SSCLA

 $\frac{3}{502}-9$筑 (2)

The Kegulation Kange

Controlling water distribution

Water distribution in networks is becoming more and more complex, because od urbanisation ; the quality service owed to the customer and the wish to improve efficiency by lowering energy consumption.
Socla proposes in the field of regulation a wide range of stabilisers but also different air control devices :

- The automatic control valves range answers to upstream/downstream/differential pressures, altitude valves, float valves, electrically operated valves, with pilots ; discharge valves ; pump and flow protection valves

- The water hammers and air valves systems allow air control water distribution networks by ensuring continuous and automatic evacuation but also influx and release of air at fast rate

Desbordes. : PRESSURE REDUCERS wide ranges
\checkmark Any position installation
\checkmark Scale and dirtproof
\checkmark No filter and no maintenance
\checkmark Maximum upstream pressure of 25 bar
\checkmark Precise and permanent setting
\checkmark All type of connections
\checkmark A single model hot and cold water \checkmark Bronze body
\checkmark Excellent acoustic and hydraulic performances

Desbordes literature*

A multiplicity and various applications :

FLATS AND HOUSES INDIVIDUAL WATER SUPPLY

11 : male/male
11 BIS : female/female
11 EP : union-nut/male
11 DO : equipped with 2 plugs $1 / 4^{\prime \prime}$ on each side +2 fittings removables

- Delivered pre-set at 3 bar

FOR WATER DISTRIBUTION DOMESTIC I AND INDUSTRIAL

10 : male/male

10BIS : female/female
10TER : with flanges
10 RC : with flanges and compensating spring

- Delivered unset

WATER SUPPLY OF HOUSE BLOCKS, COLLECTIVE HOUSING

REDUNEUF
9 : threaded male/male
9 BIS : threaded female/female

- Non adjustable set at 3 bar

VERY LOW PRESSURE : AGRICULTURE, IRRIGATION, LABORATORY

11BIS RCBP : male/male
Possible to set less than 1 bar

FLATS AND HOUSES INDIVIDUAL WATER SUPPLY

JUNIOR
7 BIS : threaded female/female
7 EP : union-nut/male
7 SP : male/union-nut
Delivered pre-set at 3 bar

PROTECTION OF INDIVIDUAL DEVICE,

 WATER HEATER
SECURO

5 SP : male/union-nut

Delivered pre-set at 3 bar

A Desbordes water hammer arrestors range is also available for plumbing to be placed at the closest

* Desbordes products are presented in a specific literature available on simple request to our commercial department.

Select your specific control system

PRESSURE CONTROL

FLOW AND LEVEL CONTROL

RESERVOIR CONTROL

FAVOUR FUNCTION

OTECTION AND CONTROL
Against water hammer
Against electrical failures
Pump protection
Slow opening and closing

Electrically operated
(3 ways solenoid valve)
Against "overspeed flow"
Against downstream pipe
breakage
Pages

AIR CONTROL
Clear water

- Releasing air under pressure
- Fast release of air
- Fast influx of air water
- Releasing air under pressure release of air
- Fast influx of air
Pages

Water and air in canalizations

Whatever its purpose, domestic, urban, agricultural or industrial, the water we use every day is distributed by an increasingly complex pattern of pipeline networks.

Every new installation, every development of, or addition to the network (buildings, industrial zone, etc...) creates imbalance of pressures or air pockets in piping systems.
The role of control valves in their many functions is to restore the balance by regulating water distribution according to pre-determined priorities.

Application examples
 (LEGEND OF DRAWING)

A \rightarrow C 101 Reduces pressure to a distribution system when gravity fed from a source with a relatively high elevation.
B \rightarrow C101 Reduces pressure in an irrigation system.
C \rightarrow C104 Maintains a preset upstream pressure and a preset downstream pressure reduction.

D \rightarrow C 101 Reduces pressure to a low pressure zone when the pump discharge is too high.
E \rightarrow C301 Prevents over pumping of both deep well and booster pumps if the system demand exceeds the pumping capacity.
F \rightarrow C104 Guarantees maintenance of sufficient upstream pressure when supplying water to a low pressure zone.
G \rightarrow C 301 Prevents a pump from lowering its suction pressure below a desired safe operating minimum.

H \rightarrow C 306 Maintains a constant differential pressure across a pump to maintain a constant flow rate.

I \rightarrow C 401 Protects the system against accidental overpressures (caused by a failure of the control valve C100, stop valve closing too quickly).
J \rightarrow C201 Double action altitude valve allowing filling of the tank and emptying back to the supply.
K \rightarrow C 701 Controls the level of the tank by means of float regulation and allows distribution to the village.
L \rightarrow C501 Protects the pump station against surges due to start up, shut down and power failure.

M $\mathbf{N} \rightarrow$ C 601 Eliminates pressure fluctuations when pump starts and shuts down.

O \rightarrow C 901 Controls flow rate to the factory.

P \rightarrow C 301 C 801 Allows flow between two distribution systems (example : feeding a water storage tank for peak distribution time).

Q \rightarrow VE 120 VE 320 Allows the release of air in excess in clear water piping systems.
$R \rightarrow$ AB900 Absorbs water hammering.
S \rightarrow VE 330 Allows the release of air in excess in waste water systems.

SOCLA

MAIN VALVE

- Specific hydraulic profile

- Range ND 1"1/2 to 300 mm
- High pressure cast iron
- Tested and preset at assembly

WORKING PRINCIPLE

PRESSURE REDUCING VALVE TYPE C 101

CONTROLLING

SЭCLA

CONTROLLING DOWNSTREAM PRESSURE

This valve reduces :

- distribution pressure when the supply comes from a source situated at a relatively high level.
- distribution pressure to a working level
for a given zone.
- the pressure at the discharge side of a pump when it is too high.
- pressure in an irrigation system.

Equipped with non-return valves (check valves) : - it closes automatically in case of a return of water. (C 101 C)

- it opens automatically to reverse the direction of flow if the upstream pressure becomes less than the downstream pressure. (C 101 DS)

Setting ranges

0.34 to 5.51 bar
1.72 to 8.5 bar
2.06 to 27.52 bar

CONTROLLING DOWNSTREAM PRESSURE

C 102

Equipped with two pilot valves identical to C 101, valve C 102 controls and maintains a constant preset reduced downstream pressure regardless of variations in downstream demand or upstream pressure. The addition of a second pilot allows uninterrupted working while servicing one of the pilots or ease of change to a different preset pressure setting.

This valve reduces :

- distribution pressure when the supply comes from a source situated at a relatively high level.

- distribution pressure to one or two wor-
king levels for a given zone.
- the pressure at the discharge side of a pump when it is too high.
- pressure in systems required to function at low pressures (eg irrigation).

Setting ranges :

CONTROLLING DOWNSTREAM PRESSURE

C 108 C 108 C

Controls and maintains a constant preset reduced downstream pressure regardless of variations in downstream demand or upstream pressure. The valve can open completely if the upstream pressure falls below a given level.
This valve reduces :

- distribution pressure when the supply
comes from a source situated at a relatively high level,
- distribution pressure to a working level for a given zone,
- the pressure at the discharge side of a pump when it is too high,

- pressure in systems required to function at low pressures (eg irrigation).
Provided with check valves :
- it closes automatically in case of backflow. (C 108 C)

The same setting range for downs-
tream pressure or open wide control : $\begin{array}{r}\frac{0.14 \text { to } 2.41 \mathrm{bar}}{1.72 \text { to } 8.6 \mathrm{bar}} \\ \hline 6.89 \text { to } 17.24 \mathrm{bar} \\ \hline 13.78 \text { to } 27.57 \mathrm{bar}\end{array}$

CONTROLLING DOWNSTREAM PRESSURE

C 104 C 104 C

Controls and maintains a constant preset reduced downstream pressure together with a given upstream pressure whatever the variations in downstream demand and upstream pressure.
Equipped with non-return valves (check valves) it closes automatically in the event of a return of water. (C 104 C)

Downstream | pressure : | 0.34 to 5.51 bar |
| :--- | :--- |
| | 1.72 to 8.5 bar |
| | 2.06 to 27.52 bar |

C 301 C 301 C C301 DS

Controls and maintains a preset upstream pressure whatever the variations in downstream demand.

This valve guarantees the maintenance of pressure upstream. It can also prevent the flow rate intake in a pump from falling below a safe minimum. It prevents overstretching of pumping capacity when the demand is too great.
Equipped with non-return valves (check valves)

- it closes automatically in the event of a return of water. (C 301 C)

- it opens automatically to reverse water flow if the upstream pressure becomes less than the downstream pressure. (C 301 DS)

Setting ranges :
0.34 to 4.13 bar
1.72 to 7.57 bar
2.06 to 17.22 bar
13.78 to 27.51 bar

DIFFERENTIAL PRESSURE CONTROL

C 306 C 306 C

Maintains a constant preset differential pressure across the valve or across a pump.
This valve allows :

- the maintenance of a constant differential pressure between two parts of a water system whatever the upstream pressure.
- the maintenance of a constant differential pressure between upstream and downstream of a pump.
Equipped with non-return valves (check valves) it closes automatically in the event of a return of water. (C 306 C)

Setting ranges :
0.14 to 2.41 bar
1.72 to 8.6 bar
6.89 to 17.24 bar

DISCHARGE VALVE

C 401 C 401 C

Installed on a bypass of the zone to be protected, this valve opens when the preset pressure is reached. It stays open for as long as the overpressure lasts and evacuates the surplus water into a tank, a drain or to a low pressure zone.
Equipped with non-return valves (check valves) it closes in the event of a return of water in the discharge network. (C 401 C).

ANTI-WATER HAMMER VALVE

C 501

Eliminates pressure fluctuations due to start up, shut down or failure of a pump, or in case of power failure.
This valve, always installed on a bypass, drains a certain volume of water to waste or back to the feeding reservoir. This may happen in two phases:
a) the water hammer action creates in anticipation a drop in pressure which will release the corresponding volume of water.
b) if effect is not sufficient, the valve will react in real time to the following overpressure.

PUMP PROTECTION VALVE

C 601

Generally installed on the main line, this valve eliminates downstream pressure surges and water hammer during normal starting and stopping of a pump.
This valve, whose control is integrated into the electrical circuit of the pump, opens and closes at a slow, controlled speed during start up and shut down phases of the pump.
Set pressure depends on solenoid valve.

WATER HAMMER PROTECTION VALVE

AB 900

Its role is to protect systems against surges (water hammer), whatever their source, by evacuating the water in excess straightaway.

The mechanism consists of a spring which is adjustable to the correct weighting to hold the valve firmly in place against its seat, keeping it watertight.

When a pressure wave occurs this causes compression of the spring and the opening of the valve to allow evacuation of the water.
It should be noted that the stem (7) is designed to compensate for defect of alignment which could be caused by hydraulic pressure on the valve and by the force of the spring.
This avoids any instability and allows a self centering of the valve seat to centralize itself automatically when water passes.

PN 10 A PN 16

REF.	DN	Spring	Setting range in bars	Orepressure in bars	Flow rate Us max.
$\begin{aligned} & 5891 \mathrm{~A} \\ & 5891 \mathrm{~B} \\ & 5891 \mathrm{C} \end{aligned}$	60	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \end{aligned}$	1 to 7 6 to 12 10 to 17	$\begin{aligned} & 2,5 \\ & 2,9 \\ & 3,3 \end{aligned}$	$\begin{aligned} & 45 \\ & 60 \\ & 68 \end{aligned}$
$\begin{aligned} & 5892 \mathrm{~A} \\ & 5892 \mathrm{~B} \\ & 5892 \mathrm{C} \end{aligned}$	65	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \end{aligned}$	1 to 7 6 to 12 10 to 17	$\begin{aligned} & 2,5 \\ & 2,9 \\ & 3,3 \end{aligned}$	$\begin{aligned} & 45 \\ & 60 \\ & 68 \end{aligned}$
$\begin{aligned} & 5893 \mathrm{~A} \\ & 5893 \mathrm{~B} \\ & 5893 \mathrm{C} \end{aligned}$	80	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \end{aligned}$	1 to 7 6 to 12 10 to 17	$\begin{aligned} & 1,5 \\ & 2,1 \\ & 2,8 \end{aligned}$	$\begin{aligned} & 55 \\ & 75 \\ & 90 \end{aligned}$
$\begin{aligned} & 5894 \mathrm{~A} \\ & 5894 \mathrm{~B} \\ & 5894 \mathrm{C} \end{aligned}$	100	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \end{aligned}$	1 to 7 6 to 12 10 to 17	$\begin{aligned} & 2,2 \\ & 2,7 \\ & 3,4 \end{aligned}$	$\begin{array}{r} 80 \\ 110 \\ 160 \end{array}$
$\begin{aligned} & 5895 \mathrm{~A} \\ & 5895 \mathrm{~B} \\ & 5895 \mathrm{C} \end{aligned}$	125	$\begin{aligned} & A \\ & B \\ & C \end{aligned}$	1 to 7 6 to 12 10 to 17	$\begin{aligned} & 2,3 \\ & 2,9 \\ & 3,5 \end{aligned}$	$\begin{aligned} & 120 \\ & 160 \\ & 200 \\ & \hline \end{aligned}$
5896 A 5896 B 5896 C	150	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \end{aligned}$	1 to 7 6 to 12 10 to 17	$\begin{aligned} & 2,4 \\ & 3,2 \\ & 3,6 \end{aligned}$	$\begin{aligned} & 200 \\ & 280 \\ & 350 \end{aligned}$
$\begin{aligned} & 5897 \mathrm{~A} \\ & 5897 \mathrm{~B} \\ & 5897 \mathrm{C} \end{aligned}$	200	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \end{aligned}$	1 to 7 6 to 12 10 to 17	$\begin{aligned} & 2,7 \\ & 3,5 \\ & 4,5 \end{aligned}$	$\begin{aligned} & 580 \\ & 750 \\ & 900 \end{aligned}$

PN 25

REEF	DN	Spring	Setting range in bars	Orerpressure in bars	Flow rate Ls max.
5891DPN25	60	D	16 to 26	4,2	90
5892DPN25	65	D	16 to 26	4,2	90
58930PN25	80	D	16 to 26	4,3	150
5894DPN25	100	D	16 to 26	4,4	280
5895DPN25	125	D	16 to 26	4,5	400
5896DPN25	150	D	16 to 26	4,4	550
5897DPN25	200	D	16 to 26	4,5	1200

1. Adjustable setting screw
in stainless steel
2. With seal
3. Valve head in cast iron FGL 250
or steel (ND 150/200)
4. Steel spring NCD
5.6. Steel spring support
5. Stainless steel stem
6. Friction ring in PTFE
7. Steel valve plug
8. Valve plug sealing ring (polyurethane)
9. Steel cover
10. Stainless steel seat
11. O-ring (NBR) nitrile rubber
12. Steel flange
13. Steel top plate
14. Plug for manometer ($1 / 4$)
15. Stainless steel bolt

Powder epoxy coated inside/outside

DN	D	H	h	Weight kg
60	380	510	120	30
65	380	510	120	30
80	380	510	120	32
100	400	520	120	36
125	570	550	130	65
150	570	550	150	80
200	690	700	180	120

[^0]
FLOAT VALVES

C 701

PROGRESSIVE OPENING AND CLOSURE
Prevents overflowing and maintains a constant level in a reservoir by means of a float tap. Opening and closure are very gradual over the few centimeters above and below the required level.

This valve should preferably be installed at the foot of a reservoir or the top of a tank.
Connecting pipe $10 / 12 \mathrm{~mm}$ from the
float tap to the valve not included.
(Must be adjusted on measure on site).

FLOAT VALVES

C 702

Identical to C 701, it guarantees the maintenance of sufficient upstream pressure while allowing the reservoir to be filled when the network permits. (diversion)
Connecting pipe $10 / 12 \mathrm{~mm}$ from the pressure float tap to the valve not included.
(Must be adjusted on measure on site).

Setting ranges :
Upstream pressure :

FLOAT VALVES

C 707 C 707 C C 727
NON-MODULATING
WORKS FULLY OPEN-FULLY
CLOSED

Valve controlled by a solenoid valve connected to a float switch*. The solenoid (normally closed) is activated when the float reaches the low level ; it then re-closes at the high level.
Regulated by volume not by level, this valve is suitable for night-time filling, since the
"fully open - fully closed" principle economizes on energy in the case of supply by a pump.

- not included

Equipped with non-return valves (check valves),

- it closes automatically in the event of a return of water. (C 707 C)
- it guarantees the maintenance of sufficient upstream pressure while allowing the reservoir to be filled when the pressure in the system allows it (C 727).
Working pressure depends on solenoid valve.

Setting ranges:
Upstream pressure :
$\frac{0.34 \text { to } 4.13 \mathrm{bar}}{\frac{1.72 \text { to } 7.57 \mathrm{bar}}{2.06 \text { to } 17.22 \mathrm{bar}}}$

For index of icones, see flap fold on the last page

FLOAT VALVES

C 717

Regulates the volume of water in a reservoir by means of a 2 position mechanical float. It closes at a preset high level and opens at a given low level.

Connecting tubes $4 / 6 \mathrm{~mm}$ to the float are not supplied.
(Must be adjusted on measure on site).

Setting ranges:
High and low level : 0 to 3.6 m

FLOAT VALVES

C 737

Identical to type C 717, it guarantees the maintenance of sufficient upstream pressure while allowing the reservoir to be filled when the system pressure allows it.
Connecting tubes $4 / 6 \mathrm{~mm}$ to the float are not supplied.
(Must be adjusted on measure on site).

High and low leve : 0 to 3.6 m Upstream pressure :
$\frac{0.34 \text { to } 4.13 \mathrm{bar}}{\frac{1.72 \text { to } 7.57 \mathrm{bar}}{2.06 \text { to } 17.22 \mathrm{bar}}} \frac{13.78 \text { to } 27.51 \mathrm{bar}}{\frac{1}{2}}$

INSTALLATION EXAMPLES

ALTITUDE VALVES WITH PILOTS

C 201 C 201 C C 201 DS

PROGRESSIVE OPENING and closure

Prevents overflowing and maintains a constant level in a storage tank or reservoir by means of a pilot. Both opening and closure are very gradual over the few centimeters above and below the required level.

This type of valve should be used when the supply pressure is appreciably higher (about 1 bar) than the head developed by a full storage tank or reservoir.

Equipped with non-return valves (check valves)

- it closes automatically should any water return. (C 201 C)
- it opens automatically to reverse water flow if the upstream pressure becomes less than the downstream pressure. (C 201 DS)

Exists in top-fill or bottom-fill versions. Setting ranges
$\frac{0.14 \text { to } 1.38 \text { bar }}{\frac{1.38 \text { to } 2.75 \text { bar }}{2.07 \text { to } 5.5 \text { bar }}}$

ALTITUDE VALVES WITH PILOTS

C207 C227

ALTITUDE VALVE WITH 2 PILOTS
Regulates the volume of water in a reservoir by means of two pilots. It closes at a preset high level and opens at a given low level (minimum 1.5 m).
It guarantees the maintenance of sufficient upstream pressure while permitting the reservoir to be filled when the pressure in the system allows it. (C 227)
Working pressure : 6 bar

Low level: 0 to 0,69 ba
$\frac{0.14 \text { to } 2.41 \mathrm{bar}}{1.72 \text { to } 6 \mathrm{bar}}$

FLOW LIMITERS

C 901 C 901 C

Controls and maintains a preset maximum flow rate out of the valve regardless of variations in upstream and downstream pressure.

