100 x 80)	322	359	410	406
4 x 4	(100 x 100)	-	2118	2446	-
6 x 4	(150 x 100)	-	390	391 (S)	-
6 x 6	(150 x 150)	-	5403	6644 (S) / 5468 (L)	-
8 x 6	(200 x 150)	-	1215	1219 (S) / 1215 (L)	-

Flow of water in US gallons per minute per 1 psi pressure drop across a fully open valve. (S) Short pattern. (L) Long pattern. *

STEM TORQUES (in-lb)

Seat Seal Code 01

Valve Bo	ore Size		——— Differential Pressure ———								
in.	(mm)	0 to 285	500	740	1000	1500					
1/4 to 3/8	(8 to 10)	36	36	36	36	42					
1/2	(15)	60	60	60	72	72					
3/4	(20)	90	90	90	120	180					
1	(25)	120	150	180	225	-					
1-1/2	(40)	240	330	420	520	-					
2	(50)	500	640	810	-	-					
3	(80)	1200	1800	2400	-	-					

Seat Seal Code 42**

Valve Bo	ore Size		— Diffe	– Differential Pressure ——							
in.	(mm)	0 to 285	500	740	1000	1500					
1/4 to 3/8	(8 to 10)	36	36	36	36	42					
1/2	(15)	60	60	60	72	72					
3/4	(20)	90	90	90	120	180					
1	(25)	120	150	180	225	300					
1-1/2	(40)	240	330	420	520	720					
2	(50)	500	640	810	1090	1440					
3	(80)	1200	1800	2400	_	_					

** Multiply trim 42 torque by two for seat seal code 60S and 92H.

Seat Seal Codes 43 and 48

Valve Bo	ore Size				ressure ——	ure					
in.	(mm)	0 to 285	500	740	1000	1500	2000	2250	2500	3000	
1/4 to 3/8	(8 to 10)	48	48	48	50	55	60	70	85	100	
1/2	(15)	58	60	64	70	90	120	140	165	215	
3/4	(20)	90	95	105	125	175	230	260	295	370	
1	(25)	225	245	260	280	320	400	455	520	700	
1-1/2	(40)	390	410	450	510	700	920	1050	1200	1550	
2	(50)	860	960	1075	1210	1500	1830	2000	2200	2600	
3	(80)	1450	1635	1885	2220	3050	-	-	-	-	

Seat Seal Code 18

Valve Bo	ore Size		C	- Differential Pressure ———							
in.	(mm)	0 to 285	500	740	1000	1500	2250				
1/4 to 3/8	(8 to 10)	60	60	60	60	72	84				
1/2	(15)	60	60	60	70	84	108				
3/4	(20)	128	128	145	160	215	360				
1	(25)	274	284	312	360	405	580				
1-1/2	(40)	520	580	680	810	980	1390				
2	(50)	910	1042	1240	1500	1765	2300				
3	(80)	1200	1800	2400	2900	3420	-				

Seat Seal Code 07

Valve B	ore Size	Liquid	Dry (Gas —
in.	(mm)	0 to 285	0 to 285	740
1/4 to 3/8	(8 to 10)	36	42	113
1/2	(15)	60	82	220
3/4	(20)	90	150	404
1	(25)	180	336	606
1-1/2	(40)	420	840	2260
2	(50)	900	1200	3230
3	(80)	2400	3600	9690

STEM TORQUES (in-lb) (CONTINUED)

Seat Seal Code 23

Valve Bo	ore Size						D	ifferenti	al Pressu	re					
in.	(mm)	0 to 285	500	740	1000	1500	2000	2250	2500	3000	3500	3750	4000	4500	5000
1/4 to 3/8	(8 to 10)	60	60	60	60	60	65	70	85	100	115	125	130	150	165
1/2	(15)	70	70	70	82	110	125	140	180	220	276	310	-	-	-
3/4	(20)	108	108	125	140	190	260	340	420	560	695	800	-	-	-

Seat Seal Code 01

Valve B	ore Size	Diffe	Differential Pressure							
in.	(mm)	0 to 285	500	740						
4	(100)	2090	3300	4200						
6	(150)	4400	8200	11,200						

Seat Seal Codes 28 and 42

Valve B	ore Size	Diffe	erential Pres	sure —
in.	(mm)	0 to 285	500	740
4	(100)	2400	3300	4200
6	(150)	5400	8200	11,200

NOTE: The torque values listed for 285 psi and greater are based on valves controlling the flow of clean lubricating liquid at ambient temperature.

For valves at pressures less than 285 psi, use the value for 285 psi.

Interpolation may be used for any pressure above 285 psi, but less than maximum pressure listed.

Running torque values will average two-thirds of these values.

For running torque values less than breakaway torque values at 285 psi, use breakaway torque values. Re-seating torque is equal to breakaway torque.

For operating temperatures between -20° F and -50° F (-29° C and -46° C), multiply these values by 1.20. These torque values do not contain service or safety factors.

Actuator selection should be made based on experience and appropriate service and safety factors.

WKM DynaSeal 210 and 310 Floating Ball Valves MATERIAL SELECTION GUIDE

A selection of body, stem and seat/seal materials for WKM DynaSeal valves are available. The following list is intended as a guide in the selection of materials for corrosive service. No material can be expected to resist the corrosive action of all the many ladings found in modern industry. Experience has shown, however, that certain materials can perform satisfactorily within certain limits. The physical properties of a material are affected differently by each corrosive medium. Therefore, it sometimes becomes necessary to sacrifice value in another property. As a result, the user must decide which property is of prime importance for his application. Internal moving parts, in contact with the lading, should

always carry an "A" rating. Body materials with exposure to corrosive ladings can sometimes carry a "B" rating because metal loss due to corrosive is not as critical.

Rating Interpretation:

"A" – Excellent

- The following information is designed for use by technically qualified individuals at their own discretion and risk. We strongly recommend that tests be run under actual operating conditions to obtain a material's performance ability in any one corrosive medium.
- "B" Good (slightly attacked) "C" – Fair (moderately attacked)
- "D" Not recommended