This valve can be used to control the flow from a pump into a distribution or irrigation system, or as a flow limiter to feed a secondary system.
Equipped with non-return valves (check valves) it closes automatically should any water return. (C 901 C)

Setting ranges
Flow rates available : $1 \mathrm{~m} / \mathrm{s}$ to $4,5 \mathrm{~m} / \mathrm{s}$

FLOW LIMITERS

C 902 C 902 C

Controls and maintains a preset maximum flow from the valve and a reduced downstream pressure whatever the variations in upstream pressure.
Equipped with a non-return valve, it closes automatically should water return. (C 902 C)

Setting ranges:
Flow rates available : $1 \mathrm{~m} / \mathrm{s}$ to $4,5 \mathrm{~m} / \mathrm{s}$ Downstream pressure regulations:

$\frac{0.14 \text { to } 2.41 \mathrm{bar}}{1.72 \text { to } 8.6 \mathrm{bar}}$
6.89 to 17.24 bar
13.78 to 27.57 bar

FLOW LIMITERS

C 903 C 903 C

Controls and maintains a maximum flow rate and the high water level of a reservoir by means of a regulating pilot valve.
Equipped with a non-return valve (check valve) it closes automatically should water return. (C 903 C)

Exists in top-fill or bottom-fill versions.

[^1]
FLOW LIMITERS

C 904 C 904 C

Controls and maintains a maximum flow rate at the valve outlet and a preset upstream pressure.
Equipped with a non-return valve (check valve) it closes automatically should water return. (C 904 C).

Setting ranges
Flow rate range : $1 \mathrm{~m} / \mathrm{s}$ to $4,5 \mathrm{~m} / \mathrm{s}$ Upstream pressure range

"OVER SPEED" VALVE

C 906

Safety valve which closes in the event of an unusual high speed of water downstream (protects against the consequences of a burst in the system downstream). Re-set manually.

[^2]
INSTALLATION EXAMPLES

A filter must be installed between the butterfly valve and the regulating valve. If the circuit is uphill or horizontal, include an air-valve upstream. If it is downhill, include an air-valve downstream.

ELECTRICALLY OPERATED VALVES

$C 801$ C 802

C 801 : Electrically controlled valve which is normally closed in the absence of power. Used whenever an on/off system is required.
C 802 : Identical to C 801 but normally open when switched off.
Working pressure depends on solenoïd valve.

NON RETURN VALVE

C 1001 C

This control valve functions as a hydraulic check valve which opens and closes at a controllable and regulated speed, reducing sudden jumps in pressure.
The speed of closure can be regulated independently from the speed of opening.
Like a conventional non return-valve (check valve), it reduces sudden jumps in pressure should water return (C 1001 C). After pressure jumps have stopped, the normal flow is restored progressively.

INSTALLATION EXAMPLES

A filter must be installed between

 the butterfly valve and the regulating valve. If the circuit is uphill or horizontal, include an air-valve upstream. If it is downhill, include an air-valve downstream.

Installation type
C801
C802

OPTIONS

*Available for all versions

OTHER OPTIONS

- PILOT PIPING ASSEMBLY,
- stainless piping system and pilot.
- FLANGES DRILLING

DIFFERENT FROM STANDARD.

OPTION 6

DROP BOX FOR TYPE C 101
Connecting box for hydro-electronic control.
To be connected to the pilot for transfer of information from electronic memory. (Electronic control not included).

MAIN VALVE : TECHNICAL INFORMATION

Minimum upstream pressure : 1 bar
Temperature maxi: $90^{\circ} \mathrm{C}$
Version with flanges : PFA 25 if not indicated Threaded version: 1"1/2 F/F except C900 Vertical installation : on request

(9) (10) BORES FOR PRESSURE GAUGES

DIMENSIONS (except type 900)

DN	A mm	8 mm	$\left\|\begin{array}{c} \mathrm{mm} \\ \text { exeyt } 501 \end{array}\right\|$	$C_{\text {c } 501}$	$\begin{gathered} \emptyset \\ 0 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 0 \\ E \mathrm{~mm} \end{gathered}$	F mm	H mm	Z mm	Weight kg	$\emptyset 9^{\prime \prime}$	$\bigcirc 10^{\circ}$
$1{ }^{1} 12 /$ [FF)	230	267	210	594	170	6 pars 17	-	55	254	8	1/4	1/4
40	230	285	210	594	170	152	23	55	254	12	$1 / 4$	1/4
50	230	285	210	594	170	161	23	55	254	13	$1 / 4$	1/4
65	290	352	257	641	200	185	24	76	254	21	3/8	1/4
80	310	372	272	565	217	200	26	90	254	26	3/8	$3 / 8$
100	350	423	302	686	241	235	28	90	254	39	3/8	3/8
125	400	506	371	755	296	270	30	100	254	59	3/8	3/8
150	480	551	401	905	363	300	20	100	254	73	3/8	3/8
200	600	709	529	987	467	360	22	114	254	122	3/8	3/8
250	730	844	631	1089	587	425	24	127	254	208	$1 / 2$	1/2
300	850	975	730	1188	680	486	27	140	254	328	$1 / 2$	1/2

(1) 78 / on flats

DN	A mm	B mm	C mm	$\emptyset \mathrm{Dmm}$	\emptyset Emm	F mm	H mm	2 mm	Weght kg .	Ø9"	$\emptyset 10^{*}$
40	274	285	210	170	152	23	55	254	15	1/4	1/4
50	274	285	210	170	161	23	55	254	16	1/4	1/4
65	314	352	257	200	185	24	76	254	24	3/8	1/4
80	334	372	272	217	200	26	90	254	29	3/8	3/8
100	374	423	302	241	235	28	90	254	42	3/8	3/8
125	430	506	371	296	270	30	100	254	63	3/8	3/8
150	512	551	401	363	300	20	100	254	77	3/8	3/8
200	626	709	529	467	360	22	114	254	127	3/8	3/8
250	760	844	631	587	425	24	127	254	218	$1 / 2$	$1 / 2$
300	880	975	730	680	486	27	140	254	348	$1 / 2$	1/2

Connection : flanges drilled (GN 10 -GN 16 - GN 25 : to be specified).

HOW TO SELECT THE RIGHT SIZE				
A control valve is a modulating valve which throttles depending on the application to maintain a preset upstream or downstream pressure, a preset flow, a preset fluid level. To correctly size this valve and avoid undesirable operating characterstics (noise, excessive wear, poor regulation) which result from oversizing (or undersizing), use the sizing guide and choose the smallest valve size compatible with the indicated flow rates. NOTA: 1- For a throtting valve application requiring a large fluctuant flow rate, a dual valve installation should be used. 2-The maximum flow rates listed above were calculated by using a velocity of $4,5 \mathrm{~m} / \mathrm{second}$. The throtting value is capable of handling larger flows for short periods of time: however, the increase in maximum flow should be limited to 25% of the above values. 3 - For C900 series: min. flow $1 \mathrm{~m} / \mathrm{s}$.	Size	Mini $\mathrm{m}^{3 / h}$		Maximi/h
		except 9900	C900	
	$1^{\prime \prime} 1 / 2$	0,52	-	20,34
	40	0,675	4,5	32,00
	50	0,675	7	32,00
	65	0,855	12	54,00
	80	1,6	18	82,00
	100	2,72	28	127,00
	125	4,4	44	199,00
	150	5,28	64	286,00
	200	13,5	113	509,00
	250	25,00	177	795,00
	300	40,9	255	1145,00

KV FACTOR		
$m^{3 / h}$ U/s ζ 26,35 7,32 5,78 45,66 12,68 1,93 45,66 12,68 4,70 57,75 16,04 8,39 80,00 22,22 10,00 136,00 37,78 8,47 220,00 61,11 7,90 264,00 73,33 11,38 600,00 166,67 6,96 900,00 250,00 7,56 1224,00 340,00 8,47		

FLOW RATE/OPENING

A too large differential pressure and a To avoid cavitation please refer to above low downstream pressure may result in damage to the valve by cavitation. To avoid it, refer to the cavitation curve.
diagram and if needed reduce the diffe rential pressure by installing and connecting two or more control valves in same ine (consult us).
Stainless steel seat and counter seat are standard
HEADLOSS CHART

INSTALLATION EXAMPLES

A filter must be installed between the butterfly valve and the regulating valve. If the circuit is uphill or horizontal, include an air-valve upstream. If it is downhill, include an air-valve downstream.

INSTALLATION EXAMPLES

A filter must be installed between the butterfly valve and the regulating valve. If the circuit is uphill or horizontal, include an air-valve upstream. If it is downhill, include an air-valve downstream.

CLEAR WATER AIR VALVES

VE 320

TRIPLE FUNCTION AIR VALVE

 FOR CLEAR WATERThis model ensures continuous and automatic evacuation but also influx and release of air at a fast rate.

1. Valve housing in cast iron FGS 400-15
2. Float in PE (polyethylene)
3. PVC closing head
4. Polyamid retaining sleeve
5. Large orifice sealing ring in polyurethane or NBR (nitrile)
6. Small air orifice (stainless steel)
7. Top plate (stainless steel)
8. Air orifice seal (NBR nitrile)
9. Valve cover (cast iron)
10. Ball valve (optional)
11. Drain plug (to check mechanism is in good working order))
12. Sheild profile
13. Float guides
14. Stainless steel screws

Interior/exterior epoxy coated.
0-15

PN 16	Ref.	PN 25	DN	For pipe diameter mm	D mm	H kg
5884R	5884RPN25	$40 / 50 / 60$	≤ 200	200	460	Weight kg
5885 R	5885RPN25	65	≤ 200	200	460	13

WITH STOP VALVE

PN 16 Ref.	PN 25	DN	For pipe diameter mm	D mm	H kg	Weight kg
5884	5884 PN25	$40 / 50 / 60$	≤ 200	200	320	12
5885	5885 PN25	65	≤ 200	200	320	12
5886	5886 PN25	80	≤ 500	225	320	19
5887	5887PN25	100	≤ 1000	255	370	22

water pipes carry air... This air may have been introduced at the time the water system was filled, or during maintenance works, but can also arise from the working of pumps or dissolved air in reservoirs...
The installation of automatic equipment such as air valves and anti-water hammer valves allows most of the problems caused by air to be resolved.

1. FAST RELEASE OF AIR

When a system is filled, the air contained in the pipes must be evacuated.
The primary function of the air valve is therefore to allow a large quantity of air to be evacuated. Because in the beginning the pipes are full of air, the mobile float/valve seat assembly is resting on the shield profile.
Thus the air can be evacuated rapidly through the large orifice without involving the float/valve seat mechanism.

2. RELEASING AIR UNDER PRESSURE
When the network is under pressure, the closing head stays flat against the seal. The float alone rises with the level of the water because of the clearance gap in the sleeve of the float.
Thus, as air accumulates in the air valve the float falls with the level of the water which frees the small orifice which acts as a drain. This evacuates the air.

3. RAPID INFLUX OF AIR

During emptying or a burst in the system, there will be sudden loss of pressure in the pipework. The 3rd function is to allow a large quantity of air to enter in order to avoid problems associated with such a pressure loss. (Vacuum effect).
A rapid drop of water level occurs in the pipework.
The float/valve seat mechanism falls to rest on the aerodynamic shield allowing the air to enter.

WASTE WATER AIR VALVES

VE 330

3 FUNCTION AIR VALVES

FOR WASTE WATER
This model functions in the same way as VE 320.
The body of the valve is simply over-sized to avoid contact between waste water and the top part of the moving section.

Ref. PN 16	DN	For pipe diameter mm	D mm	H kg	Weight kg
5888	80	80 to 200	325	580	35,5
5889	100	200 to 600	325	580	35,5
5890	150	>600	360	650	55

FAST RELEASE OF AIR

RELEASING AIR UNDER RAPID INFLUX OF AIR PRESSURE

1. Small orifice drain in stainless steel
2. Large orifice seal in polyurethane
3. Support for the PVC seal
4. Spindle in polyamide
5. Cap in cast iron FGL 250
6. Valve head in PVC
7. Rod in polyamide
8. Float in polyethylene
9. Valve housing in steel
10. Decompression valve
11. Lifting rings
12. Steel top plate
13. Polyurethane drain seal
14. Float guides in steel

Screws in stainless steel
Steel parts epoxy coated inside/outside

INSTALLATION

The air valves must be installed according to the following parameters.

VE 320

DN	$50-40 / 60-65$	80	100
H mm	1,100	1,200	1,300
$\mathrm{~L} \times \mathrm{I} \mathrm{mm}$	600×600	600×600	600×600
Air inlet (filter) mm	150×150	200×200	300×300

VE 330

DN	$80-100$	150
$H \mathrm{~mm}$	1,200	1,500
$\mathrm{~L} \times 1 \mathrm{~mm}$	$1,000 \times 1,000$	$1,200 \times 1,200$
Air inlet (grille) mm	300×300	300×300

WHERE TO INSTALL AN AR VAVLE

Air valves are installed at the high points of a piping system where air is accumulated.

- Triple function air valves : at the highest levels
- Single function air valves : at intermediary high points, between the triple function air valves.

[^3]
CLEAR WATER AIR VALVES

VE 120

SINGLE FUNCTION AIR VALVE

 FOR CLEAR WATERcontinuously and automatically evacuates accumulated air from the high points of installations.

RANGE AVAILABLE

1. Air valve female thread $1^{\prime \prime}$
2. Air valve with flange

DN 40/50/60/65 mm
3. Air valve with male thread nipple 1 "
4. Air valve with male ball stop valve $1^{\prime \prime}$
5. Air valve with ball stop valve flange DN 40/50/60/65

DESCRIPTION	PN16 XX	PN25 X	CONNEC. TIONS	$\mathrm{A}(\mathrm{mm})$	B	TOTAL HEIGHT	WEIGHT Kg
1) Air valve female thread $1^{\prime \prime}$	2867	2868	$1^{\prime \prime} \mathrm{F}$	-	175	158	5,160
2) Air valve with flange DN $40 / 50 / 60 / 65 \mathrm{~mm}$	2867 BR	2868 BR	$40 / 50 / 60 / 65$	185	175	216	8,400
3) Air valve with male thread nipple 1^{*}	2867 RM	2868 RM	$1^{\prime} \mathrm{M}$	-	175	192	5,300
4) Air valve with male ball stop valve 1^{*}	2867 VA	2868 VA	$1^{\prime \prime} \mathrm{M}$	-	175	222	5,600
5) Air valve with ball stop valve flange DN $40 / 50 / 60 / 65$	2867 VB	2868 VB	$40 / 50 / 60 / 65$	185	175	246	8,700

inside/outside coated (brass) (brass)

1. Cast iron valve housing FGS 400-15 epoxy coated 2. Float in polyphenylene oxide (PPO) 3. Cast iron valve head (FGS 400-15) epoxy
2. Stainless steel filter 5. Stainless steel clips 6. Manual drain screw
3. O-ring NBR (nitrile) 8. Plug drain screw
4. O-ring NBR (nitrile)
5. O-ring NBR (nitrile)
6. Drain
7. Drain nut (brass)
8. Float spindle (stainless steel) 14. Float seal NBR (nitrile) 15. Washer 16. Screw (stainless steel) 17. Valve (nickel plated brass)
9. Cast iron flange FGS 400-15 epoxy coated

TECHNICAL PARAMETERS FLOW / PRESSURE GRAPHS

These graphs indicate the flow of air evacuated or sucked in by the large orifice of the air valves.
The choice of preset flow rate of the air valve is a function of the loss of pressure which can be sustained by the system.

VE 330

VE 320

MAINTENANCE OF AIR VALVES
To check that an air valve is functioning correctly, simply unscrew the drain plug :

- a jet of water indicates that the apparatus is working correctly.
- an air leak under pressure indicates that the air valve is not performing correctly and should be cleaned.

TO PLACE AN ORDER/CHECK LIST

Please complete the details below which we require to process your order correctly :
Type : \square Size : \qquad End connections PN 10 PN 16 PN 25

Inlet pressure (min/max) : \qquad Upstream pressure setting : \qquad
Outlet pressure : \qquad Downstream pressure setting : \qquad
Differential pressure setting : \qquad Flow rate setting : \qquad
Difference in level between the horizontal axis of the valve and the level required in the reservoir Difference between high level and low level (for regulation between top and bottom in a reservoir)

Distance of the valve from the reservoi \qquad Top-filledBottom-filled

Maximum flow rate : \qquad Minimum flow rate : \qquad
Voltage : \qquad Current : Direct \qquad Alternating

Normal pump discharge pressure : \qquad Pump shut off head : \qquad Should valve be open or closed when power switched of (electrically controlled valves) : \qquad Installed position of valve : horizontal \square vertical \qquad other : \qquad
Other requirements : \qquad

Installation scheme, indicate particularities (diversions - elbows - etc...) : \qquad

CUSTOMER

Name	Position
Fax	Telephone

Protection

Non return

Regulation

Shut Off

Socla sAS

365 rue du Lieutenant Putier 71530 VIREY-LE-GRAND BP10273-71107 Chalon S/Saône Cedex Tel. +33 385974242 - Fax +33385979742 Friday 8 a.m. to 1.30 p.m.

SSCLA

目
BUTTERFLY VALVES
sylax.

THE BUTTERFLY

DESIGN, INNOVATE

- Specialist in the control of fluids in movement, our R\&D team integrates in its studies all networks parameters...

Assisted by a powerful date processing, served by the most recent softwares, its objective is the design of innovating products, research of competitiveness and reliability, in respect of environment.

PRODUCE

- Our specialised units, ISO 9001 certified (2000 version) work on recent conception multiposts CNC machines, driven by a sophisticated CAD system.

A particular care is taken to selection and transformation of raw materials, in the respect of ISO 14001 standard.

SERVICE

Since Virey-le-Grand, near Chalon-sur-Saône in France, the Socla logistic centre delivers all orders around Europe, quickly, guaranteeing the efficient service required by the customer.

VALVE
Butterfly valve is a matchless element on fluids in movement networks.

Technical adequacy with installation characteristics and carried fluids, reliability, high level of safety are the main features guaranted by Socla.

THE PERFORMANCE OF TECHNOLOGY

SYLAX - ENODIA

By concentrating the technologies in the field, and by integrating technical solutions of highest standard, Socla propose the competitiveness of a standard range, reliability and a comprehensive approach, affering a multiplicity of solutions.

Safety anti-ejection circlip keeps shaft in place and allows easy maintenance.

Safety reinforced by double watertightness.
Spline driven one piece shaft connected to floating disc guarantees:

- long term reliability
- watertightness optimised
- better high torque transmission

LYCENE

Very high level of working safety for chemical media, food processing industries and pure water thanks to quality components:

- PTFE liner (3 mm thick).
- Stainless steel 316L, mirror polished 316L and SS 316L PFA coated ($2,5 \mathrm{~mm}$ thick).
- Liner back-up enclosed in the body ensures perfect disc tightness.
- Tightness at shaft location with bearing and spring.
- PFA moulding up the stem ensuring zero leakage.
- One piece blow out proof shaft and disc.

EMARIS
Butterfly valve fulfils th rements of industrial a

- DN65 to 200 r
- Stainless steel
- Pressure ratin!

Bi-directional sealing :

- Wide range of industrial applications and high corre media suitability thanks to the use of reinforced PTFI stainless steel and PTFE materials
- Bi-directional tightness
- No use of springs for reliable sealing
- Metallic insert/ sot seal design for high performance sea at variable temperature conditions
- Asymmertic design of the seal for trouble free re-assemt and maintenance

THE WIDENESS

OF THE STANDARD RANGE

Various construction materials for specific applications :

VALVES BODIES

- EN-GJL-250 cast iron
- Gr.WCB carbon steel

FLANGE RATING
A multiplicity of solutions, combining different flange rating, sizes, pressures and construction materials ; other materials are also available on request.

central lugs
double flange ring shaped

- 316 stainless steel (1.4408)
- EN-GJS-400-15 ductile iron

PN6 - PN10 - PN16 - PN25 - ASA 150 ASA300 - PN40

LINERS

The indicated temperatures are the maximum service temperatures.
For working temperatures, see catalogue price-list.

High tenperature EPDM
$-20^{\circ} \mathrm{C} \rightarrow+120^{\circ} \mathrm{C}$
EPDM PTFE
$-20^{\circ} \mathrm{C} \rightarrow+120^{\circ} \mathrm{C}$

CABBOXYLATEO NTRILE
 $-10^{\circ} \mathrm{C} \rightarrow+115^{\circ} \mathrm{C}$

High content NITRILE
$-15^{\circ} \mathrm{C} \rightarrow+90^{\circ} \mathrm{C}$
SILICONE
$-40^{\circ} \mathrm{C} \rightarrow+240^{\circ} \mathrm{C}$

HYPALON

$-25^{\circ} \mathrm{C} \rightarrow+95^{\circ} \mathrm{C}$
FLUORED ELASTOMERE
$-10^{\circ} \mathrm{C}->+200^{\circ} \mathrm{C}$
STAIN. STEEL PTFE
$-50^{\circ} \mathrm{C} \rightarrow+220^{\circ} \mathrm{C}$

DISCONNECTOR WITH DIFFERENT NON CONTROLLABLE PRESSURE ZONES

General characteristics :

Compact	FIF Connections : demountable
High performance	Female/Female unions
Competitive	Maximum working temperature $65^{\circ} \mathrm{C}$
	Maximum working pressure 10 bar

To protect low risk or intermittent risk installations which nevertheless require a backflow prevention system : domestic heating units < 70 Kw , vending machines, certain laboratory equipment...

Special versions in M / M and nickel plated in M/M or F/F

Nomenclature
Membrane NBR (nitrile)
Upstream check valve : brass and polyacetal (POM)
Springs : stainless steel
Downstream check valve : polyacetal (POM)
Valve casing : brass
Funnel : polyamide (PA 6.6)
Filter

TECHNICAL INFORMATION

TYPE CA 296							
Ref.	A	$\begin{gathered} \text { B } \\ \mathrm{mm} \end{gathered}$	$\underset{\mathrm{mm}}{\mathrm{C}}$	$\underset{\mathrm{mm}}{\mathbf{E}}$	$\underset{\mathrm{mm}}{\mathrm{~F}}$	$\underset{\mathrm{mm}}{\mathrm{G}}$	$\begin{gathered} \text { Weight } \\ \mathbf{k g} \end{gathered}$
149B2885	1/2	105	140	32	76	47	0,595
14982886	3/4	105	140	32	76	47	0,580

Functionning principle

Normal operation under pressure
In normal conditions, the discharge valve remains closed while the upstream check valve and downstream check valve are open, allowing water to flow through the device.

Flow interrupted, static pressure

The backflow preventer is under pressure, flow has stopped, upstream and downstream check valves close, the discharge valve remains closed.

Water returns back in case of pressure loss upstream or overpressure downstream

In the case of loss of pressure, the upstream check valve and the downstream check valve remain closed. The pressure loss causes the discharge valve to open and releases air into the middle section. In the case of overpressure upstream and if the upstream check valve is worn, the discharge valve opens, any leak from downstream is evacuated by the discharge valve.

Control kits for maintenance of BA backflow preventers

In accordance with antipollution standard and hygiene regulations, BA backflow preventers must undergo an annual performance check for which the user is responsible.

For this purpose Socla proposes a maintenance kits allowing these periodic checks to be made.

A check list included with the kit describes the procedure which must be followed scrupulously and effected on the device itself.

The following are tested, one by one :

- the watertightness of the upstream stop valve
- the watertightness of the upstream check valve
- the watertightness of the discharge valve
- the watertightness of the downstream stop valve
- the watertightness of the downstream check valve
- the value of differential pressure which triggers the disconnection (as read on the differential manometer ; this should not be less than 140
 mbar when the first drops reach the discharge valve).

In this way the condition of the component parts of the device and the correct functioning of the back flow preventer is thoroughly controlled.

Contractual Replacement Annually Notified

List of french organism for certification

Organisms which certificate the maintenance backflow preventers:

AFORTECH

10 rue du Débarcadère - 75017 PARIS
Tèl : 0140551414

PRO FORM TECH

3 rue Réaumur - 77380 COMBS LA VILLE
Tél : 0160189198

AFPI RHODANIENNE

10 boulevard Edmond Michelet - 69008 LYON
Tél : 0478770570
OFFICE INTERNATIONALE DE L'EAU
22 rue Edouard Chamberland - 87065 LIMOGES
Têl. 0555114700
LEGOURD CONSEIL FORMATION
108 avenue Paul-Vaillant Couturier - 91700 STE-GENEVEVE-DES-BOIS Tél//Fax 0169513685

Electronic kit

All-electronic control unit for backflow preventer of 15 to 250 mm diameter, delivers in a shockproof case with manual, calibration certificate of the electronic manometer and maintenance procedure. Dimensions approx $300 \times 400 \times 110$.

Ref. 1020

Abstract

EXCLUSIVE

Backflow preventer BA 2760 with controllable reduced pressure zone

\section*{With the C.R.AN.}

\section*{Contractual Replacement Annually Notified}

\section*{Socla ensure a complete service!}

With this contract, the yearly maintenance recommended is free thanks to the standard exchange of the BA 2760 annually on the commissionning date. However, the plants where theses devices are mounted, must be verified by qualified personnel, according to article R. 1321-59 of the legislation, published in the 27 Mai 2003.

Advantages : - you save time, - easy management of the maintenance, - controlled costs, - an installation under annual warranty.

Do not hesitate to contact us.

e highest performance and reliability requipplications.
nm
body \& disc / cast steel body \& stainless steel body J up to 50 bar ; temperature de $-50^{\circ} \mathrm{C}$ to $+220^{\circ} \mathrm{C}$
g neck body and cast on Iso Top Plate :

- Designed to allow insulation
- Easy access to the packing gland without removing the actuator
- Cast on ISO plate for direct assembling of actuators

Je range of flange connections:

- Water and tapped lugs bodies PN10-16-25-40-ASA 150/300
-4 lugs, to screw the seat retaining plate on to the valve body, located to offer a larger flange contact surface - Groove end connection
ble eccentric disc :
- Long life durability due to double offset operating principle minimizing seat wear
- Reduced operating torques
- High efficiency tightness by full sealing ring
sive
\vdots by
ling
ling

DISCS

A selection of materials of different characteristics

And also Uranus B6, Hastelloy C, Titanium T40, etc..

ACTUATIONS AND ACCESSORIES THE MULTIPLICITY

PNEUMATIC ACTUATORS

Standard equipment :
\square Preumatic actuations by a acjustable travel stop device - Operating temperature from $-20^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$

- Torques from 16 up to 1100 Nm

Air supply 2 to 10 bar (in standard, air supply 6 bar) Mechanical stops enabing of opening or closing to ± 10 Dry or lubricated ar supply - ATEX $2 I I$ DG C
\square Flanges in accordance with EN ISO 5211, VDINDE 3845 Visual position indicator
I In standard, NF single acting version (NO on request)

AIR TORQUE + REMOTE CONTROL + SERVOVALVES

SCOTCH YOKE- mechanism whit emergency
handwhee.

ELECTRIC ACTUATORS

 rotation angles: 90°; 180° : 270°. Outy raling 50%, Polyamide cover UL.940 appooved 15.30 V AC 50 FOHz (12.4 V DC Male Mal : extenal shat (ER25 10 ER100), 4 adustable imit sutctes, Sel regialed ati-condensa tion teaters, Electronic trope Imite: Falue repont relay, PSAB5 cornection, Mectarica
 Fecric correction $1 \times$ SONZ2. Declutching system for seoved manual overide

Actuator serie VR-VS-VT. Sandard equipment

 num cover Positon indcasa, Faraibie votages: VRVS: $100.240 \mathrm{~V} 505 \mathrm{EH} \mathrm{Hz}(100-350$

L. BERNARD

[^4]\qquad

LISTEN

A team of sales assistants and technicians listen to you, give you an answer and help you in the choice of product, follow-up of orders. Competent professionals, they take care of making you save time.

INFORM

- From technician to technician, a dense and accessible information.
Price-list catalogue - Technical date sheets Price-list manuals - Interactive CD-ROM with research criterias, demonstration videos, web site.
Tools are as various as user-friendly

Operating instructions are available on our web site www.socla.com or on request details with our Sales Department

A SIMPLE CHOICE BY APPLICATION FAMILIES

Seven families in accordance with the Pressure Equipment Directive 97/23/CE. To simplify your approach and make your choice easier, Socla has classified its products according to 7 tamilies, each of them designed for a specific series of applications.

BOMBYX $C \in$
> FIRE PROTECTION CNPP and FM versions DN 32 to 300 mm

APORIA
 (ϵ

$>$ GAS
DN 40 to 300 mm

EMARIS

C $\epsilon=$
> DISTRICT HEATING, STEAM, INDUSTRIAL PROCESSES, PETROCHEMISTRY, INDUSTRY

IN BRIEF, AN ANSWER
TO EACH OF YOUR NEED

MAIN ADMISSIBLE FLUIDS

* Water: $\begin{gathered}\text { Drinking } \\ \text { Salt } \\ \text { Salt }\end{gathered}$
- Waste

Gas
Air
Food products
Pulverulents
Inflammables
Toxic liquids
Explosives
Volatile liquids
Polymerisables
Cristalline liquids
Corrosive liquids
Abrasives
Heat-carrying liquids
Radioactive liquids
Hot liquids
Cold liquids
Granular liquids
Viscous liquids
Paste
Agressive liquids
Steam
Note : temperature and/or pressure depending upon the concentration of certain fluids may require a special adaptation. Please consult us.

ADMISSIBLE
 TEMPERATURE

in the standard range of products

- Peak temperatures between $-50^{\circ} \mathrm{C}$ and $+250^{\circ} \mathrm{C}$
= Working temperatures between $-50^{\circ} \mathrm{C}$ and $+220^{\circ} \mathrm{C}$

PRESSURES

Torques at PS 50 bar.

NOMINAL DIAMETERS
From 25 mm
to 1200 mm
in standard.
DN

APPROVALS

THE PED REQUIREMENTS CLEARLY DISPLAYED

PRESSURE EQUIPMENT DIRECTIVE 97/23/CE

Manufacturing in accordance with the directive requirements for pressure, DN and nature of fluids.

END OF LINE FOR BUTTERFLY VALVES

Body	DN	Materials	End of line
Rirgetapd	50 to 100	G15	NO
Carterng igs	25 to 600	Gll	NO
Carturing lys	25 to 150	G15	YES
Cartering los	200 to 1000	015	NO
Cottring igs	32 to 300	Ster	NO
Cestringigs	32 to 300	Sariess ter	NO
Catra farge	80 to 200	615	YES
Tapped us	32 to 500	Gll	YES
Taped ugs	32 to 500	G/5	YES
Taped us	32 to 300	Sted	YES
Tapped ugs	32 to 300	Stariess stel	YES
Do.tie farge	$\mid 200$ to $1000 \mid$	G. 15	YES

For end of line use, the indicated pressures have been derated and are shown on the valve identification plate.

Important notice :
The indicated pressures and temperature for the different categories of fluids (L1/L2) G1/G2) are not a guarantee of use.
Therefore, it is essential to validate the use of products under given operating conditions to our techrical department.

TRACEABILITY

Identification and traceability ensured by riveted metal tag.

Protection

Non-return

Regulation

Shut Off

SSCLA

Non return
S§CLA

SOCLA, MANUFACTURER ...

DESIGN, INNOVATE

- Specialist in the control of fluids in movement, our R\&D team integrates in its studies all networks parameters...
Assisted by a powerful date processing, served by the most recent softwares, its objective is the design of innovating products, research of competitiveness and reliability, in respect of environment.

PRODUCE

- Our specialised units, ISO 9001 certified (2000 version) work on recent conception multiposts CNC machines, driven by a sophisticated CAD system.

A particular care is taken to selection and transformation of raw materials, in the respect of ISO 14001 standard.

TEST, MEASURE

- Beyond theorical date-processing and technical calculations, Socla integrates in Virey-le-Grand one of the most important hydraulic laboratory.

This tool, amont the most powerful ones in Europe, consolidates Socla in its position of expert in the control of fluids in movement.

SERVICE

Since Virey-le-Grand, near Chalon-surSaône in France, the Socla logistic centre delivers all orders around Europe, quickly, guaranteeing the efficient service required by the customer

SUMMARY

PAGES

HOW TO PRE-SELECT A VALVE	2 and 3
01 SYSTEM	4 and 5
02 SYSTEM	6 and 7
03 + 03HP SYSTEMS	8 and 9
05 SYSTEM DOUBLE PLATE	10 and 11
05 SYSTEM SINGLE PLATE + 06 SYSTEM	12 and 13
B SYSTEM	14 and 15
M SYSTEM	16 and 17
TJ + FOOT VALVE + STRAINERS SYSTEMS	18 and 19
TJO + 04 + FL SYSTEMS	20 and 21
W SYSTEM	22 and 23
SOCLA SERVICES	24

Most of our models are approved by Veritas (France); specific approvals in different countries are given alongside information on each type of valve.

Certificates of approval for the materials used in manufacture can be supplied on request.
An additional charge may be applied for NF 1024-31B certificates.

HOW TO SELECT

A CHECK VALVE

APPLICATIONS

	05 double plate	05 single plate	05 with flanges	06 with flanges			TJ	$\underset{(+04+F L)}{\text { TJOO }}$	W
-	-	-	\bigcirc	-		-	-	-	-
				-	-				
-	-		-			-			-
									-
	-		-	-	-			-	-
\bigcirc	-	\bigcirc		-		\bigcirc			\bigcirc
$\stackrel{\text { 化 }}{4}$	$\stackrel{\uparrow}{\longleftrightarrow}$	$\stackrel{\uparrow}{\longleftrightarrow}$	$\stackrel{\uparrow}{\longleftrightarrow}$	$\stackrel{4}{4}$	$\stackrel{\uparrow}{\longleftrightarrow}$	$\stackrel{4}{4}$	\uparrow	$\stackrel{5}{4}$	$\stackrel{\text { ¢ }}{\substack{4}}$
$80^{\circ} / 90^{\circ}$	$100^{\circ} / 130^{\circ}$	$110 \% 180^{\circ}$	70°	90°	$60^{\circ} / 150^{\circ}$	$60^{\circ} / 100^{\circ}$	60°	$60^{\circ} / 80^{\circ}$	$100^{\circ} / 350^{\circ}$
16	16/25	16	16	16	10	$\begin{gathered} 6(\mathrm{MI}), 16(\mathrm{M}), \\ 25(\mathrm{M}) \\ \hline \end{gathered}$	6/10	10	16/40
$1 / 2^{\prime \prime}-2^{\prime \prime}$					$1^{\prime \prime}-3^{\prime \prime}$	$3 / 8^{\prime \prime}-4^{\prime \prime}$		$1 / 4^{\prime \prime}-2^{\prime \prime}$	$1 / 2^{\prime \prime}-2^{\prime \prime}$
0.250 mm			65-300 mm	$50-150 \mathrm{~mm}$	$50-350 \mathrm{~mm}$	$\begin{gathered} 40-200 \mathrm{~mm} \\ \mathrm{Non} \mathrm{retumm} \\ 40.300 \mathrm{~mm} \text { foot valve } \\ \hline \end{gathered}$	$200-600 \mathrm{~mm}$		
	$\begin{gathered} \text { Wafer } \\ 50-600 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \text { Wafer } \\ 40-600 \mathrm{~mm} \\ \hline \end{gathered}$							$\begin{gathered} \text { Wafer } \\ 15-200 \mathrm{~mm} \end{gathered}$

* Some finishes are appropriate for drinking water or can be adapted for alimentary use. Please consult us.

NON-RETURN VALVES

01 SYSTEM with double (axial and lateral) guide

- Excellent sealing for high or low pressure
 - Antipollution approved in the majority of European countries

- Many special versions available

The closing system of the 01 series non-return valves has been developed to meet the requirements of NF P 43007 and 43008 anti-pollution standards.
The characteristics of EA and EB valves are governed by these standards.
Overall, these valves are watertight under a column
of 3 cm of water and have been subjected to endurance tests of 80,000 cycles with water at $65^{\circ} \mathrm{C}$ and a pressure of 10 bar. NF type EA valves have $2 \times 1 / 4^{\prime \prime}$ bosses.
$E B$ valves do not necessarily have the two bosses.
Installation requirements are explained in
the corresponding technical details.

231/601/601V/601P

$3 / 8^{\prime \prime}$ to $2^{\prime \prime}$ valves with brass casings, female/female
PN 10 - Guide and closing system in POM (polyacetal) or PPO (polyphenylene oxide), nitrile rubber (NBR) seal, stainless steel spring, NBR seal for sanitation, heating circuits (anti-thermo syphon), general installations, protection of pumps for burners ($601 \mathrm{~V} 3 / 8^{\prime \prime}$ and $1 / 2^{\prime \prime}$
with FKM fluorised rubber seal) and some gas.
Temperature $80^{\circ} \mathrm{C}$

251/251S FOR WATER METERS

Male/female valve with brass casing, equipped with two drilled and plugged bosses, guide and closing system in POM (polyacetal), seal in NBR (nitrile) with captive nut to ensure easy dismanting. Valves with elbow connections available for use in comers.
2515 version: lenght 58 mm , NF A, ACS
Available in different versions:

- 251 PU : with drain cock
- 251 PP : with cylindrical drainpoints
- 251 SPU : short version with purge
- 251 SPP : short version with cylindrical drainpoints
- 251 CC : with POM plugs

Température : $80^{\circ} \mathrm{C}$

2218/271/291 FOR PROTECTION OF

DRINKING WATER NETWORKS

Female/female valves with brass casing and two drilled bosses, guide and dosing system POM (polyacetal) 221 B and 291 NF seal in EPDM, spring in stainless steel. The bosses allow watertightness checks and the draining of the installation.