Lading	STD BDY	STD BDY	STD BDY	STD BDY	SPL BDY	SPL	STD	SPL	SPL	STD	STD INT	STD INT	SPL INT	SPL INT
Luang	CS	S1	CS2	58	CS3	01	42	18	07	43	CS	S1	S2	ML
ACETALDEHYDE	С	A	С	А	С	А	A	A	D	В	C	А	С	А
ACETATE SOLVENTS	А	А	А	А	А	А	А	А	D	В	А	А	А	А
ACETIC ACID (30%)	С	А	С	А	С	А	А	А	В	D	С	А	С	А
ACETIC ACID (AERATED)	D	А	D	А	D	А	А	А	D	D	D	А	D	А
ACETIC ACID (AIR-FREE)	D	А	D	А	D	А	А	А	D	D	D	В	D	А
ACETIC ACID (CRUDE)	С	А	С	А	С	А	А	А	D	D	С	А	С	А
ACETIC ANHYDRIDE	D	В	D	В	D	А	А	А	D	D	D	В	D	А
ACETONE	А	А	А	А	А	А	А	А	D	В	А	А	А	А
ACETYLENE (DRY ONLY)	А	А	А	А	А	А	А	А	А	D	А	А	А	А
ACRYLONITRILE	А	А	А	А	А	А	А	А	С	С	А	А	А	А
ALCOHOL-AMYL	В	А	В	А	В	А	А	А	В	В	В	А	В	А
ALCOHOL-BUTYL	В	А	В	А	В	А	А	А	А	С	В	А	В	А
ALCOHOL-ETHYL	В	А	В	А	В	А	А	А	С	В	В	А	В	А
ALCOHOL-METHYL (METHANOL)	В	А	В	А	В	А	А	А	D	С	В	А	В	А
ALUMINUM CHLORIDE (DRY)	В	А	В	А	В	А	А	А	А	D	В	А	В	А
ALUMINUM SULFATE (ALUMS)	С	А	С	А	С	А	А	А	А	В	С	А	С	А
ALUMS	С	А	С	А	С	А	А	А	А	С	С	А	С	А
AMINES	А	А	А	А	А	А	А	А	В	С	А	А	А	А
AMINES-BASED CORROSION INHIBITOR	А	А	А	А	А	А	А	А	-	В	А	А	А	А
AMINES RICH	D	А	А	А	А	А	А	А	-	С	D	А	А	А
AMMONIA (AQUEOUS)	А	А	А	А	А	А	А	А	D	D	А	А	А	В
AMMONIA ANHYDROUS	А	А	А	А	А	А	А	А	D	D	А	А	А	В
AMMONIA SOLUTIONS	В	А	В	А	В	А	А	А	D	D	В	А	В	В
AMMONIUM BICARBONATE	С	В	С	В	С	А	А	А	В	D	С	В	С	В
AMMONIUM CARBONATE	В	В	В	В	В	А	А	А	В	D	В	В	В	В
AMMONIUM CHLORIDE	D	С	D	С	D	А	А	А	А	В	D	С	D	В
AMMONIUM HYDROXIDE (28%)	С	В	С	В	С	А	С	С	В	С	С	В	С	D
AMMONIUM HYDROXIDE CONCENTRATED	С	В	С	В	С	А	С	С	D	D	С	В	С	D
AMMONIUM MONOPHOSPHATE	D	В	D	В	D	А	А	А	В	В	D	В	D	С
AMMONIUM NITRATE	D	А	D	А	D	А	А	А	С	С	D	А	D	D
AMMONIUM PHOSPHATE (DIBASIC)	D	В	D	В	D	А	А	А	А	С	D	В	D	С
AMMONIUM PHOSPHATE (TRIBASIC)	D	В	D	В	D	А	А	А	А	С	D	В	D	С
AMMONIUM SULFATE	С	В	С	В	С	А	А	А	А	А	С	В	С	С
AMYL ACETATE	С	В	С	В	С	А	А	А	D	В	С	В	С	В
ANILINE	А	В	А	В	А	А	А	А	С	С	А	В	А	В
ANILINE DYES	С	А	С	А	С	А	А	А	В	С	С	А	С	А
ANTIMONY TRICHLORIDE	D	D	D	D	D	А	А	А	А	D	D	D	D	В
APPLE JUICE	D	В	D	В	D	А	А	А	А	А	D	В	D	А
ARSENIC ACID	D	В	D	В	D	А	А	А	А	А	D	В	D	D
ASPHALT EMULSION	А	А	А	А	А	А	А	А	А	В	А	А	А	А
ASPHALT LIQUID	А	А	А	А	А	А	А	А	А	В	А	А	А	А
BARIUM CARBONATE	В	В	В	В	В	А	А	А	А	А	В	В	В	В
BARIUM CHLORIDE	С	С	С	С	С	А	А	А	А	А	С	С	С	В
BARIUM HYDROXIDE	С	В	С	В	C	А	А	А	А	А	C	В	С	В
BARIUM SULFATE	В	В	В	В	В	А	А	А	А	А	В	В	В	А
BARIUM SULFIDE	В	В	В	В	-	А	А	А	А	А	С	В	-	В
(-) – Not tested. VTFEP – Virgin TFE	packing	J.												

NOTE: All ladings at ambient temperatures except as noted.

MATERIAL SELECTION GUIDE (CONTINUED)