- 271 : male/male brass casing with union nut connection,
guide and dosing system in PAR (polyarylamide) or POM (polyacetal)
Temperature : $80^{\circ} \mathrm{C}$

2231/2211 FOR PROTECTION

OF DRINKING WATER NETWORKS

- 2231 : double valve female/female of 231 type with boss between the two valves.
Temperature : $100^{\circ} \mathrm{C}$
2211 : double valve with compression connections, same style.
Temperature : $80^{\circ} \mathrm{C}$

281

FOR SANITATION
Male/female connection also exists in $\mathbf{2}$ other versions :

- 281 C : in chrome-plated brass
- 281 P : in POM (Polyacetal)

Temperature $281 \mathrm{C}: 80^{\circ} \mathrm{C}-281 \mathrm{P}: 65^{\circ} \mathrm{C}$

901/911/921/931 INSERT CHECK VALVES

Insert check valves with casing in POM (polyacetal), or PA12 (polyamide) or brass.
901 type valves are designed to be inserted at the outlet of water meters ; the other types are designed to be inserted in a variety of other systems.
-901-911: NF

Temperature : $80^{\circ} \mathrm{C}$ and $95^{\circ} \mathrm{C}$ for 931 type

NON-RETURN VALVES AND FOOT VALVES

02 SYSTEM simple guiding

- Valve with very wide range of applications
- Prevents water hammering
- Noiseless operation
- A quality, value for money choice

The $\mathbf{0 2}$ system represents the best combination of hydraulic efficiency, robustness, sealing and price for use with clear liquids : pumping, circulation, supply, general pipeline networks.
This versatile range is available from 40 to 500 mm in both useful where there may be a risk of water hammer.

02 SYSTEM simple guiding

402/202

Diameter 40 to 500 mm PN 16 drilled PN 10 The most universal of Socla's valves for the protection of pumps, general pipeline networks, pressure pumps, water distribution.
Temperature $100^{\circ} \mathrm{C}$
Flanged or threaded

Available in many types :

- 402V : with FKM flat seal $\left(100^{\circ} \mathrm{C}\right)$
- 402TTP : all anti-incrustation PTFE coating, internal/external
in GS cast iron for high pressures (40 bar)
- 202RR : with polyamide anti-corrosion coating
: seat and closing system in bronze to resist corrosion

402Z/402X FOR AGGRESSIVE LIQUIDS

- Bronze : for aggressive substances and environments
- Stainless steel : for industrial processes, food industry, etc...
PN : 25
- 4022 approvals
- 402X approvals

402B/202B PROTECTION OF WATER SUPPLY

Valves with drilled and plugged bosses, allowing water quality to be checked, the arcuit to be drained and water-tightness to be checked, or the installation of a by-pass. PN : 16

412/212 FOR PUMPING

For dilling and mounting on submersible pumps, space-saving design

Available in versions

- Ductile iron : 412 S and 212 S for pressures up to 40 bar - PN : 40
- Bronze : $412 Z$ and $212 Z$
for aggressive environments and salt water - PN : 25
- 412 approvals: $\%$ DaCS wras
- 212 approvals " \quad ©

302/102 FOR PUMPING

Foot valve with strainer in polyamide or galvanised steel, available in a variety of materials (bronze, ductile iron, etc...) PN : $10(125$ to 400 mm$)-\mathrm{PN}: 16(50$ to 100 mm$)$ Available in versions

- 302P \& 102P with PP (polypropylene) strainer Temperature : 100° for $302 \& 80^{\circ}$ for 302 P
- 302 approvals: 箟 (E ACS

Dynamic characteristics of valve closure

Type 402 non return valve

Overpressure measured downstream of 150 mm check valves when the pump stops.
The valves can carry a load of $50 \mathrm{~m} / \mathrm{wc}$.
Output $150 \mathrm{~m} 3 / \mathrm{h}$ (according to tests carried out by the CETIM)

Headloss chart (Type 402)

The 02 system range

NON-RETURN VALVES			
202	CAST IRON FGL 250	THREADED F/F	$2^{1 / 2}$ to $4^{\prime \prime}$
202 B	CAST IRON FGL 250	THREADED F/F	$2^{\prime \prime 2}$ to $4^{\prime \prime}$
202 RR	CAST IRON FGL 250 + RILSAN	THREADED F/F	$2^{1 / 2}$ to $4^{\prime \prime}$
202 TT	CAST IRON FGL 250 + Teflon	THREADED F/F	$2^{\prime \prime}$ to $4^{\prime \prime}$
202 TTP	CAST IRON FGL 250 + Teflon	THREADED F/F	$2^{\prime / 2}$ to $4^{\prime \prime}$
202 V	CAST IRON FGL $250+$ FKM seal	THREADED F/F	$2^{1 / 2}$ to $4^{\prime \prime}$
202 W	CAST IRON FGL 250	THREADED F/F	$2^{1 / 2}$ to $4^{\prime \prime}$
202 X	STAINLESS STEEL + FKM seal	THREADED F/F	$2^{1 / 2}$ to $4^{\prime \prime}$
202 Z	BRONZE	THREADED F/F	$2^{1 / 2}$ to $4^{\prime \prime}$
212	CAST IRON FGL 250	THREADED M/F	$2^{\text {t/2 }}$ to $8^{\prime \prime}$
212 S	CAST IRON GS 400-15	THREADED M/F	$2^{1 / 2}$ to $8^{\prime \prime}$
212 Z	BRONZE	THREADED M/F	$2^{1 / 2}$ to $8^{\prime \prime}$
402	CAST IRON FGL 250	FLANGED	40 to 500 mm
402 B	CAST IRON FGL 250	FLANGED	40 to 500 mm
402 S	CAST IRON GS 400-15	FLANGED	40 to 500 mm
402 TTP	CAST IRON FGL 250 +PTFE	FLANGED	50 to 500 mm
402 V	CAST IRON FGL 250 + FKM seal	FLANGED	40 to 500 mm
402 W	CAST IRON FGL 250	FLANGED	40 to 500 mm
402 X	STAINLESS STEEL AISI 304 + FKM seal	FLANGED	40 to 500 mm
402 Z	BRONZE	FLANGED	40 to 400 mm
412	CAST IRON FGL 250	FLANGED	125 to 300 mm
412 S	CAST IRON GS 400+15	FLANGED	125 to 300 mm
412TT	CAST IRON FGL $250+$ TEFLON	FLANGED	125 to 300 mm
412 X	STAINLESS STEEL + FKM seal	FLANGED	125 to 300 mm
412 Z	BRONZE	FLANGED	125 to 300 mm
422	CAST IRON FGL $250+$ BRONZE	FLANGED	50 to 400 mm
882	CAST IRON FGS 400.15	BETWEEN FLAN	65 to 250 mm
FOOT VALVES			
102	CAST IRON FGL 250	THREADED F	$2^{1 / 2}$ to $8^{\prime \prime}$
102 P	CAST IRON FGL 250	THREADED F	$2^{1 / 2}$ to $4^{\prime \prime}$
102 PV	CAST IRON FGL 250 + FKM seal	THREADED F	$2^{1 / 2}$ to $4^{\prime \prime}$
302	CAST IRON FGL 250	FLANGED	50 to 400 mm
302 P	CAST IRON FGL 250	FLANGED	50 to 100 mm
302 PV	CAST IRON FGL 250 + FKM seal	FLANGED	50 to 100 mm
302 X	STAINLESS STEEL AISI 304 + FKM sea	FLANGED	50 to 400 mm
302 Z	BRONZE	FLANGED	50 to 100 mm
312	CAST IRON FGL 250	FLANGED	125 to 400 mm
322	CAST IRON FGL 250 +BRONZE	FLANGED	50 to 400 mm
F = Female ; $M=$ Male			

NON-RETURN VALVES

03 SYSTEM with axial guide

- NF (French national standard) and antipollution approved in most European countries - Perfect water tightness at high and low pressures

Diameter $1 / 2^{\prime \prime}$ to $2^{\prime \prime}$
(threading $3 / 4$ to $2^{\prime \prime} 1 / 2$ male/male)
Connection by union nipple
Temperature $80^{\circ} \mathrm{C}$
Appoved: NF 4 kiwalia 7 Va ACS

NON-RETURN VALVES

O3HP SYSTEM with axial guide

- High mechanical and hydraulic performances
- Adapted materials
- Various industrial applications

Guiding support with
oblique holes for a maximum flow passage

Special high pressure sealing with metallic stop

233

 FOR HIGH PRESSURE FLUIDSDiameter $1 / 4$ up to $2^{\prime \prime}$
High pressure check valve in carbon steel and seal in NBR (nitrile)
Opening pressure 0,5 bar
For high pressure fluids, water, hydrocarbons, gas, general industrial applications...
Female/female connection
Temperature : $110^{\circ} \mathrm{C}$

TECHNICAL INFORMATION

A		\mathbf{L}	\mathbf{H}	\mathbf{h}	Weight
${ }^{\prime}$	$\mathbf{m m}$	mm	mm	mm	kg
$\mathbf{1 / 4}$	6	73	24	22	0,17
$3 / 8$	10	76	30	27	0,28
$\mathbf{1 / 2}$	15	77	38	32	0,41
$\mathbf{3 / 4}$	20	92	48	41	0,78
$\mathbf{1}$	25	109	57	50	1,26
$\mathbf{1 1 / 4}$	32	123	70	65	2,12
$\mathbf{1 1 / 2}$	40	141	80	70	3,07
$\mathbf{2}$	50	164	100	90	5,54

The 03 HP
system range

$\mathbf{2 3 3}$	CARBON STEEL	THREADED F/F	$1 / 4^{\prime \prime}$ to $2^{\prime \prime}$
$\mathbf{2 3 3 X}$	STAINLESS STEEL 304	THREADED F/F	$1 / 4^{\prime \prime}$ to $11 / 2^{\prime \prime}$
$\mathrm{F}=$ Female $; \mathrm{M}=$ Male			

NON-RETURN VALVES

05 SYSTEM with double plate (between flanges)

- Excellent hydraulic performance
- Wide range : from $\mathbf{5 0}$ to $\mathbf{6 0 0} \mathbf{~ m m}$
- Compact

Watertightness ensured by the spring which pushes against the two plates, maintaining pressure on the valve seat seal

Very little energy loss

Gradual opening controlled by double contact spring

Stainless steel or bronze plates

Vulcanised NBR seal in mouth of the valve seat

This system is perfectly adapted to installations where limited space is available (NF E 29377) but where excellent hydraulic performance is necessary, and especially where the dimensions are large.

05 SYSTEM

895

Diameter 50 to 300 mm
Mounted between flanges PN 10 - PN 16 Temperature $100^{\circ} \mathrm{C}$
Valve with cast iron casing FGL 250, plates stainless steel AISI 304 spring stainless steel, EPDM seal, extra-watertight
Approval: wras CE ACS

895

895V

FOR HYDROCARBONS AND INDUSTRIAL APPLICATIONS

With FKM or equivalent seal
Temperature $130^{\circ} \mathrm{C}$
Other features as 895

Approvals

895 V

805

FOR SEAWATER AND NAVAL CONSTRUCTION

Casing in FGL 250 cast iron with
aluminium bronze plates, seal EPDM/NBR (nitrile) spring stainless steel
Diameter 50 to 600 mm
PN 16
Temperature $100^{\circ} \mathrm{C}$
Apporal: :

815

 FOR GENERAL CIRCUITSValve with ductile iron casing FGS 400-15 and aluminium bronze plates,
seal EPDM/NBR, stainless steel spring
Diameter 50 to 600 mm
PN 25
Temperature $100^{\circ} \mathrm{C}$
Equally suitable for sea water and naval

805
construction
Mounted between PN 25 flanges but can be mounted between PN 16 flanges for installations with higher pressure
Approvals

```
4C\epsilon
ACS
```


825 FOR INDUSTRIAL PROCESSES

Valves with stainless steel casing and plates AISI 316, FKM seal, stainless steel spring PN 25 but can be mounted between PN 16 flanges for very high performance installations Diameter 50 to 350 mm

Temperature $130^{\circ} \mathrm{C}$
Approvals:
4 (E

Installation precautions :

1° case : horizontal pipework, the arrow must point in the direction of flow, the axis of the valve must be vertical.

2° case : vertical pipework : the arrow must point in the direction of upward flow.

Headloss chart (Type 895)

The 05

system range

$\mathbf{8 0 5}$	CAST IRON FGL 250	BETWEEN FLANGES	50 to 600 mm
$\mathbf{8 1 5}$	CAST IRON FGS 40015	BETWEEN FLANGES	50 to 600 mm
$\mathbf{8 2 5}$	STAINLESS STEEL 316	BETWEEN FLANGES 50 to 350 mm	
$\mathbf{8 9 5}$	CAST IRON WTH STAINLESS STEEL	PLATES	50 to 300 mm
$\mathbf{8 9 5} \mathbf{V}$	CAST IRON WITH STAINLESS STEEL.	PLATES	50 to 300 mm

NON-RETURN VALVES

05 SYSTEM with single plate (between flanges)

- Space-saving
- Simple and reliable
- Competitive price

This range of valves is the obvious choice where simplicity and low cost are the priorities

Installed horizontally or vertically facing upwards

635V-635E

DN 40 to 300 mm
Between flange PN 10-16
Extra-flat valve for water distribution \& irrigation

- 635V body \& plate in zinc plated steel seal in FKM on seat ;
temperature $150^{\circ} \mathrm{C}$
- 635 E with seal in EPDM on seat ;
temperature $110^{\circ} \mathrm{C}$

696 V body \& plate in aluminium copper ; seal in FKM on seat temperature $150^{\circ} \mathrm{C}$ for sea water, salted \& aggressive solutions, general industrial circuits

C

627V - $627 E$ FOR GENERAL AND INDUSTRIAL CIRCUITS

DN 40 to 300 mm
Between flange PN 10-16
Extra-flat valve for water distribution \& irrigation,
hydrocarbons, industrial processes

- 627V body \& plate in 316 stainless steel
seal in FKM on seat ;
temperature $150^{\circ} \mathrm{C}$

- 635E with seal in EPDM on seat ;
temperature $110^{\circ} \mathrm{C}$ \% C
627V - 627E

Headloss

Chart

The single plate
system range

$\mathbf{6 3 5} \mathbf{V}$	ZINC-PLATED STEEL	FKM seal	40 to 300 mm
$\mathbf{6 3 5} \mathbf{~ E}$	ZINC-PLATED STEEL	EPDM seal	40 to 300 mm
$\mathbf{6 2 7} \mathbf{V}$	STAINLESS STEEL	FKM seal	40 to 300 mm
$\mathbf{6 2 7} \mathbf{E}$	STAINLESS STEEL	EPDM seal	40 to 300 mm

NON-RETURN VALVES

05 SYSTEM single plate (with flanges)

- Simple, strong construction
- Wide range of applications for all kinds of liquids
- Effective, reliable operation

Plate tucked away when open and may be lifted by external screw if required.

405

Diameter 65 to 300 mm
PN 16 standard drilling PN 10,
PN 16 possible
Temperature $70^{\circ} \mathrm{C}$
Casing in ductile iron FGS 500.7
Length DIN 3202-F6
Plate and hinge entirely coated in NBR (nitrile)
Bolts in galvanised steel

- Excellent hydraulic performance because the plate tucks away completely.
- Unrestricted passage out through the valve means that it can be used for all kinds of water including waste and sewage.
- Integral coating of closing system with nitrile NBR guarantees toughness and long life.
- Plate angled at 15 degrees on the valve seat to ensure closure.

06 SYSTEM with flanges

- NF (French national standard) and antipollution in most European countries
- Perfect water tightness at high and low pressure

- Easy to maintain

EA 426

DN 50 to 150 mm
PN10,
Temperature $65^{\circ} \mathrm{C}$

Casing in ductile iron with external and internal epoxy coating equipped with 2 test cocks and 1 drain cock $1 / 2^{\prime \prime}$

- Axial guide at the head of the closing system ensures perfect centring guaranteeing water tightness under 3 cm of water column whatever the angle of the valve
- Bosses with test cock allowing checks and sampling

NE CE ACS

NON-RETURN VALVES AND FOOT VALVES

B SYSTEM with ball

- Straightforward, sturdy design
- Ball moves aside to allow unrestricted flow
- Designed for waste water, viscous water and slurries

Anti-incrustation materials

Self-cleaning ball in specially adapted materials

Very little energy loss (unrestricted flow)

Can be installed horizontaly or verticaly, upwards

Inspection cover for access and maintenance

The closing system consists of a self-cleaning ball which is lifted by the fluid and guided to a lateral housing, completely out of the way.
This system ensures an unrestricted flow, even for liquids carying waste materials, without risk of a blockage.
This all-purpose range is also suitable for use with aggressive liquids and in industrial processes

REGULATION

89/106/CEE DIRECTIVE

(CPD : Construction Product Directive)
Applies to building industry products and especially to their ability to ensure their function during a reasonnable life time from an economical point of view. Building industry products in accordance with specific standards are CE marked with indication in (1) of the corresponding construction standard.

B SYSTEM

408/508/50

Diameter 1" to 350 mm
PN 10
Casing in cast iron FGL 250 up to 125 mm

and ductile iron FGS 400-15 above 125 mm

- 408 : with flanges diameter 50 to 350 mm , ball coated with NBR/NR (natural rubber), temperature $60^{\circ} \mathrm{C}$
- $\mathbf{5 0 8}$: threaded female/female from $1^{\prime \prime}$ to $2^{1 / 2 ",}$, ball in synthetic resin, seat in NBR (nitrile)
In $3^{\prime \prime}$ diameter, this valve has no inspection cover (ref 50) Temperature : $60^{\circ} \mathrm{C}$

```
        $(\epsilon
        ن
408D FOR DRAINAGE SYSTEMS
Equipped with a special system allowing
the ball to be lifted by a screw from the valve seat
PN : 10
Temperature : \(60^{\circ} \mathrm{C}\)
Diameters \(80-100-150-200\)
To allow the release of gases and equilibration of pressure
```炁 C


\section*{Installation diagram}

Horizontal : The ball lodges above the axis

\section*{The arrow shows the flow direction}

\section*{Movement of the ball}

Horizontal : The ball rises above the axis

Vertical : The ball rises to the high position

The arrow indicates the direction in which the liquid is rising
Headloss chart (Type 408)

\section*{The B}
system range
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{NON-RETURN VALVES} \\
\hline 50 & CAST IRON FF & THREADED F/F & \(1^{\prime \prime}\) to \(3^{\prime \prime}\) \\
\hline 50 F & CAST IRON FF & THREADED F/F & 1"to 3" \\
\hline 208 P & PVC & THREADED F/F & \(11 / 4\) to \(2^{\prime \prime}\) \\
\hline 408 & CAST IRON FT & FLANGED & 50 to 350 mm \\
\hline 408 F & CAST IRON & FLANGED & 50 to 350 mm \\
\hline 408 X & STAINLESS STEEL & FLANGED & 50 to 350 mm \\
\hline 408 Z & BRONZE & FLANGED & 50 to 350 mm \\
\hline 508 & CAST IRON FGS & THREADED F/F & \(1^{\prime \prime}\) to \(3^{\prime \prime}\) \\
\hline \multicolumn{4}{|l|}{FOOT VALVES} \\
\hline 308 & CAST IRON FGL 250 & FLANGED & 50 to 350 mm \\
\hline 30 & CAST IRON FGL 250 & THREADED F/F & \(1^{\prime \prime}\) to 3" \\
\hline
\end{tabular}

\section*{NON-RETURN VALVES AND FOOT VALVES}

\section*{M SYSTEM with membrane}

- Noiseless operation (in all positions)
- Protects against water hammering
- Very reliable
- Adapts for fluctuant flow rate

Several concentric membranes are used for wide membrane diameters. A thin-membraned version is available for special applications eg gases, vacuums

The \(\mathbf{M}\) system has been conceived for installations susceptible to severe water hammering. It is very reliable and particularly quiet (no moving mechanical part, anti-incrustation closing system).
Perfectly suited for pressure pumps, fire hydrants, engine-driven pump units or electro-pump units and compressed air circuits.

\section*{407／207}

Diameter \(3 / 8^{\prime \prime}\) to 200 mm PN 16 drilled PN 10 Cast iron casing，seat in polyamid coated steel，membrane in natural rubber
200 mm drilled PN 16 on request
Temperature ： \(60^{\circ} \mathrm{C}\)
Flanges ASA on request

\section*{Also available ：}
－For vacuum pumps and industrial vacuum cleaners，
a thin－membraned version is available in the 407／207 model
－ 407 RR ：with interior／exterior anti－corrosion polyamid coating

\section*{407V／207V FOR HYDROCARBONS AND} INDUSTRIAL APPLICATIONS
With FKM membrane and seal ；also available
for use with compressor with
FKM membrane and seal
PN： 16
Temperature ： \(100^{\circ} \mathrm{C}\) 䱈 C

\section*{407B \\ WITH DRILLED BOSSES}

Two drilled and plugged bosses for by－pass， pressure control，emptying etc． PN： 16 drilled PN 10
Temperature ： \(60^{\circ} \mathrm{C}\)新

\section*{407RR FOR AGGRESSIVE FLUIDS}

Cast iron casing，PTFE－coated inside and outside， membrane in natural rubber
PN： 16 drilled PN 10 Temperature ： \(60^{\circ} \mathrm{C}\)

\section*{4 （ 6}

\section*{417 FOR HIGH PRESSURES}

With cast iron casing FGL 250 ；PN 25， drilled flanges PN 25 ，
membrane in EPDM
for water distribution in high buildings
boosting pumps and vacuum pumps
PN： 25
Temperature ： \(60^{\circ} \mathrm{C}\) 细 ACS

\section*{447 STANDARD LENGTH DIN 3202 F6}

EPDM membrane．
Available in two versions ：
－ 447 B with two drilled bosses
－ 447 RR with polyamide coating
PN： 16 drilled PN 10
Temperature ： \(60^{\circ} \mathrm{C} \mathbf{C \epsilon}\)

\section*{317／327／337 MI SYSTEM FOR PUMPING}

Foot valve with tubular membrane in EPDM， which flexes towards the middle of the strainer on intake ；particularly suitable for irigation pumps with flexible hoses，delivered already primed on request PN： 6
Temperature： \(60^{\circ} \mathrm{C}\) ACS
Connections－sleeved（317）；flanged（327）
threaded（337）

\section*{Opening pressure}

On membrane non－return valves the opening regulated by the elasticity and the thickness of the membrane is very gradual and can be obtained as a result of a few centimeters of water column．

\section*{Comparative study of overpressures}

\section*{Headloss chart}
（Type 407）

\section*{The M}
system range
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{NON－RETURN VALVES} \\
\hline 207 & CAST IRON FGL 250 & THREADED F／F & 3／8 to \(3^{\prime \prime}\) \\
\hline 207 V & CAST IRON FGL 250 \＆FKM & THREADED F／F & \(3 / 8\) to \(3^{\prime}\) \\
\hline 407 & CAST IRON FGL 250 & FLANGED & 40 to 200 mm \\
\hline 407B & CAST IRON FGL 250 & FLANGED & 40 to 200 mm \\
\hline 407tB & CAST IRON \＆TEFLON & FLANGED & 40 to 200 mm \\
\hline 407RR & CAST IRON \＆RILSAN（POLYAMIDE） & Flanged & 40 to 200 mm \\
\hline 407 V & CAST IRON FGL 250 \＆FKM & FLANGED & 40 to 200 mm \\
\hline 417 & CAST IRON FGL 250 & FLANGED & 40 to 150 mm \\
\hline 447 & CAST IRON FGL 250 & FLANGED & 65 to 200 mm \\
\hline 447RR & CAST IRON \＆TEFLON & FLANGED & 65 to 200 mm \\
\hline \multicolumn{4}{|l|}{FOOT VALVES} \\
\hline 317 & CAST IRON FGL 250 & SLEEVED & 40 to 300 mm \\
\hline 327 & CAST IRON FGL 250 & FLANGED & 50 to 300 mm \\
\hline 337 & CAST IRON FGL 250 & THREADED F & \(2^{\prime \prime}\) to \(4^{\prime \prime}\) \\
\hline
\end{tabular}

\section*{FOOT VALVES}

TJ SYSTEM with tripod axial guiding

- Excellent hydraulic performance
- For pumping systems with substantial flow
- Robust and reliable

For clear water pumping systems with substantial flow, requiring large valves, for supply systems, irrigation, industry.

\section*{144}

Valve with cast iron casing, drilled flange PN 10, guide and valve in cast iron, seal EPDM,
strainer in galvanised steel, diameters 200 to 600 mm PN 10 up to 200 ; PN 6 from 280 to 400 PN 4 above this strainer (may be in stainless steel) Temperature : \(60^{\circ} \mathrm{C}\)

\section*{4 \\ C ACS}

\section*{The TJ}
system range

\section*{STRAINERS WITHOUT VALVE}

A strainer acts as a sieve in the pumping of water of different qualities ; each type of strainer has a different application depending upon the choice of materials used in its construction.

\section*{46X}

Diameter 40 to 1000 mm
All in stainless steel AISI 304L : strainer and slim flange drilled PN10
Also available on request
special versions in AISI 316L stainless steel, for use with corrosive liquids, at high temperatures and in industrial applications Temperature : \(350^{\circ} \mathrm{C}\) \(4 A C S\)

\section*{191D FOR DOMESTIC PUMPS}

One piece casing and strainer in POM (polyacetal) in \(3 / 8\) " and \(1 / 2^{\prime \prime}\) sizes casing PPO (polyphenylene oxide) and strainer in PE (polyethylene) for \(3 / 4\) " and \(1 " 1 / 4\) sizes casing POM and strainer PE
for \(1^{\prime \prime} 1 / 2\) to \(2^{\prime \prime}\) sizes
Temperature : \(60^{\circ} \mathrm{C}\) ACS

\section*{Nipples}

Diameter \(3 / 8\) to \(2^{\prime \prime}\)
Grooved sleeves in different plastics for connection of flexible tubes from \(9 / 12\) to 59/62 (inside diameter of tube) male connection
Temperature : \(70^{\circ} \mathrm{C}\) 101
Diameter \(3 / 8\) to \(2^{\prime \prime}\)
Male connection PA 6 (polyamide),
strainer in AISI 304 stainless steel can be adapted for any non-return valve of the same diameter to convert it
to foot valve with strainer
Temperature : \(60^{\circ} \mathrm{C}\) 殔

191D
 RS

PROTECTON

\section*{Y333}

FOR PROTECTION OF PUMPS
Diameter 40 to 300 mm , with flanges PN10 Water filters in cast iron internal/external epoxy coating with strainer in stainless steel For protection of pumps, valves, pressure reducing valve
Temperature : \(150^{\circ} \mathrm{C}\)

\section*{C€ ACS wRAs}

\section*{Y222 FOR PROTECTION OF PUMPS}

Diameter \(1 / 2^{\prime \prime}\) to 2 ", female/female
Water filters in brass with strainer in stainless steel For protection of pumps, valves,
pressure reducing valve
Temperature : \(110^{\circ} \mathrm{C}\)

\section*{Y666}

\section*{FOR INDUSTRIAL PROCESS}

Diameter \(1 / 4^{\prime \prime}\) to \(2^{\prime \prime}\), female/female
Fllters in AISI 316 stainless steel. Threaded with purge plug.
For industrial process, corrosive liquids, high pressure,
high temperature
Temperature : \(175^{\circ} \mathrm{C}\)

\section*{NON-RETURN VALVES - FOOT VALVES \\ TJO +04 + FL SYSTEMS \\ \\ - Comprehensive range, many versions available}
- Good hydraulic performance

The TJO system because of its outstanding hydraulic perfor-
mance the TJO system is particularly suitable for use with small
diameter check and foot valves (\(1 / 4\) "to \(2^{\prime \prime}\) diameter).
It is available in a large range of materials for applications from
domestic water distribution circuits, heating, industrial
applications (chemical industry, pharmaceuticals).

\section*{TJO + FL + 04 SYSTEMS}

\section*{290/297}

Diameter \(1 / 4^{\prime \prime}\) to \(2^{\prime \prime}\) - PN 10
Casing in brass, valve PA in 12 or 11 polyamid, EPDM (290) o-ring seal for distribution in buildings, pumping, water distribution, or seal in FKM (297) for hydrocarbons and industrial fluids ; with two bosses, not drilled. Temperature \(80^{\circ} \mathrm{C}\) (4) ACS

\section*{2900/297D FOR WATER}

\section*{OR INDUSTRIAL APPLICATIONS}

Casing in POM (polyacetylene)
Other specifications identical to types 290/297

\section*{290P/290X FOR INDUSTRIAL LIQUIDS \\ AND INDUSTRIAL APPLICATIONS \\ - 290P : casing and closing system PP \\ (polypropylene), FKM o-ring \\ - 290X : casing AISI 304 stainless steel, \\ closing system PA 11,12 or Tefzel (on request) FKM o-ring \\ PN : 10 - Temperature : \(80^{\circ} \mathrm{C}\) 290p 290X}

\section*{209 TWO DRILLED BOSSES \\ With polyamid plugs allowing control or emptying, other specifications as type 290 PN :10 \\ Temperature : \(80^{\circ} \mathrm{C}\) \\ ACS}

\section*{190/190D FOR DOMESTIC PUMPING}
- 190 : foot valve with brass casing and PE strainer
- 190D : casing in POM (polyacetal) and strainer in POM or PE (polyethylene)
Closing system PA 12 , EPDM o-ring
Temperature : \(60^{\circ} \mathrm{C}\) ACS

190P/190X FOR CORROSIVE PRODUCTS
Industrial applications and the food industry Foot valves version of type 290 P and 290 X
- 190 P : strainer in PP
- 190X : strainer in PE

Temperature: \(60^{\circ} \mathrm{C}\) 䙲
193/193D FOR THE PUMPING OF HYDROCARBONS
Designed for heating fuel strainer in micromesh PE (polyethylene) Identical to valves 190 and 190D but with FKM seal
Temperature: \(60^{\circ} \mathrm{C}\)

\section*{60S}

FOR PUMPING HARD OR AGGRESSIVE WATER
Foot valve with bronze casing and stainless steel strainer connection DN : F 3/4 to \(4^{\prime \prime}\)
casing in POM (polyacetal) \(3 / 4^{\prime \prime}\) to \(2^{\prime \prime}\)
casing in bronze \(2^{\prime \prime} 1 / 2\) to \(4^{\prime \prime}\)
PN 16 - Temperature \(80^{\circ} \mathrm{C}\)

\section*{104/104P FOR DOMESTIC PUMPING}

Foot valve for domestic pumping
- 104 : casing in brass
- 104P : casing in PPO (polyphenylene oxide)
or POM (polyacetal)
Temperature : \(65^{\circ} \mathrm{C}\)
4

\section*{Many special versions}

For your specific application needs, we can propose in the TJO series :
- custom-coiled springs
- casings in different materials
- closing system in Tefzel \({ }^{8}\)
- special seals
- NPT connections

For industrial applications... chemicals... corrosive fluids

\section*{Headloss chart}
(Type 290)

\(\mathrm{TJO}+04\)
system range
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{NON-RETURN VALVES} \\
\hline 209 & BRASS & THREADED & F/F & \(1 / 2\) to \(2^{\prime \prime}\) \\
\hline 290 & BRASS & THREADED & F/F & \(1 / 4\) to \(2^{\prime \prime}\) \\
\hline 290 D & POM & THREADED & F/F & \(3 / 8\) to \(1^{\prime \prime}\) \\
\hline 290 P & PP & THREADED & F/F & \(3 / 8\) to \(3 / 4^{\prime \prime}\) \\
\hline 290 X & STAINLESS STEEL & THREADED & F/F & \(1 / 4\) to \(2^{\prime \prime}\) \\
\hline 297 & BRASS & THREADED & F/F & \(1 / 4\) to \(2^{\prime \prime}\) \\
\hline 297 D & POM & THREADED & F/F & \(3 / 8\) to \(1^{\prime \prime}\) \\
\hline \multicolumn{5}{|l|}{FOOT VALVES} \\
\hline 190 & BRASS & THREADED & F & 11/2 to \(2^{\prime \prime}\) \\
\hline 190 D & POM & THREADED & F & \(3 / 8\) to \(2^{\prime \prime}\) \\
\hline 190 P & PP & THREADED & F & \(3 / 8\) to \(3 / 4^{\prime \prime}\) \\
\hline 190 X & STAINLESS STEEL & THREADED & F & \(3 / 4\) to \(2^{\prime \prime}\) \\
\hline 193 & BRASS & THREADED & F & \(1 / 2\) to 1 " \(1 / 2\) \\
\hline 193 D & POM & THREADED & F & \(3 / 8\) to 1" \(1 / 4\) \\
\hline 104 & BRASS & THREADED & F & \(3 / 4\) to \(111 / 4\) \\
\hline 104 P & PPO or POM & THREADED & F & \(3 / 4\) to \(111 / 4\) \\
\hline 60 S & BRONZE, STAINLESS STEEL STRAINER & THREADED & F & \(3 / 4\) to \(4^{\prime \prime}\) \\
\hline \multicolumn{5}{|l|}{\(\mathrm{F}=\) Female ; \(\mathrm{M}=\) Male} \\
\hline
\end{tabular}

\section*{NON-RETURN VALVES}

W SYSTEM with disc wafer type

- Performs well at high pressure and temperature
- Easy to connect
- Space-saving

Designed for industry, this range gives an excellent hydraulic performance in a limited space (DIN 3202 part 3, K4 length except type 882). Universal connections, to DIN, ANSI,
BS standards....
Suitable for handling a wide variety of fluids used in industries ranging from foods and chemicals to power stations, steam circuits, industrial heating systems, high pressure and high temperature installations.

\section*{W SYSTEM}

\section*{812/812X}

Diameter 15 to 200 mm PN 6 - 40
Valve casing and closing system
 in stainless steel - Temperature \(370^{\circ} \mathrm{C}\)
available as : \(\mathbf{8 1 2}\) with casing in stainless steel AISI 304
812 X with casing in stainless steel AISI 316 L
Closing system in stainless steel 316 L up to 100 mm ; stainless steel AISI 314 above this
Suitable for steam circuits, the food industry, general circuits and industrial processes.

\section*{. \(C \in \quad\) ACS}

\section*{802 \\ FOR GENERAL CIRCUITS AND PUMPING}

Diameter 15 to 200 mm
PN 6-16 up to 100 mm ; 10-16 above this Valve with DZR brass casing from 15 to 50 mm Temperature : \(150^{\circ} \mathrm{C}\) for DN 65 to 200 mm \(200^{\circ} \mathrm{C}\) for others
 and FGL cast iron above this
Closing system in stainless steel 316 L up to 100 mm ;
Cast iron FGL 250 above this available in two versions
- 802L : with EPDM seal for extra water-tightness ; temperature \(100^{\circ} \mathrm{C}\)
- \(\mathbf{8 0 2} \mathbf{Z}\) : in bronze for high temperatures, salt water and aggressive fluids ; temperature \(230^{\circ} \mathrm{C}\)

\section*{4 CE ACs}

\section*{B02//8227B/AT/S FOR INDUSTRIAL CIRCUITS}

\section*{AND THE FOOD INDUSTRY}

802 and 812 X versions mounted between flanges
- \(\mathbf{T}\) : threaded flanges
- B : flanges butt welded
- S : flanges socket welded

Same applications as 802 and 812X
Temperature : \(220^{\circ} \mathrm{C}\)

\(812 \times B\)

\section*{712XT FOR PUMPING SPECIAL FLUIDS}

Industrial fluids and the food industry, all-stainless steel foot valve, female connection 15-50 mm, same characteristics as 812 X Temperature : \(220^{\circ} \mathrm{C}\)

\section*{Advantages}
- Valve with a wide range of applications because of its materials and robust construction.
- Pressure ranges PN6 - PN 40 covered by some models, reducing the number of versions.
- Easy to install, saves valuable time.

\section*{Headloss chart}
(Type 802)

\section*{The W}
system range
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{NON RETURN VALVES} \\
\hline 802 & CAST IRON & BETWEEN FLANGES & 15 to 200 mm \\
\hline 802 L & CAST IRON & BETWEEN FLANGES & 15 to 100 mm \\
\hline 802 Z & BRONZE & BETWEEN FLANGES & 15 to 200 mm \\
\hline 802 T & BRASS & THREADED F/F & 15 to 50 mm \\
\hline 812 & STAINLESS STEEL. & BETWEEN FLANGES & 15 to 200 mm \\
\hline 812 X & STAINLESS STEEL & BETWEEN FLANGES & 15 to 200 mm \\
\hline 812 XB & STAINLESS STEEL & TO BE BUTT WELDED & 15 to 50 mm \\
\hline 812 XS & STAINLESS STEEL. & TO BE SOCKET WELDED & 15 to 50 mm \\
\hline 812 XT & STAINLESS STEEL & THREADED F/F & 15 to 50 mm \\
\hline 882 & CAST IRON GS & BETWEEN FLANGES & 65 to 250 mm \\
\hline \multicolumn{4}{|l|}{FOOT VALVES} \\
\hline 712 XT & STAINLESS STEEL & THREADED & 15 to 200 mm \\
\hline
\end{tabular}

\section*{SOCLA PUTS POWERFUL TOOLS}

\section*{AT YOUR FINGERTIPS}

\section*{Socla on the WEB}
- Information on request and with follow-up on all products in the range.
- Real-time interactive response : customer-friendly speed of access and fast response time.
- Always envolving, alongside and in anticipation of your needs.
- Local service : throughout the world, but on your doorstep and in your language.
- Contact us on : www.socla.com

SJCLA

PRICE-LIST CATALOGUE and PRICE-LIST MANUAL / interactive CD-ROM : the quickest way to find information and make a decision
- A listing by valve type and range.
- Sums up the advantages of each product.
- Prices clearly indicated.
- Connections, references and approvals.
- Pressures, temperatures etc

\section*{PRODUCT DATA SHEETS :}

\section*{to make sure your choice is the best}

Most of our valves have their own full and detailed data sheet :
- Product information table (temperature, type of fluid, approvals, etc.).
- Headloss chart.
- Nomenclature with materials specified.
- Dimensions, references and performance.
- Special adaptations.