BEER BEER BURKACCHOLINAUSTRY C A C A A A A A A A C A C A C A C A C A C A C A C A B A B A B A B A B A C B A B A C B A B A A A A A A A A A A A A A	Lading	STD BDY	STD BDY	STD BDY	STD BDY	SPL BDY	SPL	STD	SPL	SPL	STD	STD INT	STD INT	SPL INT	SPL INT
BEER BEER GA A A A A A C A C A C A C A C A C A B A B A C D<		CS	S1	CS2	S8	CS3	01	42	18	07	43	CS	S1	S2	ML
BEFT Display	. ,														
BINADIC ALCOLD B A B A B A A A A C D B D B BINADIC ALCOLD D B C B C A A A A C B D B BINADIC ALCOLD D A D A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B B B															
BINKOL ACID D B D B D B D B D B D B D B D B C B C B C B C B C A A A A A A C B C A BININS C B C B C B C B A A A A A A C D			А	А											
EORANCLOUDIOS C B C B C A A A A C B C C BRINKS C B C B C B C A A A A A C B C A BRINKS D D D D D A A A A A C B C A BROMINE (WE) D D D A B B B B B B B	BENZENE (BENZOL)	В	А	В	А	В	А	А	А	А	В	В	А	В	А
EXPRECACIO D A D A A A A A A A D A D A D A D <thd< td=""><td>BENZOIC ACID</td><td>D</td><td>В</td><td>D</td><td>В</td><td>D</td><td>А</td><td>А</td><td>А</td><td>А</td><td>С</td><td>D</td><td>В</td><td>D</td><td>В</td></thd<>	BENZOIC ACID	D	В	D	В	D	А	А	А	А	С	D	В	D	В
BRINS: C B C B C A A A A C B C A BROMME (VIC) D D D D D D D A A A A C D D D A BROMME (VIC) B A B A B B B B B B B B B B B B B B		С	В	С	В	С	А	А	А	А	А	С	В	С	А
BROMME (DRY) D D D D D A A A A A A A A A A A A B D <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>А</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								А							
BROMER, WEFT D D D A A A A A B D <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
BUNKEROLS (FUELOLS) B A B A B A A A A A B A B A B A B A B A B A B A B A B A															
BUTANNE B A B A C D A B A B A B A B A B A B A B A B A B A B </td <td></td>															
BUTANE A <td>· · · · ·</td> <td></td>	· · · · ·														
BUTTENNIKK D A A A A															
BUTTYELNE A A A A<															
BUTWICK ACID D B D B D A A A B C D B D C D C D C D C D C D D D D D D D D D D D D D D D <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
CALCUM BISULFITE D B D B D A															
CALCUM CARBONATE D B D A B B B B B B B B B B B B B B B A A A A				-											
CALCUM MYDROXIDE (20%) B B B B B B B A A A A B B B B C CALCIUM MYDROXIDE (10%) B B B C B C B C A <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
CACLUM MYDROXIDE (20%) B B B B B B B A A A A A B B B B C CALCIUM MYDROXIDE (20%) B C B C B C A A A A D B B C B C A <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
CALCUM MYPOCHLORITE D C D A A A A A A D D A D C CALCUM SULFIDE B B B B B B B A <															
CARBON BISULFIDE B B B B A B	CALCIUM HYPOCHLORITE	D	С	D	С	D	А	А	А	А	D	D	А	D	С
CARBON DIOXIDE (DRY) A B B B B A A A A A A A A A A A A A A A A A A	CALCIUM SULFATE	С	В	С	В	С	А	А	А	А	А	С	В	С	В
CARBON DIOXIDE (WRT) D B D A B D B D B D B D B D B D B D B D B D B D B D B D B D B D B D B D A A A A A B A B A A B D B B B D	CARBON BISULFIDE	В	В	В	В	В	А	А	А	А	D	В	В	В	А
CARBON TETRACHLORIDE (DRY) B A B A B A A A A B B A A A A B B D B D B D B D B D B D B D B D B A A A A A C D B D B D B A A A A A C D </td <td>. ,</td> <td></td> <td></td> <td></td> <td></td> <td>А</td> <td>А</td> <td>А</td> <td>А</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>А</td>	. ,					А	А	А	А						А
CARBON TETRACHLORIDE (VET) D B D B D B D A A A A A A A B D B A B B B B B B B B B B B B B A A A A A A A A A A </td <td> / /</td> <td></td>	/ /														
CARBONATED WATER B A B A B A A A A A B A B A CARBONIC ACID D B D B D B D A A A A B D B D A CASTOR OLI B A B A B A A A A A A A C A C A C A C A A A A A A A A A C B C B C A A A A A A A A A A A A A A A A B B B B B B B B B A B A B A B A A A A A D D D D D D D D D D D D D </td <td></td>															
CARBONIC ACID D B D B D A A A A B D A CASTOR OL B A B A B A B A B A B A B A B A B A B A B A B A B A B B B B B A B A A A A A A A A A A A A A A A A															
CASTOR OIL B A B A B A A A A A B A B A CHAINA WOOD OLI (TUNG) C A C A C A A A A A C A C A C A A A A A C A C A A A A A C A C A C A A A A A C A C A A A A C A C A A A A A C A A A D															
CHINA WOOD OIL (TUNG) C A C A C A A A A A C A C A CHLORINATED SOLVENTS (DRY) C B C B C B C A A A A A B C B C B C B C B C B C B C B C B C B C B B B B B B B B B B B B B B B A B A															
CHLORINATED SOLVENTS (DRY) C B C A A A A B C B C B CHLORINE (WET) D															
CHLORINE (WET) D D D A A A A A D D D C CHLORINE GAS (DRY) B A B A A A A D D D D B B A B A A A A A A A B A B A A A A A B A B A B A A A A A A A A A A A A A A A A B A B A B A B A B B <t< td=""><td>. ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	. ,														
CHLORINE GAS (DRY) B B B B B B B A A A A D B B B B CHLOROACETIC ACID D C D C D C D A A A D															
CHLOROACETIC ACID D C D C D C D A A A D															
CHLOROBENZENE (DRY) B A A A A A A A A A A A A A A A A	. ,														
CHLOROFORM (DRY) B A B A B A B A A A A B B A B A CHLOROSULPHONIC ACID (DRY) B B B B B B B B B A A A D D B B B A CHLOROSULPHONIC ACID (WET) D D D D D A A A D D D D C D C D D D C D D D C D C D B D A A A A A D D C D B D C D D D C D B D B A															
CHLOROSULPHONIC ACID (DRY) B B B B B B A A A D D B B A CHLOROSULPHONIC ACID (WET) D D D D D D D D D D D D D D D D D C CHROMIC ACID B A B A B A A A A A C B B B CHROMIC ACID D C D B D B D A A A A A D D C D A COCONUT OIL C B C A C A A A A A A C B C A A A A A C B A B A A A A A A A A A A A A A A A A A A A <td></td>															
CHROME ALUMBABABABAAAACBABBCHROMIC ACIDDCDCDCDAAAADDCDBCITRUS JUICESDBDBDAAAAAADBDACOCONUT OILCBCBCAAAAAACBCBCOFFEE EXTRACTS (HOT)CACACAAAAAAABBABCOKE OVEN GASBABABABABAAAAAABABACOPPER ACETATE (10%)CBCBCAAAAAABBABACOPPER NITRATEDDDDAAAAAADDDCCORNOLCBCBCAA		В	В	В	В	В	А	А	А	D	D	В	В	В	А
CHROMIC ACIDDCDCDAAAADDCDBCITRUS JUICESDBDBDAAAAAADBDACOCONUT OILCBCBCAAAAAACBCBCCOFFEE EXTRACTS (HOT)CACACAAAAAACACACOKE OVEN GASBAAAAAAAAABBABBABBABBABBAAAAAAAAAAAAAAAAAA <td< td=""><td>CHLOROSULPHONIC ACID (WET)</td><td>D</td><td>D</td><td>D</td><td>D</td><td>D</td><td>А</td><td>А</td><td>А</td><td>D</td><td>D</td><td>D</td><td>D</td><td>D</td><td>С</td></td<>	CHLOROSULPHONIC ACID (WET)	D	D	D	D	D	А	А	А	D	D	D	D	D	С
CITRUS JUICESDBDBDAAAAAADBDACOCONUT OILCBCBCAAAAAACBCBCOFFEE EXTRACTS (HOT)CACACACAAAAACACACOKE OVEN GASBABABABAAAAADBABBCOOKING OILBABABABAAAAADBABBCOPPER ACETATE (10%)CBCBCAAAAAADDDCCOPPER CHLORIDEDDDDDAAAAAADBDCCOPPER SULFATEDCDCDAAA<	CHROME ALUM	В	А	В	А	В	А	А	А	А	С	В	А	В	В
COCONUT OILCBCBCAAAAACBCBCOFFEE EXTRACTS (HOT)CAAAAAAAABBABABABABABABABABABABAAAAAAAABBABABABAAAAAAABBABAAAAAAAABBABBAAAAAAAAAAABBDD	CHROMIC ACID	D	С	D	С	D	А	А	А	А	D	D	С	D	В
COFFEE EXTRACTS (HOT)CACACAAAACACACACOKE OVEN GASBABABABABAAAAADBABBBCOOKING OILBABABABABAAAAABBAAAAAAAAAABBABABABABAAA															
COKE OVEN GASBABABABAAAADBABBACOOKING OILBABABABABAAAAABBABABABABABABABABABAABABABAAAAAAAABABAAAAAAAAAAABDDD <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
COOKING OILBABABABAAAAABBABBCBCBDD															
COPPER ACETATE (10%)CBCBCAAADACBCBCOPPER CHLORIDEDDDDDDDAAAAADDDCCOPPER NITRATEDBDBDAAAAAADBDCCOPPER SULFATEDCDCDCDAAAABDCDBCORNOILCBCBCAA <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
COPPER CHLORIDEDDDDDDAAAAADDDCCOPPER NITRATEDBDBDBDAAAAAADBDCCOPPER SULFATEDCDCDCDAAAAABDCDBCORN OILCBCBCAA															
COPPER NITRATEDBDBDAAAAADBDCCOPPER SULFATEDCDCDCDAAAAABDCDBCORN OILCBCBCBCAAAAAACBCBCORROSION INHIBITOR – AMINE BASEDAA <t< td=""><td>× ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	× ,														
COPPER SULFATEDCDCDCDAAAABDCDBCORN OILCBCBCBCAAAAAACBCBCORROSION INHIBITOR – AMINE BASEDAA															
CORN OILCBCBCAAAACBCBCORROSION INHIBITOR – AMINE BASEDAA<															
CORROSION INHIBITOR – AMINE BASEDAAA <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
COTTONSEED OILCBCBCAAAACBCBCREOSOTE OILBBBBBBAAAACBBBACRESYLIC ACIDBBBBBBAAAACBBBBBCRUDE OIL SOURBABABAAAAABBABACRUDE OIL SWEETBABABAAAAABABACUTTING OILS, WATER EMULSIONSBABAAAAAAAAAAAACYCLOHEXANEAAAAAAAAAAAAAAA															
CREOSOTE OILBBBBBBAAAACBBBACRESYLIC ACIDBBBBBBAAAAACBBBBBCRUDE OIL SOURBABABAAAAABBABACRUDE OIL SWEETBABABAAAAAABABACUTTING OILS, WATER EMULSIONSBABABAAAAAAAAAAACYCLOHEXANEAAAAAAAAAAAAAAA															
CRESYLIC ACIDBBBBBAAAACBBBBBCRUDE OIL SOURBABABABAAAABBABACRUDE OIL SWEETBABABABAAAAABABACUTTING OILS, WATER EMULSIONSBABABAAAAAAAAAACYCLOHEXANEAAAAAAAAAAAAAA															
CRUDE OIL SOURBABABAAAABBABACRUDE OIL SWEETBABABABAAAAABABACUTTING OILS, WATER EMULSIONSBABABAAAAABABAACYCLOHEXANEAAAAAAAAAAAAAA															
CUTTING OILS, WATER EMULSIONS B A B A B A B A A B B A B CYCLOHEXANE A<		В	А	В	А	В							А		
CYCLOHEXANE A A A A A A A A A A A A A A A		В	А	В	А	В	А			А	А	В	А	В	
	CUTTING OILS, WATER EMULSIONS	В	А	В	А	В	А	А	А	А	В	В	А	В	-
	CYCLOHEXANE	А	А	А	А	А	А	А	А	А	А	А	А	А	А
	DIACETONE ALCOHOL	А	А	А	А	А	А	А	А	D	С	А	А	А	А
DIESEL FUEL A A A A A A A A A A A A A A A A A A A				А	А	А	А	Α	А	А	А	А	А	А	A

	STD	STD	STD	STD	SPL	SPL	STD	SPL	SPL	STD	STD	STD	SPL	SPL
Lading	BDY CS	BDY S1	BDY CS2	BDY S8	BDY CS3	01	42	18	07	43	INT CS	INT S1	INT S2	INT ML
DIETHYLAMINE	А	А	А	А	А	А	А	А	HF	С	А	А	А	А
DIPHTALIC ANHYDROUS	-	-	-	-	-	-	А	-	-	-	-	-	-	-
DOWTHERMS (A-E)	В	A	В	A	В	A	A	A	A	В	В	A	В	A
DRILLING MUD	В	A	В	A	В	A	A	A	A	A	В	A	В	A
	B	A	B	A	B	A	A	A	A	A	B	A	В	A
DRY CLEANING FLUIDS EPSOM SALT	B C	A B	B C	A B	B	A	A	A	A	B	B C	A B	B C	B B
ETHANE	A	A	A	A	A	A	A	A	A	A	A	A	A	A
ETHANOLAMINE	A	A	A	A	A	A	A	A	D	c	A	A	A	A
ETHERS	B	A	В	A	В	-	A	A	D	A	В	A	B	В
ETHYL ACETATE	B	В	В	В	В	А	A	A	D	C	В	В	B	B
ETHYL ACRYLATE	А	А	А	А	А	А	А	А	В	С	А	А	А	А
ETHYL CHLORIDE (DRY)	В	А	В	А	В	А	А	А	А	В	В	А	В	В
ETHYL CHLORIDE (WET)	В	В	В	В	В	А	А	А	А	В	В	В	В	В
ETHYLENE (LIQUID OR GAS)	А	А	А	A	А	А	-	-	А	В	А	А	А	А
ETHYLENE GLYCOL	В	В	В	В	В	A	A	А	А	А	В	В	В	В
ETHYLENE OXIDE	В	В	В	В	В	A	A	A	D	В	В	В	В	В
	D	B	D	В	D	A	A	A	A	В	D	В	D	B
	D	D	D	D	D	A	A	A	A	A	D D	D	D	C
FERRIC NITRATE FERRIC SULFATE	D D	C B	D D	C B	D D	A A	A	A A	A A	A	D	C B	D D	C B
FERROUS CHLORIDE	D	D	D	D	D	A	A	A	A	A	D	D	D	C
FERROUS SULFATE	D	В	D	B	D	A	A	A	A	A	D	B	D	В
FERROUS SULFATE (SAT)	C	A	C	A	C	A	A	A	-	C	C	A	C	A
FERTILIZER SOLUTIONS	В	В	В	В	В	А	А	А	D	D	В	В	В	В
FISH OILS	В	А	В	А	В	А	А	А	А	А	В	А	В	А
FLUORINE (DRY)	В	А	В	А	В	С	С	С	С	С	В	А	В	А
FLUOROSILICIC ACID	D	С	D	С	D	А	-	-	А	С	D	С	D	С
FOOD FLUIDS – PASTES	С	А	С	A	С	А	А	А	А	А	С	А	С	А
FORMALDEHYDE (COLD)	А	А	А	А	A	А	А	А	D	А	А	А	А	А
FORMALDEHYDE (HOT)	D	В	D	В	D	А	A	А	D	В	D	В	D	В
FORMIC ACID (COLD)	D	В	D	B	D	A	A	A	С	D	D	В	D	В
FORMIC ACID (HOT)	D	D	D	D	D	A	A	A	C	D	D	D	D	B
FREON 12 (DRY) FRUIT JUICES	B D	A	B D	A	B D	A	A	A	B	B	B D	A	B	A A
FUEL JET JP-4	A	A	A	A	A	A	A	A	A	A	A	A	A	A
FUEL JET JP-5 100F	A	A	A	A	A	A	A	A	B	A	A	A	A	A
FUEL JET JP-6 100F	A	A	A	A	A	A	A	A	B	A	A	A	-	A
FUEL OIL	В	А	В	А	В	А	А	А	А	А	В	А	В	А
FUEL RP-1	А	А	А	А	А	А	А	А	А	А	А	А	А	А
FURFURAL	А	В	А	В	А	А	А	А	D	В	А	В	А	А
GALLIC ACID	D	В	D	В	D	А	А	А	А	С	D	В	D	В
GAS (MANUFACTURED)	В	В	В	В	В	А	A	А	А	А	В	В	В	А
GAS ODORIZERS (VTFEP)	В	A	В	A	В	A	A	A	A	-	В	А	В	В
GAS, NATURAL	B	A	В	A	В	A	A	A	A	A	B	A	B	A
GASOLINE, AVIATION GASOLINE, SOUR	A B	A	A	A	A	A	A	A	A	A	A B	A	A	A
GASOLINE, LEADED, LOW OCTANE	A	A	B	A	B	A	A	A	A	B	A	A	B	A A
GASOLINE, UNLEADED, LOW OCTANE	A	A	A	A	A	A	A	A	A	A	A	A	A	A
GELATIN	D	A	D	A	D	A	A	A	A	A	D	A	D	A
GLUCOSE	B	A	B	A	B	A	A	A	A	A	В	A	B	A
GLUE	А	А	А	А	А	А	А	А	А	А	А	А	А	А
GLYCERINE – GLYCEROL	В	А	В	А	В	А	А	А	А	А	В	А	В	А
GLYCOLS	В	В	В	В	В	А	А	А	А	А	В	В	В	В
GREASE	А	А	А	А	А	А	А	А	А	А	А	А	А	В
HEPTANE	А	А	А	А	А	А	А	А	А	А	А	А	А	А
HEXANE	A	Α	A	A	A	A	A	А	A	A	A	A	A	A
	A	A	A	A	A	A	A	A	A	В	A	A	A	A
HYDRAULIC OIL PHOSPHATE ESTER	A	A	A	A	A	A	A	A	A	B	A	A	A	A
HYDRAULIC OIL PETROLEUM BASE HYDROBROMIC ACID	A D	A D	A D	A D	A D	A A	A A	A A	A A	A D	A D	A D	A D	A C
HYDROCHLORIC ACID 37% AIR FREE	D	D	D	D	D	A	A	A	B	D	D	D	D	B
HYDROCYANIC ACID 37 % AIR FREE	D	B	D	B	D	A	A _	- -	B	D	D	B	D	A
() Nettested VIEED Vissis T						~~								۲۱

MATERIAL SELECTION GUIDE (CONTINUED)

Lading	STD BDY CS	STD BDY S1	STD BDY CS2	STD BDY S8	SPL BDY CS3	SPL 01	STD 42	SPL 18	SPL 07	STD 43	STD INT CS	STD INT S1	SPL INT S2	SPL INT ML
HYDROFLUORIC ACID	D	D	D	D	D	A	C	С	D	D	D	D	D	В
HYDROFLUOSILICIC ACID	D	С	D	С	D	А	А	А	А	D	D	С	D	В
HYDROGEN GAS (COLD)	В	А	В	А	В	А	A	А	В	А	В	А	В	А
HYDROGEN PEROXIDE 30% (DILUTE)	D	В	D	В	D	А	А	А	В	D	D	В	D	В
HYDROGEN PEROXIDE 90%	D	В	D	В	D	А	A	А	В	D	D	D	В	D
HYDROGEN SULFIDE (DRY)	D	D	A	A	A	A	A	A	A	A	D	D	A	A
HYDROGEN SULFIDE (WET)	D	D	В	A	В	A	В	A	A	A	D	D	A	A
HYPO (SODIUM THIOSULFATE) HYPOCHLORITES, SODIUM	D D	A C	D D	A C	D D	A A	A A	A	A A	B D	D D	A C	D D	B B
ILLUMINATING GAS	A	A	A	A	A	A	A	A	- -	A	A	A	A	A
INK	D	A	D	A	D	A	A	A	_	A	D	A	D	В
IODINE (WET)	D	D	D	D	D	A	A	A	В	В	D	D	D	D
ISO-OCTANE	A	A	A	A	A	A	A	A	A	A	A	A	A	A
ISODOFORM (DRY)	В	В	В	В	В	А	А	А	-	-	В	В	В	В
SOPROPYL ALCOHOL	В	В	В	В	В	А	А	А	В	В	В	В	-	В
ISOPROPYL ETHER	А	А	А	А	А	А	А	А	D	С	А	А	А	А
KEROSENE	В	А	В	А	В	А	A	А	А	А	В	А	В	А
KETCHUP	D	А	D	А	D	А	А	А	А	А	D	А	D	В
KETONES	A	А	A	А	A	A	A	А	D	A	A	А	А	A
LACQUERS (SOLVENTS)	С	А	С	А	С	A	A	A	D	С	С	A	С	А
LACTIC ACID (CONC. COLD)	D	A	D	A	D	A	A	A	A	В	D	В	D	D
LACTIC ACID (CONC. HOT)	D	В	D	В	D	A	A	A	A	D	D	В	D	D
	D D	A	D D	A	D	A	A	A	A	A D	D D	A B	D	C
LACTIC ACID (DILUTE HOT) LARD OIL	C	A	C		-			A			C		D C	D B
LARD OIL LEAD ACETATE	D	B	C	A B	C C	A	A	A	A D	A C	D	A B	D	B
	B	A	В	A	В	A	A	A	C	C	B	A	B	B
LINGEELC ACID	A	A	A	A	A	A	A	A	A	A	A	A	A	B
LIQUEFIED PET GAS (LPG)	В	A	B	A	В	A	A	A	A	A	B	A	В	B
LITHIUM BROMIDE	D	A	D	A	D	D	A	A	-	-	D	A	-	A
LUBRICATING OIL	А	А	А	А	А	А	А	А	А	А	А	А	А	В
MAGNESIUM BISULFATE (10%)	С	А	С	А	С	А	А	А	А	А	С	А	С	В
MAGNESIUM CHLORIDE	С	D	С	D	С	А	А	А	А	С	С	D	С	В
MAGNESIUM HYDROXIDE	В	А	В	А	В	А	А	А	А	А	В	А	В	А
MAGNESIUM HYDROXIDE (HOT)	В	А	В	А	В	А	A	А	В	A	В	А	В	А
MAGNESIUM SULFATE	В	В	В	В	В	А	А	А	А	С	В	В	В	В
MALEIC ACID	В	С	В	С	В	A	A	A	A	С	В	С	В	В
MALEIC ANHYDRIDE	D	A	D	A	D	-	A	A	-	-	D	A	В	A
MALIC ACID	D	A	D	A	D	A	A	A	A	C	D	A	D	В
MAYONNAISE	D	A	D	A	D	A	A	A	A	А	D	A	D	В
MERCAPATANS MERCURIC CHLORIDE	A D	A D	A D	A D	A D	A	A	A	A	– A	A D	A D	A D	D
MERCURIC CYANIDE (10%)	D	B	D	B	D	A	A	A		B	D	B	D	D
MERCURY	A	A	A	A	A	A	A	A	А	A	A	A	A	C
METHANE	A	A	A	A	A	A	A	A	A	A	A	A	A	A
METHYL ACETATE	А	А	А	А	А	А	А	А	D	В	А	А	А	А
METHYL ACETONE	А	А	А	А	А	А	А	А	D	С	А	А	А	А
METHYL CELLOSOLVE	В	В	В	В	В	А	А	А	D	В	В	В	В	В
METHYL CHLORIDE (DRY)	В	А	В	А	В	А	А	А	А	-	В	А	В	А
METHYL ETHYL KETONE	A	А	А	А	А	А	А	А	D	А	А	А	А	А
METHYL FORMATE	В	В	В	В	В	А	А	А	-	В	В	В	В	В
METHYLAMINE	В	В	В	В	В	А	A	A	-	С	В	В	В	В
METHYLENE CHLORIDE (DRY)	В	В	В	В	В	А	A	A	В	В	В	В	В	В
	D	A	D	A	D	A	A	A	A	A	D	A	D	A
MINE WATERS (ACID)	D	В	D	В	D	A	A	A	B	C	D	В	D	В
MINERAL SPRITS	B	B	B	B	B	A	A	A	A	A	B	B	B	B
	B	A	B	A	B	A	A	A	A	A	B	A	B	A
MIXED ACIDS (COLD)	C A	A A	C	A	C	A	A	A	-	D	C	A	C	B
MOLASSES, CRUDE MOLASSES, EDIBLE	A	A	A	A	A	A	A	A	A	A	A	A	A	A
MOLASSES, EDIBLE MTBE 100% MAX	B	A	B	A	B	A	B	A	D	B	B	A	A	A
MTBE 40% MAX	A	A	A	A	A	D	A	A	D	B	-	A	A	A
MURIATIC ACID	D	D	D	D	D	A	A	A	A	D	D	D	D	В
(-) - Not tested VTEEP - Virgin			-	-	-			· · ·		-		-		· · · · · · · · · · · · · · · · · · ·