\section*{Your applications are our inspiration ; consult us !}

Photocopiez, complétez et faxez votre demande spéciale au : 0385979742
Customer:
\begin{tabular}{lc}
Name: & Department: \\
Telephone: & Fax:
\end{tabular}

Essential criteria :
- Diameter:
- Connection type \(\qquad\)
- Maximum pressure:
- Service pressure :
- Operating temperature
- Nature of fluid \(\qquad\)
- Energy loss :
- Watertightness
- Operating position:

Installation diagram or description

\section*{TOGETHER LETS CHOOSE THE RIGHT VALVE FOR YOU}

\section*{There is no universal check valve !}

We can help you to choose the right one from a multitude of possibilities. In order to do this we need to define your priorities together.

\section*{\(1^{\text {st }}\) - The essential given criteria for your installation}
- The diameter : in general, this is prescribed. Be careful, it may be prudent to choose a smaller size even if it means fitting a convergent cone ; this can help avoid premature wear and reduce possible water hammer. This is why it is so important to specify minimum and maximum flow rates. Put them down!
- The connection type : flanged or threaded.
- The maximum service pressure : be careful, even if certain of our valves are designed for PN 16, for example, our standard drilling of flanges is PN 10. In this case, from 200 mm diameter, PN 10 and PN 16 drilling are different : please indicate your drilling gauge in all cases. This way we avoid unpleasant surprises !
- The operating temperature range, both average and peak : we will then confirm whether the materials are appropriate.
- The nature of the fluid : we do not recommend a guided closing system for a slurry ! If the fluid is a chemical product, knowing the concentration is vital. Some weak concentrations can be more aggressive than strong ones !

\section*{\(2^{\text {nd }}\) - The criteria which are most important for you !}
- You must not exceed a certain energy loss level ? Indicate as much specifying the flow rate and diameter, we will recommend the right choice.
- You require the highest standards of sealing , tell us so.
- Your valve must fonction at any angle ? Consult our chart on pages 4 and 5 .
- More generally speaking, you know that your installation has particular characteristics: variable flow rates, a tendency to pulsate ? Indicate as much.
- You need a special execution ? Describe it to us, giving details of the criteria.
- Your installation seems complicated (peculiar pipework, narrow space, positioning problems ?) A good diagram can sometimes avoid misunderstandings !

\section*{REGULATION}

97/23/CE DIRECTIVE : Equipment under presure (PED : Pressure Equipment Directive)
Applies to the design, manulacturng and the assessment of the conformity of pressure equipment, the maximum allowable pressure of which is 0.5 bar. Pressure equipment for water supply, distribution, and disposal of water is excluded.
Depending on the type of pressure equipment, maximum allowable temperature (PS), DN, physical nature of the fluid (iquid, gas or vapour) and the degree of danger of the fuid (group1/2), the directive classifes this same equipment into different categories (article \(3,3,1\), ili, ili, IM, required for the assessment of conformity with CE marking.
The equipment defined in article 3.3 of the drective must not bear the CE marking.
(') Group 1 : hazardous fuids (drective \(67 / 548 / E E C\)) / explosive / highly flammable /easily flammable / flammable / very toxic / toxic / combustion agents. Group 2 : all other fuids.
In order to facilitate your choice regarding these new regulatory requirements, Socla has put the necessary infornation conceming products with CE marking, specification sheets and product identfication plates at your disposal in the price list + see additional explanations on the detachable sip). Important notice : the indicated pressure for the different categones of fluids (L1/L2/G1/G2) is under no condition a guarantee of use.
Therefore, it is essential to validate the use of products under given operating conditions. Soda is not responsible for non-adaptation of the products to working conditions not previously specified by the customer. In addition, the operating instuctions are available on our web site www.soclacom or by simple request from our sales department.

89/106/CEE DIRECTIVE :
(CPD : Construction Product Directive)
Applies to building industry products and especially to their ability to ensure their function during a reasonnable life time from an economical point of view.

Building industry products in accordance with specific standards are CE marked with indicatio of the corresponding construction standard.

METAL TAG of Socla products :

Protection

Non return

Regulation

Shut Off

\section*{Socla sAS}

365 rue du Lieutenant Putier 71530 VIREY-LE-GRAND BP10273-71107 Chalon S/Saône Cedex Tel. +33 385974242 - Fax +33385979742 Friday 8 a.m. to 1.30 p.m.

\section*{ŞCLA}

\section*{Summary}
\begin{tabular}{|l|c|}
\hline Protecting drinking water networks & 1 \\
\hline Protection systems for drinking water networks & 2 \\
\hline The Antipollution range & 4 \\
\hline BA backflow preventers : functioning principle & 5 \\
\hline Backflow preventers with controllable reduced pressure zones & 6 \\
\hline Backflow preventers BA2760 and 2670CD & 7 \\
\hline Backflow preventers BA4760 - Installation advice & 8 \\
\hline Set of protection with or without rail & 9 \\
\hline Control kit for maintenance of BA backflow preventers & 10 \\
\hline Control kit for maintenance of BA backflow preventers & 10 \\
\hline Contractual Replacement Annually Notified & 11 \\
\hline Disconnector with different non controllable pressure zones & 12 \\
\hline Hose union anti-vacuum valve combined with a check valve & 13 \\
\hline Check valves type EA : functioning principle & 14 \\
\hline Check valves type EA : 01 system & 16 \\
\hline Check valves type EA & 17 \\
\hline Check valves type EA with flanges : 03 system & 18 \\
\hline Check valves type EB & 19 \\
\hline Double check valves type EC/ED & 20 \\
\hline Pressure Reducing Valves & 4 \\
\hline & \\
\hline
\end{tabular}

By siphoning or overpressure, backllow may occur when the usual direction in the distribution circuit is

which could be polluted into the general water system thereby contaminating the drinking water.

\section*{Protection systems for drinking water networks...}

Agriculture, chemical or agricultural industries, collective or individual housing, workshop or business, all kinds of user are served by and linked to the same network : the risks of telescoping multiply.
As the network becomes more and more complex, an incident is more and more likely to occur in the water distribution system.

Incidents may occur of various degrees of seriousness when pumping a polluted liquid, siphoning a tank of chemical product, disposing of a dangerous product or rejecting waste water.

\section*{...The ntipollution range}

\section*{Degrees of protection}

To be TRULY EFFECTIVE the protecion system must contain no weakness : at every juncture the link must be totally adapted to its function.
Socla is the only European manufacturer to offer a complete range of anti-pollution products responding to every kind of incident which may occur.
For each level of risk Socla ensures perfect safety.

\section*{BA BACKFLOW PREVENTERS - Functioning principle}

BACKFLOW PREVENTERS WITH CONTROLLABLE REDUCED PRESSURE ZONES
A BA backflow preventer protects the drinking water network by interrupting the continuity of the supply to the user, emptying and evacuating to waste in case of danger of water being turned back into the main pipeline.

NORMAL WORKING UNDER PRESSURE

\section*{IN FLOW}

The two check valves are open ; the discharge valve is held closed by the dominant upstream pressure pushing the membrane from above. The downstream installation is served.

\section*{FLOW INTERRUPTED (static pressure)}

The two check valves are closed and the discharge valve is closed by the positive differential pressure pushing down on the membrane. The downstream installation is no longer served.

\section*{IN CASE OF INCIDENT : HOW THE SAFETY MECHANISM WORKS}

No reversal or indeed balance of pressure is permitted between the middle chamber of the back flow preventer and upstream.
The design of the device ensures that upstream pressure must always be 140 mbar higher than pressure in the middle chamber. This differential pressure controls the opening of the discharge valve and emptying of the back flow preventer.

OVERPRESSURE DOWNSTREAM
If the downstream check valve is watertight this will not cause an incident. If the downstream check valve is not watertight the overpressure will reach the middle chamber and will open the discharge valve.

UPSTREAM CHECK VALVE NOT WATERTIGHT
The upstream pressure reaches the middle
chamber under the membrane and opens the discharge valve.

A TOOL TO INCREASE YOUR KNOWLEDGE IN ANTIPOLLUTION...
Videos at your disposal
- a new version of the antipollution video
- a technical guide for the installation and maintenance of backflow preventers

A controllable back flow preventer activated by reduced pressure protects itself against its own possible malfunctions.
The safety mechanism of the device comes into play when the pressure is static. In this case the discharge valve evacuates. This occurs in the following cases.

OF PRESSURE UPSTREAM
The two check valves are closed. The discharge valve opens because of the drop in pressure above the membrane even if the check valve upstream is watertight. The middle chamber empties.

-

\title{
BA BACKFLOW PREVENTERS
}

\section*{BACKFLOW PREVENTERS WITH CONTROLLABLE REDUCED PRESSURE ZONES}

\section*{Optimal performance}

Valve sections removable
Valve sections removable
Easy maintenance
sub-sections easily exchanged
High performance materials
casing in bronze, NBR (nitrile) membrane, silicone seals

SSCLA-5-

\section*{BA 4760 and BA 4660}

BACKFLOW PREVENTERS WITH CONTROLLABLE REDUCED PRESSURE ZONES

\section*{General characteristics}
\begin{tabular}{lc}
Easy maintenance & M/M Connections : union male BSP \\
Compact & connections \\
High performance materials & Maximum working temperature \(65^{\circ} \mathrm{C}\) \\
& Maximum working pressure 10 bar \\
\hline
\end{tabular}

\section*{Nomenclature}

Valve casing and cover : bronze
Check valves : brass + PPO (polyphenylene oxide)
Valve seat and discharge valve : PPO (polyphenylene oxide) Spring, screws, ring, discharge valve seat : stainless steel Membrane and seal : NBR (Nitrile) and silicone Funnel : polyamide (PA 6.6) or polycarbonate (PC) Drain cock : \(\varnothing 1 / 4^{\prime \prime}\) brass

\section*{BA 2760}

OPERATION : HORIZONTAL POSITION

TECHNICAL INFORMATION
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{TYPE 2760 MALE/MALE} \\
\hline Ref. & A & \[
\begin{gathered}
\mathrm{B} \\
\mathrm{~mm}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{C} \\
\mathrm{~mm}
\end{gathered}
\] & \[
\underset{\mathrm{mm}}{\mathrm{D}}
\] & \[
\begin{gathered}
\mathrm{E} \\
\mathrm{~mm}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{F} \\
\mathrm{~mm}
\end{gathered}
\] & Weigh kg \\
\hline 14983680 & 1/2 & 130 & 62,5 & 191 & 20 & 116,5 & 1,05 \\
\hline 149B3481 & 3/4 & 200 & 77 & 245,5 & 40 & 153,5 & 1,8 \\
\hline 14983082 & 1 & 262 & 104 & 285 & 50 & 185,5 & 3,7 \\
\hline 149B3083 & \(11 / 4\) & 277 & 116 & 308,5 & 50 & 205,5 & 5 \\
\hline 149B3086 & \(11 / 2\) & 330 & 130 & 330 & 50 & 215 & 7 \\
\hline 149B3085 & 2 & 396 & 146 & 425 & 50 & 230,5 & 9,8 \\
\hline
\end{tabular}
(1) Upstream check valve
(2) Downstream check valve
(3) Discharge valve
(4) Outlet drain holder

BA 2760 CD
OPERATION : VERTICAL POSITION FLOW UP TO DOWN

TECHNICAL INFORMATION
\begin{tabular}{|l|c|c|r|c|c|c|}
\hline \multicolumn{8}{|c|}{ TYPE 2760 CD MALE/MALE } \\
\hline Ref. & \begin{tabular}{c}
\(\mathbf{A}\) \\
\(\boldsymbol{\prime}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{B}\) \\
\(\mathbf{m m}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{C}\) \\
\(\mathbf{m m}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{D}\) \\
\(\mathbf{m m}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{E}\) \\
\(\mathbf{m m}\)
\end{tabular} & \begin{tabular}{c}
Weight \\
\(\mathbf{k g}\)
\end{tabular} \\
\hline 149B3481CD & \(3 / 4\) & 200 & 77 & 186 & 40 & 2,1 \\
\hline 149B3082CD & 1 & 262 & 104 & 211 & 50 & 4,2 \\
\hline 149B3083CD & \(11 / 4\) & 277 & 116 & 235 & 50 & 5,5 \\
\hline 149B3086CD & \(11 / 2\) & 330 & 130 & 254 & 50 & 7,5 \\
\hline 149B3085CD & 2 & 396 & 146 & 282 & 50 & 10,3 \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{DISCONNECTEURS BA 4760}

\section*{BACKFLOW PREVENTERS WITH CONTROLLABLE REDUCED PRESSURE ZONES}

\section*{General characteristics}

M/M Connections: drilled flanges PN 10
(1) Maximum working temperature \(65^{\circ} \mathrm{C}\)
(P) Maximum working pressure 10 bar

Highly reliable - Maximum accessibility
High performance materials

\section*{Nomenclature}

Valve casing, cover : epoxy-coated (int/ext) cast iron Check valves: stainless steel / DZR brass Valve seat and discharge valve : PPO (polyphenylene oxide) Membrane and seal : NBR (nitrile) and silicone Spring, screws, ring, discharge valve seat : stainless steel Drain cocks: \(1 / 4^{\prime \prime}\) brass
Funnel : cast iron

Backflow preventer BA 4760
OPERATION: HORIZONTAL POSITION

E
TECHNICAL INFORMATION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{TYPE 4760 FLANGES} \\
\hline Ref. & DN
mm & \[
\begin{gathered}
\mathrm{A} \\
\mathrm{~mm}
\end{gathered}
\] & \[
\begin{array}{c|}
\hline \text { B } \\
\mathrm{mm}
\end{array}
\] & \[
\begin{gathered}
\mathrm{C} \\
\mathrm{~mm}
\end{gathered}
\] & \[
\underset{\mathrm{mm}}{\mathrm{D}}
\] & \[
\begin{gathered}
\boldsymbol{\sigma E} \\
\mathrm{mm}
\end{gathered}
\] & \[
\begin{gathered}
\text { ØF } \\
\mathrm{mm}
\end{gathered}
\] & \[
\begin{array}{|c|c|}
\hline \text { Weight } \\
\text { kg }
\end{array}
\] \\
\hline 14983486 & 60/65 & 185 & 356 & 155 & 326 & 63 & 180 & 25 \\
\hline 14983097 & 80 & 200 & 440 & 173 & 337 & 63 & 200 & 29,5 \\
\hline 14983098 & 100 & 220 & 530 & 201 & 434 & 80 & 255 & 58 \\
\hline 14983400 & 150 & 285 & 630 & 230 & 456 & 80 & 310 & 83,5 \\
\hline 14983401 & 200 & 340 & 763 & 272 & 499 & 80 & 390 & 141 \\
\hline 14983402 & 250 & 395 & 763 & 272 & 499 & 80 & 390 & 15 \\
\hline
\end{tabular}

\section*{Installation advice for \(B A\) backflow preventer}

The backflow preventers (type BA 2760 and BA 4760) must due to present regulations be equipped with accessories such as

UPSTREAM, a stop valve and strainer ; DOWNSTREAM, a stop valve.

All these accessories are available at Socla :
- Full bore ball valves DN \(1 / 2^{\prime \prime}\) to \(2^{\prime \prime}\).
- Butterfly valves DN 65 to 250 (please consult us)
- Threaded strainer with drain cock DN \(1 / 2^{\prime \prime}\) to \(2^{\prime \prime}\) for BA 2760 and BA 2760 CD
- Filters with flanges PN 10 DN 65 to 250
- Incorporated outlet drain holder
- Horizontal installation

- In the case of an upstream diversion in the area right in front of the RPZ, it is necessary to install a checkvalve between the diversion and the RPZ.
- Always manipulate the upstream valve slowly.

\section*{Headloss chart}
\(\Delta p\)

Type BA2760

SSCLA-

\section*{SET OF PROTECTION WITH OR WITHOUT SUPPORT RAIL}

DISCORAILS

\section*{General characteristics}

The set is composed by
- a backflow preventer type BA 2760,
- 2 isolating valves type VABS, V3000,
- and a filter type Y 222 P

The set is composed by
- a backflow preventer type BA 2760,
- 2 isolating valves type VABS, V3000,
- and a filter type Y222P
- and a support rail

Without support

With support

\section*{TECHNICAL INFORMATION}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{DISCORAILS WITHOUT SUPPORT RAIL} \\
\hline Ref. & \[
\begin{aligned}
& \mathrm{DN} \\
& \mathrm{~mm}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{A} \\
\mathrm{~mm}
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { B } \\
\mathrm{mm}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{C} \\
\mathrm{~mm}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{D} \\
\mathrm{~mm}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{E} \\
\mathrm{~mm}
\end{gathered}
\] & \[
\begin{gathered}
\hline F \\
\mathrm{~mm}
\end{gathered}
\] & \[
\begin{gathered}
\text { Weight } \\
\mathrm{kg}
\end{gathered}
\] \\
\hline 149822259 & 1/2 & 294 & * & 90 & 90 & 74,5 & 116,5 & 1,14 \\
\hline 149821060 & 3/4 & 435 & 298 & 70 & 90 & 92 & 153,5 & 3,0 \\
\hline 149821081 & 1 & 520 & 360 & 70 & 115 & 99,5 & 185,5 & 5,4 \\
\hline 149821082 & \(1^{1 / 4}\) & 575 & 387 & 135 & 115 & 103 & 205,5 & 7,8 \\
\hline 149821083 & \(1^{1 / 2}\) & 715 & 510 & 135 & 150 & 115 & 215 & 14,3 \\
\hline 149821084 & 2 & 815 & 576 & 135 & 180 & 94, & 230,5 & 17 \\
\hline
\end{tabular}

TECHNICAL INFORMATION
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{DISCORAILS WITH SUPPORT RAIL} \\
\hline Ref. & \[
\begin{aligned}
& \mathrm{DN} \\
& \mathrm{~mm}
\end{aligned}
\] & \[
\underset{\mathrm{Cm}}{\mathrm{C}}
\] & \[
\underset{\mathrm{mm}}{\mathrm{D}}
\] & \[
\begin{gathered}
\mathrm{E} \\
\mathrm{~mm}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{F} \\
\mathrm{~mm}
\end{gathered}
\] & Weight kg \\
\hline 149897397 & 1/2 & 90 & 90 & 74,5 & 116,5 & * \\
\hline 149895098 & 3/4 & 70 & 90 & 92 & 153,5 & 3,5 \\
\hline 149895099 & 1 & 70 & 115 & 99,5 & 185,5 & 6,0 \\
\hline 149895100 & \(1^{14}\) & 135 & 115 & 103 & 205,5 & 10,0 \\
\hline 149895101 & \(1^{1 / 2}\) & 135 & 150 & 115 & 215 & 16,2 \\
\hline 149895102 & 2 & 135 & 180 & 194,5 & 230,5 & 19,2 \\
\hline
\end{tabular}