Lading	STD BDY	STD BDY	STD BDY	STD BDY	SPL BDY	SPL	STD	SPL	SPL	STD	STD INT	STD INT	SPL INT	SPL INT
MUSTARD	CS B	51 A	CS2 B	<u>58</u> A	CS3 B	01 A	42 A	18 A	07 A	43 A	CS B	51 A	S2 B	ML A
NAPHTHA	B	A	B	A	B	A	A	A	A	A	B	A	B	B
NAPHTHALENE	A	A	A	A	A	A	A	A	A	B	A	A	A	B
NICKEL AMMONIUM SULFATE (20%)	D	A	D	A	D	A	A	A	A	A	D	A	D	D
NICKEL CHLORIDE	D	В	D	В	D	A	A	A	A	D	D	В	D	B
NICKEL NITRATE (30%)	D	В	D	B	D	A	A	A	A	C	D	В	D	B
NICKEL SULFATE	D	С	D	С	D	А	А	А	А	C	D	С	D	В
NICOTINIC ACID	В	А	В	А	В	А	А	А	-	С	В	А	В	А
NITRIC ACID (10%) (VTFEP)	D	А	D	А	D	А	В	В	А	D	D	А	D	D
NITRIC ACID (100%) (VTFEP)	А	А	А	А	А	А	В	В	D	D	А	А	А	D
NITRIC ACID (30%) (VTFEP)	D	А	D	А	D	А	В	В	А	D	D	А	D	D
NITRIC ACID (80%) (VTFEP)	D	А	D	А	D	А	В	В	С	D	D	А	D	D
NITRIC ACID ANHYDROUS/AQUEOUS (VTFEP)	А	А	А	А	А	А	В	В	D	D	А	А	А	D
NITROBENZENE	В	В	В	В	В	А	А	А	В	С	В	В	В	В
NITROGEN	А	А	А	А	А	А	А	А	А	А	А	А	А	А
NITROUS ACID (10%)	D	В	D	В	D	А	A	А	А	D	D	В	D	D
NITROUS GASES	В	А	В	А	В	А	A	А	А	В	В	А	В	D
NITROUS OXIDE	А	В	А	В	А	А	А	А	А	А	А	В	А	D
OIL, COTTONSEED	С	В	С	В	С	А	А	А	А	А	С	В	С	В
OIL, PETROLEUM (REFINED)	А	А	A	A	А	A	A	А	А	А	A	A	A	A
OIL, PETROLEUM (SOUR) H ₂ S AND CO ₂	D	D	A	A	А	А	А	А	В	А	A	A	А	A
OIL, WATER MIXTURES	В	А	В	A	В	A	A	A	В	A	В	A	В	A
OIL, ANIMAL	А	А	А	А	A	А	A	А	А	А	А	А	A	A
OIL, FISH	В	А	В	A	В	А	A	А	А	А	В	A	В	A
OIL, FUEL	В	А	В	A	В	А	A	А	А	А	В	А	В	A
OIL, LUBE	A	A	A	A	A	A	A	А	A	А	А	A	А	В
OIL, MINERAL	В	A	В	A	В	А	A	А	A	А	В	A	В	A
OLEIC ACID	В	А	В	A	В	А	A	А	A	A	В	A	В	В
OLEUM	В	В	В	В	В	A	A	A	A	D	В	В	В	D
OLIVE OIL	В	А	В	А	В	A	A	А	D	В	В	А	В	A
OXALIC ACID	D	D	D	D	D	A	A	A	В	С	D	D	D	В
OXYGEN	В	A	В	A	В	A	A	A	A	C	В	A	В	A
OZONE (DRY)	A	A	A	A	A	A	A	A	A	C	A	A	A	A
	C	A	C	A	C	A	A	A	A	C	С	A	C	A
	A	A	A	A	A	A	A	A	A	B	A	A	A	A
	C	B	C	B	C	A	A	A	A	A	C	B	C	A
PALMITIC ACID PARAFFIN	C B	A	C B	A	C B	A	A	A	A	B	C B	A	C B	B
PARAFORMALDEHYDE	B	B	B	B	В	A	A	A	C	A	B	A	B	B
PENTANE	B	A	B	A	В	A	A	A	A	A	B	A	B	B
PERCHLOROETHYLENE	B	B	B	B	B	A	A	A	A	B	B	B	B	A
PETROLATUM	C	B	C	B	C	A	A	A	A	A	C	B	C	A
PHENOL (CARBOLIC ACID)	В	A	В	A	В	A	A	A	A	В	В	A	В	A
PHENOL RESIN	C	A	C	A	C	A	D	A	A	D	C	A	A	A
PHOSGENE (DRY) (VTFEP)	A	A	A	A	A	-	A	A	B	-	A	A	A	A
PHOSGENE (WET) (VTFEP)	D	A	D	A	D	В	A	A	A	-	D	A	A	A
PHOSPHORIC ACID (10%) COLD	D	В	D	B	D	A	A	A	A	D	D	В	D	В
PHOSPHORIC ACID (10%) HOT	D	D	D	D	D	A	A	A	A	D	D	D	D	C
PHOSPHORIC ACID (50%) COLD	D	В	D	В	D	А	А	А	А	D	D	В	D	C
PHOSPHORIC ACID (50%) HOT	D	D	D	D	D	А	А	А	А	D	D	D	D	С
PHOSPHORIC ACID (85%) COLD	В	А	В	А	В	А	А	А	А	D	В	А	В	А
PHOSPHORIC ACID (85%) HOT	С	А	С	А	С	А	А	А	А	D	С	А	С	А
PHTHALIC ACID	С	В	С	В	С	А	А	А	А	С	С	А	С	А
PHTHALIC ANHYDRIDE	С	В	С	В	С	А	А	А	А	В	С	В	С	С
PICRIC ACID	С	В	С	В	С	А	А	А	А	D	С	В	С	А
PINE OIL	В	А	В	А	В	А	А	А	А	А	В	А	В	А
PINEAPPLE JUICE	С	А	С	А	С	А	А	А	А	А	С	А	С	А
POLY ESTER RESIN (VTFEP)	-	А	-	А	-	-	-	-	-	-	-	А	А	А
POLYETHYLENE FLUFF	В	А	В	А	В	-	-	-	-	-	-	А	А	А
POLYETHYLENE LIQUID	В	А	-	А	-	-	-	-	А	-	В	А	А	А
POLYURETHANE	А	А	А	А	А		А	А	D	D	А	А	А	А
POTASSIUM BISULFITE (10%)	D	В	D	В	D	А	А	А	А	А	D	D	В	А
(-) – Not tested. VTEEP – Virgin TEE	nacking													

MATERIAL SELECTION GUIDE (CONTINUED)

Lading	STD BDY	STD BDY	STD BDY	STD BDY	SPL BDY	SPL	STD	SPL	SPL	STD	STD INT	STD INT	SPL INT	SPL INT
	CS	S1	CS2 D	<u>58</u>	CS3	01	42	18	07	43	CS	S1	S2	ML
POTASSIUM BROMIDE POTASSIUM CARBONATE	D	B	C	B	D	A	A	A	– A	A	D	B	D C	B
POTASSIUM CHLORATE	В	A	В	A	В	A	A	A	A	A	В	A	В	B
POTASSIUM CHLORIDE	C	A	C	A	C	A	A	A	A	A	C	A	C	B
POTASSIUM CYANIDE	В	В	В	В	В	A	A	A	A	C	В	В	В	B
POTASSIUM DICHROMATE	B	A	В	A	B	A	A	A	A	C	В	A	В	B
POTASSIUM DIPHOSPHATE	А	А	А	А	А	А	А	А	А	A	А	А	А	В
POTASSIUM FERRICYANIDE	В	А	В	А	В	А	А	А	А	А	В	В	В	В
POTASSIUM FERROCYANIDE	В	А	В	А	В	А	А	А	А	А	В	А	В	А
POTASSIUM HYDROXIDE 70% (COLD)	В	В	В	В	В	А	В	В	D	С	В	В	В	А
POTASSIUM HYDROXIDE 70% (HOT)	А	А	А	А	А	А	В	В	D	С	А	А	А	А
POTASSIUM HYDROXIDE-DILUTE (COLD)	В	В	В	В	В	А	А	А	С	А	В	В	В	А
POTASSIUM HYDROXIDE-DILUTE (HOT)	В	А	В	А	В	А	В	В	D	В	В	В	В	А
POTASSIUM IODIDE	С	В	С	В	С	А	A	А	А	А	С	В	С	А
POTASSIUM NITRATE	В	А	В	А	В	А	А	А	А	А	В	A	В	A
POTASSIUM PERMAGANATE	А	А	A	A	А	А	A	А	А	С	A	A	А	В
POTASSIUM SULFATE	В	А	В	A	В	А	A	А	A	С	В	A	В	В
POTASSIUM SULFIDE (10%)	С	В	С	В	С	А	A	A	A	A	С	В	С	D
POTASSIUM SULFITE (10%)	D	А	D	A	D	А	A	А	A	A	D	А	D	D
PRODUCER GAS	В	А	В	A	В	А	A	A	А	A	В	А	В	A
PROPANE	A	А	А	A	A	А	A	А	A	A	A	A	А	А
PROPLENE	-	А	-	A	-	-	-	-	A	-	-	А	А	A
PROPYL ALCOHOL	A	A	A	A	A	A	A	A	A	A	A	A	A	A
PROPYLENE GYLCOL	A	A	A	A	A	A	A	A	A	A	A	A	A	A
PYROGALLIC ACID	B	В	В	В	B	A	A	A	P	D	В	В	В	В
QUENCH OIL (WATER SOLUBLE) RESINS-ROSINS	A C	A	A	A	A	A	A	A	В	B	A	A	A	-
ROAD TAR	A	A	C A	A	C A	A	A	A	٨	B	C A	A	C A	A
ROOF PITCH	A	A	A	A	A	A	A	A	A	B	A	A	A	A
RUBBER LATEX EMULSIONS	B	A	B	A	B	A	A	A	A	A	B	A	B	- -
RUBBER SOLVENT	A	A	A	A	A	A	A	A	D	В	A	A	A	А
SALAD OIL	C	В	C	В	C	A	A	A	A	A	C	В	C	В
SALICYLIC ACID	D	A	D	A	D	A	A	A	A	В	D	A	D	A
SALT	C	В	C	В	C	A	A	A	A	A	C	В	C	A
SEAWATER	D	А	D	А	D	А	А	А	А	А	D	А	D	А
SHELLAC (BLEACHED)	А	А	А	А	А	А	А	А	D	В	А	А	А	А
SHELLAC (ORANGE)	А	А	А	А	А	А	А	А	D	В	А	А	А	А
SILICONE OILS	А	А	А	А	А	А	А	А	А	А	А	А	А	А
SILVER NITRATE	D	В	D	В	D	А	А	А	А	В	D	В	D	D
SOAP SOLUTIONS (STEARATES)	А	А	А	А	А	А	A	А	А	А	А	А	А	А
SODIUM ACETATE	В	В	В	В	В	А	А	А	D	В	В	В	В	В
SODIUM ALUMINATE	С	А	С	A	С	А	A	А	А	А	С	A	С	A
SODIUM BICARBONATE	С	В	С	В	С	А	A	A	А	А	С	В	С	В
SODIUM BISULFATE (10%)	D	А	D	A	D	A	A	A	А	A	D	А	D	В
SODIUM BISULFITE (10%)	D	D	D	D	D	A	A	А	A	А	D	D	D	В
SODIUM BORATE	С	D	С	D	С	А	A	A	A	А	С	D	С	В
SODIUM BROMIDE (10%)	C	В	С	В	С	A	A	A	A	A	С	В	С	В
SODIUM CARBONATE	B	В	В	В	B	A	A	A	A	A	B	В	B	A
	C	B	C	B	C	A	A	A	A	A	C	В	C	B
	C B	B	C	B	C	A	A	A	A	A	C	B	C	A
SODIUM CHROMATE SODIUM CYANIDE (10%)		B	B	B	B	A	A	A	A	D B	B	B	B	B
SODIUM FLUORIDE	A	A	A	A	A	A	A	A	A		A	A	A	B
SODIUM FLOORIDE SODIUM HYDROXIDE 20% (COLD)	D A	B	D	B	D	A	A	A	A B	A	D	B	D	A
SODIUM HYDROXIDE 20% (COLD) SODIUM HYDROXIDE 20% (HOT)	C	B	C	B	C	A	B	B	C	B	C	B	C	A
SODIUM HYDROXIDE 50% (COLD)	В	B	В	B	B	A	C	C	C	A	В	B	В	A
SODIUM HYDROXIDE 50% (COLD)	B	В	B	B	B	A	C	C	C	B	B	B	B	A
SODIUM HYDROXIDE 50% (HOT) SODIUM HYDROXIDE 70% (COLD)	C	B	C	B	C	A	C	C	C	C	C	B	C	B
SODIUM HYDROXIDE 70% (COLD)	В	B	В	B	В	A	D	D	C	C	В	B	В	B
SODIUM HYPOCHLORIDE	D	D	D	D	D	A	A	A	A	D	D	D	D	D
SODIUM METAPHOSPHATE	A	B	A	B	A	A	A	A	A	A	A	B	A	B
SODIUM METASILICATE (HOT)	D	A	D	A	D	A	A	A	-	A	D	A	D	A
(-) – Not tested. VTFEP – Virgin TF														