\section*{For backflow preventers BA 2760}

Y222P FILTER
Cast iron water filter with a stainless steel strainer and brass drain cock. For protection of pumps, valves, pressure reducing valves, backflow preventers.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ TYPE Y222P } \\
\hline Ref. & \begin{tabular}{c}
\(\boldsymbol{0}\) \\
\(\mathbf{m m}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{A}\) \\
\(\mathbf{m m}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{B}\) \\
\(\mathbf{m m}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{C}\) \\
\(\mathbf{m m}\)
\end{tabular} & Mesh & \begin{tabular}{c}
Weight \\
\(\mathbf{k g}\)
\end{tabular} & \begin{tabular}{c}
KV \\
\(\mathbf{m / h}\)
\end{tabular} & \(\boldsymbol{\zeta}\) \\
\hline 149B5950 & \(15 / 21\) & 63 & 60 & 40 & 0,5 & 0,185 & 2,7 & 10,33 \\
\hline 14985160 & \(20 / 27\) & 93 & 69 & 69 & 0,5 & 0,370 & 5,1 & 9,50 \\
\hline 149B5161 & \(26 / 34\) & 101 & 87 & 73 & 0,5 & 0,540 & 11,3 & 4,70 \\
\hline 14985191 & \(33 / 42\) & 125 & 106 & 84 & 0,5 & 0,874 & 17,2 & 5,50 \\
\hline 149855162 & \(40 / 49\) & 129 & 117 & 91 & 0,5 & 0,990 & 23,0 & 7,50 \\
\hline 149B5163 & \(50 / 60\) & 145 & 147 & 103 & 0,5 & 1,290 & 46,8 & 4,50 \\
\hline
\end{tabular}

\section*{V3000 BALL VALVE}

Hard chromed brass ball valve, full bore, ball hard chrome-plated brass, PTFE seal. For general process, heating and multi-fluid applications
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ TYPE V3000 } \\
\hline Ref. & \begin{tabular}{c}
DN \\
"
\end{tabular} & \begin{tabular}{c}
\(\mathbf{A}\) \\
\(\mathbf{m m}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{B}\) \\
\(\mathbf{m m}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{D}\) \\
\(\mathbf{m m}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{E}\) \\
\(\mathbf{m m}\)
\end{tabular} & \begin{tabular}{c}
Weight \\
kg
\end{tabular} \\
\hline 149B5040 & \(1 / 2\) & 14 & 54 & 45 & 90 & 0,195 \\
\hline 149B5041 & \(3 / 4\) & 19 & 55 & 48 & 90 & 0,265 \\
\hline 149B5042 & 1 & 25 & 68 & 60 & 115 & 0,445 \\
\hline 149B5043 & \(11 / 4\) & 31 & 82 & 65 & 115 & 0,640 \\
\hline 149B5044 & \(11 / 2\) & 39 & 89 & 81 & 150 & 0,920 \\
\hline 149B5045 & 2 & 49 & 107 & 93 & 180 & 1,545 \\
\hline
\end{tabular}

\section*{For backflow preventers BA 4760}

Y333P FILTER
Cast iron water filter with a stainless steel strainer and brass drain cock. For protection of pumps, valves, pressure reducing valves, backflow preventers.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{TYPE Y333P} \\
\hline \multirow{2}{*}{Ref.} & \(\emptyset\) & A & C & D & Mesh & Weight & KV & \multirow{2}{*}{\(\zeta\)} \\
\hline & " & mm & mm & mm & mm & Kg & m/h & \\
\hline 14983282 & 65 & 290 & 192 & 65 & 0,80 & 11 & 89 & 3,50 \\
\hline 14983283 & 80 & 310 & 159 & 75 & 1,25 & 13,5 & 127 & 4,00 \\
\hline 14983284 & 100 & 350 & 187 & 90 & 1,25 & 18 & 200 & 3,90 \\
\hline 14983285 & 125 & 400 & 249 & 125 & 1,25 & 27,5 & 364 & 2,60 \\
\hline 14983286 & 150 & 480 & 301 & 170 & 1,25 & 43 & 494 & 3,30 \\
\hline 14983287 & 200 & 600 & 403 & 220 & 1,25 & 83 & 937 & 2,90 \\
\hline 14983288 & 250 & 730 & 472 & 200 & 1,60 & 112 & 1137 & 4,80 \\
\hline
\end{tabular}

\section*{BUTTERFLY VALVES}

Butterfly valves with short notched ductile iron handlever, 10 positions padlockable or with manual gear box in cast iron, longlife lubrificated actuated with gear.

 (

SSCLA-9-

\section*{Control kits for maintenance of BA backflow preventers}

In accordance with antipollution standard and hygiene regulations, BA backflow preventers must undergo an annual performance check for which the user is responsible.

For this purpose Socla proposes a maintenance kits allowing these periodic checks to be made.

A check list included with the kit describes the procedure which must be followed scrupulously and effected on the device itself.

The following are tested, one by one :
- the watertightness of the upstream stop valve
- the watertightness of the upstream check valve
- the watertightness of the discharge valve
- the watertightness of the downstream stop valve
- the watertightness of the downstream check valve
- the value of differential pressure which triggers the disconnection (as read on the differential manometer ; this should not be less than 140
 mbar when the first drops reach the discharge valve).

In this way the condition of the component parts of the device and the correct functioning of the back flow preventer is thoroughly controlled.

\section*{Contractual Replacement Annually Notified}

\section*{List of french organism for certification}

Organisms which certificate the maintenance backflow preventers:

\section*{AFORTECH}

10 rue du Débarcadère - 75017 PARIS
Tèl : 0140551414

\section*{PRO FORM TECH}

3 rue Réaumur - 77380 COMBS LA VILLE
Tél : 0160189198

\section*{AFPI RHODANIENNE}

10 boulevard Edmond Michelet - 69008 LYON
Tél : 0478770570
OFFICE INTERNATIONALE DE L'EAU
22 rue Edouard Chamberland - 87065 LIMOGES
Têl. 0555114700
LEGOURD CONSEIL FORMATION
108 avenue Paul-Vaillant Couturier - 91700 STE-GENEVEVE-DES-BOIS Tél//Fax 0169513685

\section*{Electronic kit}

All-electronic control unit for backflow preventer of 15 to 250 mm diameter, delivers in a shockproof case with manual, calibration certificate of the electronic manometer and maintenance procedure. Dimensions approx \(300 \times 400 \times 110\).

Ref. 1020

\begin{abstract}
EXCLUSIVE

Backflow preventer BA 2760
with controllable reduced pressure zone

\section*{With the C.R.AN.}

\section*{Contractual Replacement Annually Notified}

\section*{Socla ensure a complete service!}

With this contract, the yearly maintenance recommended is free thanks to the standard exchange of the BA 2760 annually on the commissionning date.
However, the plants where theses devices are mounted, must be verified by qualified personnel, according to article R. 1321-59 of the legislation, published in the 27 Mai 2003.

Advantages :
- you save time,
- easy management of the maintenance,
- controlled costs,
- an installation under annual warranty.

Do not hesitate to contact us.
\end{abstract}

\section*{DISCONNECTOR WITH DIFFERENT NON CONTROLLABLE PRESSURE ZONES}

\section*{General characteristics :}
\begin{tabular}{lc}
Compact & FIF Connections : demountable \\
High performance & Female/Female unions \\
Competitive & Maximum working temperature \(65^{\circ} \mathrm{C}\) \\
& Maximum working pressure 10 bar \\
\hline
\end{tabular}

To protect low risk or intermittent risk installations which nevertheless require a backflow prevention system : domestic heating units < 70 Kw , vending machines, certain laboratory equipment...

Special versions in \(M / M\) and nickel plated in M/M or F/F

Nomenclature
Membrane NBR (nitrile)
Upstream check valve : brass and polyacetal (POM)
Springs : stainless steel
Downstream check valve : polyacetal (POM)
Valve casing : brass
Funnel : polyamide (PA 6.6)
Filter

\section*{TECHNICAL INFORMATION}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{TYPE CA 296} \\
\hline Ref. & A & \[
\begin{gathered}
\text { B } \\
\mathrm{mm}
\end{gathered}
\] & \[
\underset{\mathrm{mm}}{\mathrm{C}}
\] & \[
\underset{\mathrm{mm}}{\mathbf{E}}
\] & \[
\underset{\mathrm{mm}}{\mathrm{~F}}
\] & \[
\underset{\mathrm{mm}}{\mathrm{G}}
\] & \[
\begin{gathered}
\text { Weight } \\
\mathbf{k g}
\end{gathered}
\] \\
\hline 149B2885 & 1/2 & 105 & 140 & 32 & 76 & 47 & 0,595 \\
\hline 14982886 & 3/4 & 105 & 140 & 32 & 76 & 47 & 0,580 \\
\hline
\end{tabular}

Functionning principle

Normal operation under pressure
In normal conditions, the discharge valve remains closed while the upstream check valve and downstream check valve are open, allowing water to flow through the device.

\section*{Flow interrupted, static pressure}

The backflow preventer is under pressure, flow has stopped, upstream and downstream check valves close, the discharge valve remains closed.

\section*{Water returns back in case of pressure loss upstream or overpressure downstream}

In the case of loss of pressure, the upstream check valve and the downstream check valve remain closed. The pressure loss causes the discharge valve to open and releases air into the middle section. In the case of overpressure upstream and if the upstream check valve is worn, the discharge valve opens, any leak from downstream is evacuated by the discharge valve.

\section*{HOSE UNION BACKFLOW PREVENTERS}

\section*{General characteristics}

\section*{HA hose union backflow preventer}

\section*{Nomenclature}

Brass closing system allowing draining upstream (for frost protection)
Brass casing F/M
NBR (Nitrile) seal
Stainless steel spring
NBR (nitrile) membrane DN 3/4) and NR (natural rubber)
DN 1 1/4"
Self-breaking locking screw in zinc-coated steel guaranteeing that the device cannot be removed.

M/F Connections female/male BSP threads

> (1) Maximum working temperature \(65^{\circ} \mathrm{C}\)
> (P) Maximum working pressure 10 bar

This device is fitted to taps. It ensures protection against backflow by loss of pressure in the pipework upstream.

\section*{TECHNICAL INFORMATION}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{TYPE 216 FEMALE/FEMALE} \\
\hline \multirow[b]{2}{*}{Ref.} & \multicolumn{2}{|l|}{A} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
B \\
\mathrm{~mm}
\end{gathered}\right.
\]} & \multirow[t]{2}{*}{\[
\underset{\mathrm{mm}}{\mathrm{C}}
\]} & \multirow[t]{2}{*}{Weight kg} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{KV} \\
\mathrm{~m}^{3} / \mathrm{H}
\end{gathered}
\]} & \multirow[b]{2}{*}{\(\zeta\)} \\
\hline & \[
\begin{aligned}
& \text { Inlet } \\
& \mathrm{F}
\end{aligned}
\] & Outlet & & & & & \\
\hline \(149 \mathrm{B2160}\) & 3/4 & 3/4 & 41 & 37 & 0,145 & 4,1 & 15 \\
\hline 14982161* & 3/4 & 3/4 & 41 & 37 & 0,145 & 4,1 & 15 \\
\hline 14982310 & \(11 / 4\) & \(11 / 4\) & 61 & 68 & 0,635 & 10 & 17 \\
\hline
\end{tabular}

\section*{General characteristics}

HD Hose union anti-vacum valve combined vith a check vave ype 206

\section*{Nomenclature}

Chromed brass valve casing
PBTP (polybutylene terephtalate) guide
Polyacetylene closing system
Vacuum breaker with NBR (nitrile) membrane

M/F Connections female/male BSP threads
(1) Maximum working temperature \(65^{\circ} \mathrm{C}\)
(P) Maximum working pressure 10 bar

Used in conjunction with a check valve, this antivacuum valve protects against back flow and loss of pressure in the pipework upstream.
No means of closure may be fitted downstream.

TECHNICAL INFORMATION
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{TYPE 206 FEMALE/MALE} \\
\hline \multirow[b]{2}{*}{Ref.} & \multicolumn{2}{|l|}{A} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{B} \\
\mathrm{~mm}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\underset{\mathrm{mm}}{\mathrm{C}}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Weight } \\
\mathrm{kg}
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{KV} \\
\mathrm{~m}^{3} / \mathrm{H}
\end{gathered}
\]} & \multirow[b]{2}{*}{\(\zeta\)} \\
\hline & Female Inlet & Male Outlet & & & & & \\
\hline 14982179 & \[
\begin{gathered}
3 / 4 \\
1 / 2^{\star} \\
3 / 4^{*}
\end{gathered}
\] & \[
\begin{aligned}
& 1 / 2 \\
& 1 / 2 \\
& 3 / 4
\end{aligned}
\] & 36 & 33 & 0,125 & 3 & 28 \\
\hline
\end{tabular}
*By adding a fillering to the valve

\section*{EA CHECK VALVES}

These check valves are in the process of different national certifications and are designed to protect drinking water systems from contamination by polluted liquids which do not present toxic or microbiological risks to human health as defined by the health authorities. They must always be installed in conjunction with a means of isolation upstream (a stopcock) and with a means of control positioned on a boss upstream. Where there is a boss downstream the latter may be fitted with a drain tap allowing emptying or disinfection of the downstream network.

\section*{a. Upstream boss :}

Controls the watertightness of the check valve, allows sampling to test quality of water distributed.
b. Downstream boss :

For emptying of system ; internal sampling to control quality of used water.

\section*{Functionning principle}

(1) NORMAL OPERATION IN FLOW
The closing system (1) is under pressure and opens. Flow goes through.

2 FLOW INTERRUPTED STATIC PRESSURE
The closing head (1) seals by the force of the spring.

3. WATER TURNED BACK (LOSS OF PRESSURE OR PRESSURE SURGE) The valve head (1) closes instantly preventing any water returning from downstream to upstream.

Socla Antipollution valves : a complete range
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ TYPES } & SYSTEMS & CONNECTIONS & \begin{tabular}{c}
SIZES \\
mm
\end{tabular} & CLASS \\
\hline EA 251 & 01 & F/M & 15 to 40 & EA \\
\hline EA 251 BL & 01 & F/M & 15 to 40 & EA \\
\hline EA 251 CC & 01 & F/M & 15 to 20 & EA \\
\hline EA 251 PP & 01 & F/M & 15 to 40 & EA \\
\hline EA 251 PU & 01 & F/M & 15 to 40 & EA \\
\hline EA 251 S & 01 & F/M & 15 & EA \\
\hline EA 251 SPP & 01 & F/M & 15 & EA \\
\hline EA 251 SPU & 01 & F/M & 15 & EA \\
\hline EA 253 & 01 & F/F & \(50-65\) & EA \\
\hline EA 221 B & 01 & F/F & 20 to 50 & EA \\
\hline EA 271 & 01 & M/M & 15 to 50 & EA \\
\hline EA 291 NF & 01 & F/F & 15 to 50 & EA \\
\hline EA 453 & 03 & \(16 / 10\) & 40 à 250 & EA \\
\hline EA 223 & 03 & M/M & 15 to 50 & EB \\
\hline \(453 / 453\) & 06 & \(16 / 10\) & 40 to 250 & EC \\
\hline 2211 & 01 & C/C & 15 & ED \\
\hline 2231 & 01 & F/F & 15 to 50 & ED \\
\hline \(202 / 212\) & 02 & F/F & 65 to 100 & - \\
\hline \(402 / 402\) & 02 & \(16 / 10\) & 50 to 500 & - \\
\hline
\end{tabular}

Installation advice :

A means of isolation (stopcock) must be installed upstream of these check valves.

It is recommended that a filter be fitted upstream of the valve when used with slurries.
Keeping the area around the device clear will ensure watertightness checks, repairs etc can be carried out without difficulty.

The inspection plate must be easy to reach.

C/C : compression fittings
F/M : with threads
16/10: with flanges

\section*{EA CHECK VALVES}

\section*{What makes a Socla 01 system valve special ?}

EA valves \(<2^{\prime \prime}\) must be watertight under pressure from between a minimum of 3 cm of water column up to 16 bar.

The valves undergo 80000 cycles of 15 s (opening/closing) with water of \(65^{\circ} \mathrm{C}\) and a counter pressure of 10 bar .

After testing, the valves must satisfy watertightness and opening pressure checks.

At high pressure the sealing takes place between the closing system and the seal in an \(L\) shape along all the internal length of seal.
The closing system is then in the closed position on the casing, guaranteeing a second level of sealing and preventing blockages.

The hydraulic shape has been developed for minimum energy loss. The double (axial and lateral) guiding ensures that the closing system is perfectly centred on its seat.

Return spring means that the valve can function in any position.

\section*{What makes a Socla 03 systems valve special ?}

EA valves \(>2^{\prime \prime}\) must be watertight under pressure from between a minimum of 3 cm of water column up to 16 bar. The valves undergo 25 000 cycles of 14s (opening/closing) with water of \(65^{\circ} \mathrm{C}\) and a counter pressure of 16 bars. After testing, the valves must satisfy watertightness and opening pressure tests.
- NF antipollution french standard
- Perfect water tightness at high and low pressure
- Easy to maintain

03 System : Simple to maintain

Bosses with test cock allowing

\section*{EA CHECK VALVES}

F/M BSP thread connections female nut/male (1) Maximum working temperature : \(80^{\circ} \mathrm{C}\) constant or \(100^{\circ} \mathrm{C}\) peak
(P) Maximum working pressure : 10 bar

For housing, water distribution, protection of drinking water systems.
The 251 valve range are particularly recommended for positioning after the water meter.