SODUM SODUM <th< th=""><th>Lading</th><th>STD BDY</th><th>STD BDY</th><th>STD BDY</th><th>STD BDY</th><th>SPL BDY</th><th>SPL</th><th>STD</th><th>SPL</th><th>SPL</th><th>STD</th><th>STD INT</th><th>STD INT</th><th>SPL INT</th><th>SPL INT</th></th<>	Lading	STD BDY	STD BDY	STD BDY	STD BDY	SPL BDY	SPL	STD	SPL	SPL	STD	STD INT	STD INT	SPL INT	SPL INT
SODUM SODUM <th< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>S1</td><td></td><td></td></th<>			-						-				S1		
SODUM <predgate< th=""> B B B B C B C A A A A A A A A A A A A B B B C B B B B B B B B B B B B A</predgate<>															
SODUM SODUM <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
SOCUMM PHOSPHATE (IBBASIC) B </td <td></td>															
SODUM SODUM B B B B A B B B B B B B B B B B B B B B B A															
SODUM SUCALE A A A A A A A A A A A A A A A A A A B B B B B B B B B B B B B B B B B C A A A B B B B B C B C B B C B C B C B C A <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
SODULY SUFATE NA, SO, B A B A															
SODUM SUPEN SUP SUPEN SUPEN S															
SODUMASULPDE NA,SO, B B B B B A A A A A A B B B B B B B B B B B B B B D A	SODIUM SULFATE NA2504	В	А	В	А	В	А	А	А	А	А	В	А	В	А
SODUM HOSOL D B D A A A A A A D B D B D B D B D B D B D D B A A A A A A A A A A A A A A C A C A C A C A A A A </td <td>SODIUM SULFIDE (HOT)</td> <td>С</td> <td>В</td> <td>С</td> <td>В</td> <td>С</td> <td>А</td> <td>А</td> <td>А</td> <td>А</td> <td>А</td> <td>С</td> <td>В</td> <td>С</td> <td>В</td>	SODIUM SULFIDE (HOT)	С	В	С	В	С	А	А	А	А	А	С	В	С	В
SOUR ASA AND OLL D D A	SODIUM SULFIDE NA2S02	В	В	В	В	В	А	А	А	А	А	В	В	В	А
SOVEEAN OIL C A C A A A A A B C A STANNC (HONDE D C D C D C D A	SODIUM THIOSULFATE			D	В	D	А	A	А	A	A			D	В
STANNUC CHURNE D D D A A A A B D D C D C STANNUC CHURNE A<															
STANCOUS CHUCKIDE D C D C D C D C D C D C D C D C D C D C D C D C D C A															
STARCH A <td></td>															
STEAMC ACI2 (2) (2) B A B A B B C A															
STEARC ACID C A C A A A A A A C B B B B B B B B B B B B B B B B A B <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
STODARD SOLVENT B B B B B B A	X P									D					
STYRENE A A A A A A B D D B A B B B B B C B </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>٨</td> <td></td> <td></td> <td></td> <td></td> <td></td>										٨					
SUGARUQUIDS B A B A B A A A A A A B A B A B A B B C B C B C B C B C B C B C B C B C B C B C B C B C B C B C B C B D B D B D B D B D B D <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
SULFARE, BLACK LIQUORS C B C B C A A B B C B C B SULFARE, WHTE LIQUORS D B D B D B D A A A B C B D B SULFARE, WHTE LIQUORS D B D B D B D A A A A B D B D B D B B B B B B B B B D <td></td>															
SULFARE, GREEN LIQUORS C B C B C B C B D A A A A A B C B D B SULFARE, WHITE LIQUORS D B D B D B D A B B B B A A A A A A A A A A A A A A A A <td></td>															
SULFAR: WHITE LOUORS D B D B D B D A A A A A B D B D B D B D B D B D B D B D B D B D B D B D															
SULEURIC ACID (0 to 7/s) (VTEP) D B D B D A A A A A D D B D B SULEURIC ACID (100%) (VTEP) D D D D D D A B B B B B B B B B B B B B B B B B A A A A A A A A A A A A A	, ,														
SULPURIC ACID (20%) (VITEP) D D D D D D A A A A A D D D B SULFURDIC ACID (50%) (VITEP) D															
SULFURIC ACID (20%) (VTFEP) D D D A A A A A A A A A D<	. , , , ,	В				В									
SULFUROUS ACID D D D D D D D A A A A D D D D SULFUR DOXACID B A B A B A B A B A B A B A B A B A B A B A B A B A B A A A A A A A A A A A A A A A A A A A<	2 4	D	D	D	D	D	А	А	А	А	D	D	D	D	В
SULPHUR B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A A A A A A A B B B B B B B B A </td <td>SULFURIC ACID (50%) (VTFEP)</td> <td>D</td> <td>D</td> <td>D</td> <td>D</td> <td>D</td> <td>А</td> <td>А</td> <td>А</td> <td>А</td> <td>D</td> <td>D</td> <td>D</td> <td>D</td> <td>В</td>	SULFURIC ACID (50%) (VTFEP)	D	D	D	D	D	А	А	А	А	D	D	D	D	В
SULPHUR DIOXIDE (DRY) B A B A B A A A A A B B B B SULPHUR TROXIDE (DRY) B A	SULFUROUS ACID	D	D	D	D	D	А	А	А	А	D	D	D	D	D
SULPHUR TRIOXIDE (DRY) B B B B B B B B A A A A A A B B B B SYNTHESIS GAS B B B B B B B B B B B B B B B B A	SULPHUR		А	В	A	В	А	A	А	А	С	В	А	В	А
SYNTHESIS GAS B D A A A A B <	SULPHUR DIOXIDE (DRY)						А	А	А	А					
TALL OIL B B B B B B B B A A A A B B B B TARNIC ACID A															
TANNIC ACID B B B B B A A A A A B B B B TARTARCOL D D B D B D B D A A A A A B D B D B D A A A A A B D B D B D B D B D B D B D A A A A A A B D B D B D C B C B C A															
TAR - TAR OIL A A A A A A A A B A A A A B D D <															
TARTARIC ACID D B D B D A A A A B D B D B TETRACTHYL LEAD C B C B C B C A A A A B C B C A TITANIUM TERACHLORIDE TI-CL3 - - - - - A - </td <td></td>															
TETRAETHYL LEAD C B C B C A A A B C B C A TITANIUM TETRACHLORIDE T1-CL4 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
TITANIUM TETRACHLORIDE T1-CL4 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
TITANIUM TRICHLORIDE T1-CL3 -															A
TOLUENE - TOLUOLAAA <td></td> <td>_</td>															_
TOMATO JUICECACACAAAACACATRANSFORMER OILAAA															
TRANSFORMER OILAAABBABABABABABBABBABBABBABBABBABBABBABBABBABBABBABBABBABBABBAB															
TRIBUTYL PHOSPHATEAABABABABABABABABABABABABABABABABABABBCCAAAAABABBCABBCABBABBCAAAAAAAABBABBCAAAAAAAAAAAAAAAAAAAAAA </td <td></td>															
TRICHLOROETHYLENEBBBBBBAAAABBBBBATUNG OILBABABABAAAAABABABCTURPENTINEBABABABAAAAAABABBCUREACBCBCACAAAABBCACVARNISHCACACACAAABBCACVEGETABLE OIL, EDIBLEBABABABAAAABABBBVINEGARDADADADAAAAADADAWATER, FRESHCADADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABABABABABABABABABABABABA <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
TURPENTINEBABABABAAAAAABABBABBABBABBABBABBCAABBCAABBCAAABBCAAACAACAACAACAACAACAACAACAACAACAACAACAACAACAACAABABACAAABABACAAABABACAAABABACAAABBCAABBCAABBCAABBCAABBABBABBABBABBABBABBABBABBABBABBABBABBABBABBABBAABAAA	TRICHLOROETHYLENE									В	В				
UREACBCBCAAAACBCAVARNISHCACACACAABBCACAVEGETABLE OIL, EDIBLEBABABABAAAAABABBABBABBABAAAAAABABBBBBABAAAAAAABABBBBBBABAAAAAAAABBBBBBABAAAAAAAAABBBBBBBBABABABBBBBBBABAAAAAAAABBBBBBBBBBABABBBBBBBBBABABAAAAAAAAAAAAAAAAAAAAAAAAAAAAA </td <td>TUNG OIL</td> <td>В</td> <td>А</td> <td>В</td> <td>А</td> <td>В</td> <td>А</td> <td>А</td> <td>А</td> <td>А</td> <td>А</td> <td>В</td> <td>А</td> <td>В</td> <td></td>	TUNG OIL	В	А	В	А	В	А	А	А	А	А	В	А	В	
VARNISHCACACACABBCACAVEGETABLE OIL, EDIBLEBABABABAAAAAABABBBVEGETABLE OIL, NON-EDIBLEBABABABAAAAAABABBBVINEGARDADADADAAAAADADAWATER, DISTILLED (AREATED)DADADAAAAAADADAWATER, FRESHCACADAAAAAADADAWAXES, EMULSIONSAA <td< td=""><td>TURPENTINE</td><td>В</td><td>А</td><td>В</td><td>А</td><td>В</td><td>А</td><td>А</td><td>А</td><td>А</td><td>А</td><td>В</td><td>А</td><td>В</td><td>В</td></td<>	TURPENTINE	В	А	В	А	В	А	А	А	А	А	В	А	В	В
VEGETABLE OIL, EDIBLEBABABABAAAAABABBVEGETABLE OIL, NON-EDIBLEBABABABABAAAAAABABBBVINEGARDADADADAAAAADADAWATER, DISTILLED (AREATED)DADADAAAAAADADAWATER, FRESHCACACACAAAAAADADAWATER, SEADAA	UREA	С	В	С	В	С	А	А	А	-	-	С	В	С	А
VEGETABLE OIL, NON-EDIBLEBABABABAAAAAABABBVINEGARDADADADADAAAAADADADAWATER, DISTILLED (AREATED)DADADADAAAAADADAWATER, FRESHCACACACAAAAADADAWATER, SEADADADAAAAAAADADAWAXESAA	VARNISH	С	А	С	А	С	А	А	А	В	В	С	А	С	А
VINEGARDADADADAAADADADAWATER, DISTILLED (AREATED)DADADADADAAAADADADAWATER, FRESHCACACACAAAAAACACAWATER, SEADADADAAAAAADADAWAXESAA <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>А</td><td>А</td><td>А</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							А	А	А						
WATER, DISTILLED (AREATED)DAADADADADDD <td></td>															
WATER, FRESH C A C A C A A A A C A D A D A D A D A D A D A <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
WATER, SEA D A D A D A D A A A A D A D A WAX, EMULSIONS A															
WAX, EMULSIONS A															
WAXES A <td></td>															
WHISKEY AND WINE D A D A D A D A A A A D A D A XYLENE (DRY) A<															
XYLENE (DRY) A <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
ZINC CHLORIDE D D D D D A A A C D D D B															
ZINC HYDROSULFITE A A A A A A A A A A A A A A A A A A A															
ZINC SULFATE D B D B D A A A A D D B D B															

Services for Valves and Actuation

WE BUILD IT. WE BACK IT.

Global Network and Local Support

Cameron is well-positioned to deliver total valve support, quickly and efficiently, with unmatched OEM expertise. Our highly skilled engineers and technicians are available around the clock, seven days a week to respond to customer queries, troubleshoot problems, and offer reliable solutions.

Easily Accessible Parts and Spare Valves

- OEM spare valves, actuators, and parts (including non-Cameron brands)
- Handling, storage, packaging, and delivery
- Dedicated stocking program

Comprehensive Services Portfolio

- Parts and spare valves
- Repair
- Field services
- Preventative maintenance
- Equipment testing and diagnostics
- Remanufacturing
- Asset preservation
- Customer property management
- Training and recertification services
- Warranty

Customized Total Valve Care[™] (TVC) Programs

Customized asset management plans that optimize uptime, availability and dedicated services.

- Engineering consultancy
- Site management
- Flange management
- Startup and commissioning
- Spare parts and asset management
- Operational support

USA • CANADA • LATIN AMERICA • EUROPE • RUSSIA • AFRICA • MIDDLE EAST • ASIA PACIFIC

Trademark Information

WKM is a registered trademark of Cameron. CAMSERV and DynaSeal are trademarks of Cameron.

This document contains references to registered trademarks or product designations that are not owned by Cameron.

Trademark	Owner	Common Name	Comparable Cameron Abbreviated Name (in trim charts)
Celcon	Hoechst Celanese Corporation		
Teflon	E.I. DuPont De Nemours & Company	Poly Tetra Fluoro Ethylene	PTFE
Viton	DuPont Dow Elastomers L.L.C.	Fluoroelastomer	FKM
17-4PH	Armco Advanced Materials Corp.	17-4PH Stainless Steel	Type 630
		Electroless Nickel Plating	ENP

3250 Briarpark Drive, Suite 300 Houston, TX 77042 USA Toll Free 1.800.323.9160

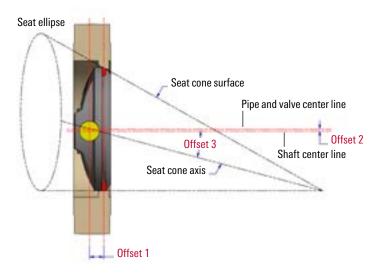
Learn more about WKM at: www.c-a-m.com/valves

HSE Policy Statement At Cameron, we are committed ethically, financially and personally to a working environment where no one gets hurt and nothing gets harmed.

WKM Valves– Triple Offset Valves

High-quality, bidirectional valves for critical applications in demanding markets

WKM Valves — Triple Offset Valves


The TOV completes our reliable, performance-proven, quarter-turn butterfly valve portfolio. The true triple offset geometry of this valve allows for bubble-tight sealing to create a valve that delivers fully bidirectional zero-leakage shutoff per API Standard 598.

Backed by our world-class engineering, manufacturing, and sourcing expertise, the TOV provides a trusted solution ideal for crucial applications. Operators around the world rely on our dedication to high-quality standards, competitive manufacturing processes, and world-class support for total valve life cycle support.

Advantages

- True triple offset geometry
- Fully bidirectional zero-leakage shutoff per API 598
- Field-replaceable metal seat
- Life cycle tested as a bubble-tight bidirectional valve
- Standard bearing seals
- Self-centering disc
- Available in a wide range of configurations: lug and short (ISO) and long pattern
- Carbon and stainless steel standard; other materials on request

Triple Offset Geometry

Offset 1 provides full 360° uninterrupted sealing.

Offset 2 provides eccentric rotation of the disc that swings the seal ring completely off the seat upon opening.

Offset 3 moves the centerline of the cone rotation laterally from the centerline of the disc rotation, enabling the cone to seal without rubbing.

Compliance and Specifications	
API Standard 609	
ASME B16.34	
ASME B16.5	
API Standard 598	
ISO-5752 flange dimension	
ASME B16.47 for Series A mating pipe flange dimensions for valve sizes 26 in and larger, Classes 150, 300, and 600	
ASME B16.10	
MSS-SP-55	
ISO 5211	
API Standard 607, latest edition for fire testing	
Fugitive-emissions testing per API Spec 641 and ISO 15848-1	

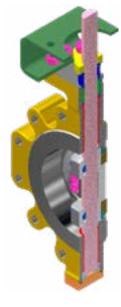
Major Markets

Power and steam

- District heating
- Bitumen

Petrochemicals (refining and chemicals)

- Coking
- Reformers cracking
- Tank switching
- Ethylene
- Butadiene
- Isocyanates plastics


Midstream

- Tank and terminal
- Tank switching
- Long pattern for gate valve replacement
- Storage for all types of hydrocarbons and chemicals
- Liquid transfer

Upstream production

- Process equipment
- Separation molecular sieve
- Switching
- Floating production platforms
- Manifolds
- Slurry, oil sands, and SAGD methods
- Secondary recovery

Flange Connections

Lug pattern per API 609

Short pattern per ISO 5752/API 609

Applications

Oil and gas

- Critical isolation
- Steam piping and condensate
- Offshore platforms
- Cooling water systems
- Seawater
- Produced fluids processing systems

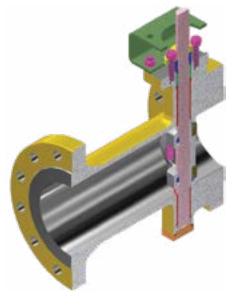
Refining and petrochemical processing

Hydrocarbon processing

- Hydrogen
- Oxygen
- Thermal fluids
- Hot gases
- Sulfur (tail gas)

- Chemical solvents
- Chlorinated solvents
- Flare gas

Liquefied natural gas


- LNG storage
- LNG production

Power and district heating

- Steam isolation
- Hot water control systems
- Geothermal steam

Midstream

- Tank isolation
- Manifold system isolation
- Metering systems
- SCADA systems

Long pattern per ASME B16.10 and API 609

WKM Valves—Triple Offset Valves

products.slb.com/wkmtov