Types EA 251S-251SPP-251SPU : lenght 58 mm

EA251S
2 drilled bosses 1/8"
with brass plugs

EA251SPP
2 threaded bosses, brass
purges with hand wheel

EA251SPU
2 bosses with cylindrical drainpoints

Nomenclature
Casing brass with union nut Lenght 58 mm
Guide : polyacetal (POM)
Closing system :
polyacetal (POM)
Seal : NBR (nitrile)
Spring: \(1 / 4^{\prime \prime}\) stainless
steel

\section*{TECHNICAL INFORMATION}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{TYPES EA 251S - EA251SPP} \\
\hline \multirow[t]{2}{*}{Types} & \multirow[t]{2}{*}{Ref.} & \multicolumn{2}{|r|}{A} & B & C & D & E & Weight \\
\hline & & C* & " & mm & mm & mm & mm & kg \\
\hline EA251S & 14983511 & 15 & 3/4 & 58 & 32 & 23,5 & 19 & 0,2 \\
\hline EA251SPP & 14983511PP & 15 & 3/4 & 58 & 32 & 39 & 19 & 0,2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ TYPE EA251SPU } \\
\hline Type & Ref. & A & B & C & D & E & Weight \\
\cline { 3 - 8 } & & \(\mathbf{C}^{*}\) & mm & mm & mm & mm & mm & kg \\
\hline \multirow{2}{*}{ EA2515PU } & 14983511 PU & 15 & \(20 / 27\) & 58 & 32 & & & \\
\hline
\end{tabular}
*C: watermeter

\section*{TECHNICAL INFORMATION}

\section*{Nomenclature}

Valve casing : brass
Guide : polyacetal (POM)
Closing system :
polyacetal (POM)
Seal : NBR (nitrile) Spring: 1/4" stainless steel
Plastic plugs with seals

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{TYPES EA 251 PU - EA 251 PP} \\
\hline \multirow[t]{2}{*}{Ref. EA251PU} & \multirow[t]{2}{*}{Ref. EA251PP} & \multirow[t]{2}{*}{C*} & \multicolumn{2}{|r|}{A} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { B } \\
\mathrm{mm}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{C} \\
\mathrm{~mm}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{D} \\
\mathrm{~mm}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
\mathbf{E} \\
\mathrm{mm}
\end{gathered}\right.
\]} & \multirow[t]{2}{*}{Weigh} & \multirow[t]{2}{*}{\[
\mathrm{KV}
\]} & \multirow[b]{2}{*}{\(\zeta\)} \\
\hline & & & " & mm & & & & & & & \\
\hline 14981501 & 14982111pp & 15 & 3/4 & 20/27 & 78 & 40,5 & 29 & 32,0 & 0,216 & 7,0 & 1,6 \\
\hline 149814390 & 14982112PP & 20 & 1 & 26/34 & 81 & 43,0 & 29 & 40,0 & 0,316 & 11,8 & 1,8 \\
\hline 149814528 & 14982113PP & 25 & \(11 / 4\) & 33/42 & 89 & 49,0 & 26 & 48,5 & 0,470 & 15,4 & 2,6 \\
\hline 149814495 & 14982114PP & 30 & \(11 / 2\) & 40/49 & 99 & 63,0 & 26 & 55,0 & 0,640 & 25,1 & 2,6 \\
\hline 149814529 & 14982115PP & 40 & 2 & 50/60 & 105 & 57,0 & 26 & 69,0 & 0,900 & 34,9 & 3,3 \\
\hline
\end{tabular}
*C : watermeter

Type EA 251 CC

\section*{General characteristics}

Space saving for installation in restricted spaces: 4 drilled bosses \(1 / 4^{\prime \prime}\) plugs in POM
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{TYPE EA 251CC} \\
\hline \multirow[b]{2}{*}{Type} & \multirow[t]{2}{*}{Ref.} & \multicolumn{3}{|c|}{A} & B & C & D & Weight & KV & \(\zeta\) \\
\hline & & C* & " & mm & mm & mm & mm & kg & \(\mathrm{m}^{3} / \mathrm{H}\) & \\
\hline \multirow{2}{*}{EA251CC} & 14983050 & 15 & 3/4 & \(20 / 27\) & 52 & 29,5 & 47 & 0,19 & 3,9 & 5,4 \\
\hline & 14983051 & 20 & 1 & 26/34 & 52,25 & 39 & 56 & 0,26 & 7,5 & 4,5 \\
\hline
\end{tabular}

\section*{EA CHECK VALVES}

Type EA 271
General characteristics
M/M Brass casing (BSP), equipped with two drilled and plugged bosses. Two connection pieces may be added ((nuts and nipples \(3 / 4^{\prime \prime}\))
Maximum working temperature \(80^{\circ} \mathrm{C}\) continuously or P \(100^{\circ} \mathrm{C}\) peak

\section*{Nomenclature}

Valve casing : brass
Guide : POM
Guided closing system POM
Seal : NBR (nitrile)
Spring : stainless steel
Plugs with seals : polyamide (PA6)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{TYPE EA 271} \\
\hline \multirow[t]{2}{*}{Ref.} & & A & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{B} \\
\mathrm{~mm}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\underset{\mathrm{mm}}{\mathrm{C}}
\]} & \multirow[t]{2}{*}{Weight kg} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{KV} \\
\mathrm{~m}^{3} / \mathrm{H}
\end{gathered}
\]} & \multirow[t]{2}{*}{\(\zeta\)} \\
\hline & " & mm & & & & & \\
\hline 149B2300 & 3/4 & 20/27 & 65 & 20 & 0,225 & 5,05 & 3,10 \\
\hline 149B2301 & 1 & 26/34 & 75 & 30 & 0,195 & 9,20 & 2,96 \\
\hline 149B2302 & \(11 / 4\) & 33/42 & 90 & 34 & 0,335 & 14,90 & 2,75 \\
\hline 149B2303 & \(11 / 2\) & 40/49 & 110 & 38 & 0,515 & 25,50 & 2,50 \\
\hline 149B2304 & 2 & 50/60 & 120 & 41 & 0,725 & 35,00 & 3,30 \\
\hline 149B2305 & \(21 / 2\) & 66/76 & 150 & 49 & 1,330 & 56,50 & 3,06 \\
\hline
\end{tabular}

\section*{Type EA 221B}

\section*{General characteristics}

M/M Brass valve casing threaded F/F (BSP), equipped with two bosses, drilled and plugged (diameter \(1 / 4\) BSP)
(1) Maximum working temperature : \(80^{\circ} \mathrm{C}\) constant or \(100^{\circ} \mathrm{C}\) peak
(P) Maximum working pressure : 10 bar

\section*{Nomenclature}

Valve casing with two bosses : brass
Guide : polyacetal (POM)
Guided closing system polyacetal (POM)
Seal NBR (nitrile)
Spring : stainless steel
2 plugs with seals : PA66 (polyamide)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{TYPE EA 221B} \\
\hline \multirow[t]{2}{*}{Ref. EA221B} & \multicolumn{2}{|c|}{A} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{B} \\
\mathrm{~mm}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{C} \\
\mathrm{~mm}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{D} \\
\mathrm{~mm}
\end{gathered}
\]} & \multirow[t]{2}{*}{Weight kg} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{KV} \\
\mathrm{~m}^{3} / \mathrm{H}
\end{gathered}
\]} & \multirow[t]{2}{*}{\(\zeta\)} \\
\hline & " & mm & & & & & & \\
\hline 14982171 & 3/4 & 20/27 & 78 & 30,5 & 32 & 0,260 & 12,5 & 1,6 \\
\hline 149B2172 & 1 & 26/34 & 93 & 32,5 & 41 & 0,450 & 19,6 & 1,6 \\
\hline 149B2173 & \(11 / 4\) & 33/42 & 113 & 39,5 & 50 & 0,680 & 33,1 & 1,5 \\
\hline 149B2174 & \(11 / 2\) & 40/49 & 120 & 41,0 & 55 & 0,850 & 46,0 & 1,9 \\
\hline 149B2175 & 2 & 50/60 & 150 & 48,0 & 70 & 1,800 & 84,0 & 1,4 \\
\hline
\end{tabular}

\section*{Type EA 291 NF}

\section*{General characteristics}Threaded brass casing not for use with gas, equipped with two drilled and plugged bosses
(1) Maximum working temperature : \(80^{\circ} \mathrm{C}\) constant or \(100^{\circ} \mathrm{C}\) peak
(B) Maximum working pressure : 10 bar

\section*{Nomenclature}

Valve casing : brass
Guide POM or PPO
Guided closing system : polyacetal (POM)
Seal : NBR (nitrile)
Spring : stainless steel
Plugs : plastic with seals

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{TYPE EA 291 NF} \\
\hline \multirow[b]{2}{*}{Ref.} & \multicolumn{2}{|l|}{A} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{B} \\
\mathrm{~mm}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{C} \\
\mathrm{~mm}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{D} \\
\mathrm{~mm}
\end{gathered}
\]} & \multirow[t]{2}{*}{Weight kg} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{KV} \\
\mathrm{~m}^{3} / \mathrm{H}
\end{gathered}
\]} & \multirow[b]{2}{*}{\(\zeta\)} \\
\hline & " & mm & & & & & & \\
\hline 149B2220 & 1/2 & 15/21 & 65 & 26 & 23 & 0,160 & 4,2 & 4,5 \\
\hline 149B2212 & 3/4 & 20/27 & 75 & 30 & 28 & 0,289 & 13,8 & 1,3 \\
\hline 149B2222 & 1 & 26/34 & 90 & 38 & 28 & 0,290 & 10,8 & 1,9 \\
\hline 14982213 & \(11 / 4\) & 33/42 & 110 & 47 & 36 & 0,830 & 28,0 & 2,1 \\
\hline 149B2214 & \(11 / 2\) & 40/49 & 120 & 54 & 38 & 0,780 & 41,0 & 2,4 \\
\hline 149B2215 & 2 & 50/60 & 150 & 66 & 46 & 1,360 & 55,8 & 3,1 \\
\hline
\end{tabular}

\section*{DRAIN COCKS/ACCESSORIES}

Brass drain cocks
Available : with male \(1 / 4\) key (ref. 5117)

\section*{General characteristics}

Functions in any position, minimal energy loss, excellent watertightness at both high and low pressure, exceptionally robust, no water-hammering, inspection cover for control and exchange of parts without removing the device.

\section*{16/10 \\ (1) Maximum temperature \(65^{\circ} \mathrm{C}\) constant \\ \(90^{\circ} \mathrm{C}\) peak \\ (B) Maximum working pressure 16 bar}

Type EA 453

\section*{Nomenclature}

Casing in ductile iron with external and internal epoxy coated 2 drilled bosses + test cock \(1 / 2^{\prime \prime}\)
1 drilled bosses +1 drain plug \(1 / 2^{\prime \prime}\) (except DN40/50: \(1 / 4^{\prime \prime}\))
Valve + plug : Brass
Closing system + Stem : DZR brass
Seat and spring : Stainless steel

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ TYPE EA 453 } \\
\hline Ref. & A & B & C & D & E & F & Weight \\
\cline { 2 - 8 } & mm & mm & mm & mm & mm & mm & kg \\
\hline 149B3831 & \(40 / 50\) & 165 & - & 200 & 113 & 80 & 8 \\
\hline 149B3832 & \(60 / 65\) & 185 & - & 240 & 118 & 93 & 12 \\
\hline 149B3833 & 80 & 200 & - & 260 & 131 & 98 & 15 \\
\hline 149B3834 & 100 & 222 & - & 300 & 141 & 115 & 21 \\
\hline 149B3836 & 150 & 285 & - & 400 & 197 & 144 & 42 \\
\hline 149B3837 & 200 & 340 & 380 & 500 & 220 & 200 & 65 \\
\hline 149B3838 & 250 & 400 & 438 & 600 & 256 & 235 & 94 \\
\hline
\end{tabular}

\section*{General characteristics}

For pressure water systems, housing, water distribution. Can be used on general and sanitary circuits

M/M Male/male BSP threads
Maximum working temperature \(65^{\circ} \mathrm{C}\) constant, \(90^{\circ} \mathrm{C}\) peak
(P) Maximum working pressure : 16 bar

\section*{Type EA 223}
NF

\section*{Type EA 253}

SSCLA- \({ }^{12-}\)

\section*{INCORPORABLE CHECK VALVES}

Permanently in contact with the Department of Health and the official testing laboratories. Socla's design team is developing "special" check valves which conform to the antipollution standard.

These "special" valves are used in conjunction with prefabricated equipment whose function requires protection from risk of contamination of the drinking water system.

This EB type valve is much appreciated by the water companies who supply meters equipped with a non-return system. This way, they can check the level of protection every time the meter is serviced.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Type EB 901}} & \multirow[t]{3}{*}{} & \multicolumn{8}{|l|}{TYPE EB 901} \\
\hline & & & Ref. & DN & A & B & c & Weight & KV & \\
\hline & & & 14982011 & 3/8 & 15 & 17 & 25 & 0,002 & 4,8 & 0,68 \\
\hline & & \(\xrightarrow{-A_{\rightarrow-1}}\) & 14982011G & 3/8 & 15 & 16 & 25 & 0,002 & 4,8 & 0,68 \\
\hline \% & 14, 4 & B & 14983300 & 3/8 & 15 & 15 & 21,5 & 0,002 & 4,8 & 0,68 \\
\hline & - - & & 14983301 & 3/8 & 15 & 15 & 21,5 & 0,002 & 4,8 & 0,68 \\
\hline & & & Ref. & DN A & B & c & D & Weight & KV & \\
\hline kivua & Valve for watemeter & 10 & Ref. & . \({ }^{\text {mm }}\) & mm & mm & mm & \({ }^{\mathrm{kg}}\) & \(\mathrm{m}^{\prime} / \mathrm{H}\) & \\
\hline ACS & & & 14982130 & \(1 / 218,3\) & 20 & 19 & 3 & 0,005 & 5,2 & 2,90 \\
\hline & & \(\xrightarrow{\square}\) & 14982131 & \(1 / 214\) & 25 & 17,5 & 7 & 0,005 & 5,2 & 2,90 \\
\hline & & & 14982132 & 128,5 & 32 & 38 & 8 & 0,015 & 16,2 & 2,70 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{ TYPE EB 911} \\
\hline Ref. & DN & A & B & C & Weight & KV & \\
\cline { 2 - 7 } & \(\mathbf{m m}\) & mm & mm & kq & \(\mathrm{m} / \mathrm{H}\) & \\
\hline 149 B 2007 & \(1 / 2\) & 17,5 & 24 & 25 & 0,005 & 3,37 & 5,60 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{TYPE EB 921} \\
\hline \multirow[t]{2}{*}{Ref.} & DN & A & B & Weight & KV & \\
\hline & " & mm & mm & kg & m \(/\) /H & \\
\hline \(149 \mathrm{B1030}\) & 1/2 & 18,3 & 19 & 0,005 & 4,0 & 5,0 \\
\hline 14981011 & 3/4 & 22 & 25 & 0,010 & 6,9 & 5,3 \\
\hline 149B1012 & 1 & 28,5 & 38 & 0,015 & 10,0 & 6,1 \\
\hline 14981013 & \(11 / 4\) & 38 & 41 & 0,070 & 22,0 & 3,4 \\
\hline 149B1014 & \(11 / 2\) & 44 & 51,5 & 0,085 & 29,0 & 4,8 \\
\hline 149B1863 & 2 & 50 & 64 & 0,180 & 46,5 & 4,5 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{ TYPE EB 931} \\
\hline Ref. & DN & A & B & C & Weight & KV & \\
\cline { 2 - 7 } & & mm & mm & mm & kg & \(\mathrm{m} / \mathrm{H}\) & \\
\hline 149 B 1022 J & \(1 / 2\) & 18,5 & 17 & 6 & 0,011 & 3,30 & 23,30 \\
\hline & & & & & & & \\
\hline 149 B 1024 & \(3 / 4\) & 20 & 26 & 11 & 0,016 & 6,81 & 5,40 \\
\hline & & & & & & & \\
\hline 149 B 1324 & \(3 / 4\) & 20 & 2,1 & 10,7 & 0,0045 & 6,81 & 5,40 \\
\hline 149 B 1325 & 1 & 24,9 & 31,5 & 13,3 & 0,011 & 13,59 & 3,41 \\
\hline 14981326 & \(11 / 4\) & 31,9 & 39,6 & 18,7 & 0,020 & 22,38 & 3,52 \\
\hline 14981327 & \(11 / 2\) & 39,8 & 49 & 21,2 & 0,027 & 36,74 & 3,51 \\
\hline 149 B 1328 & 2 & 49,8 & 60,7 & 26,2 & 0,055 & 62,19 & 3,29 \\
\hline 149 B 1023 & 1 & 24 & 22 & 7 & 0,018 & 6,81 & 13,20 \\
\hline
\end{tabular}

\section*{DOUBLE CHECK VALVES TYPES EC \＆ED}

\section*{General characteristics}

Double check valve system 03 flanges
Made with 2 non－return valves fig． 453 coupled together
Type EC 453／453

16／10 Raccordements ：raccords union Maximum temperature \(65^{\circ} \mathrm{C}\) constant， \(90^{\circ} \mathrm{C}\) peak
Maximum working pressure ： 16 bar drilling 10 bar
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Ref．} & \multicolumn{2}{|c|}{ A } & B & C & D & \multirow{2}{*}{ Kg } \\
\cline { 2 - 6 } & ＂ & mm & mm & mm & mm & \\
\hline 149B 24796 & \(11 / 2\) & \(40 / 50\) & 402 & 165 & 193 & 17 \\
\hline 149B 24797 & \(21 / 2\) & \(60 / 65\) & 482 & 185 & 211 & 25 \\
\hline 149B 24798 & 3 & 80 & 522 & 200 & 229 & 31 \\
\hline 149B 24799 & 4 & 100 & 602 & 222 & 256 & 43 \\
\hline 149B 24800 & 6 & 150 & 802 & 285 & 341 & 86 \\
\hline 149B 24801 & 8 & 200 & 1002 & 340 & 420 & 132 \\
\hline 149B 24802 & 10 & 250 & 1202 & 400 & 491 & 190 \\
\hline
\end{tabular}

\section*{General characteristics}

202B／202 ：double check valve composed of 1 standard range single type 202 and type 212 coupled together with screwed BSP end connections
\(402 \mathrm{~B} / 402\) ：double check valve composed of 2 standard range single check valves type 402 coupled together

TECHNICAL INFORMATION
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{TYPE 202B／212} \\
\hline \multirow[b]{2}{*}{Ref．} & \multicolumn{2}{|c|}{A} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{B} \\
\mathrm{~mm}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\stackrel{\mathrm{C}}{\mathrm{Cm}}
\]} & \multirow[t]{2}{*}{Weight kg} \\
\hline & ＂ & mm & & & \\
\hline 149896171 & 21／2 & 65 & 263 & 97 & 5，9 \\
\hline 149896172 & 3 & 80 & 312 & 125 & 11，1 \\
\hline 149896173 & 4 & 100 & 365 & 150 & 17，9 \\
\hline
\end{tabular}

\section*{General characteristics}

Double check valve 01 system with drilled bosses．
For clear liquids，water，gas，protection of drinking water networks

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{TYPE ED 2231} \\
\hline Ref． & A & \[
\begin{gathered}
\mathrm{B} \\
\mathrm{~mm}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{C} \\
\mathrm{~mm}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{D} \\
\mathrm{~mm}
\end{gathered}
\] & Weight kg & \[
\underset{\mathrm{m}^{3} / \mathrm{h}}{\mathrm{KV}}
\] & \(\zeta\) \\
\hline 14982790 & 1／2 & 59 & 26 & 38 & 0，130 & 2，4 & 13，80 \\
\hline 14982791 & 3／4 & 90 & 32 & 43 & 0，280 & 5，0 & 10，03 \\
\hline 14982637 & \(11 / 4\) & 146 & 48 & 57 & 0，700 & 19，0 & 4，55 \\
\hline 14982638 & \(11 / 2\) & 175 & 55 & 62 & 1，010 & 25，0 & 6,42 \\
\hline 14982639 & 2 & 196 & 67 & 77 & 1，560 & 36，8 & 7，23 \\
\hline \multicolumn{8}{|l|}{TYPE ED 2211} \\
\hline 14982796 & 15 & 73 & 24 & 36 & 0，112 & 2，1 & 18，00 \\
\hline
\end{tabular}

\section*{PRESSURE REDUCING VALVES}

All pressure reducing valve bodies are made of bronze. Due to their design, they are not affected by scale or dirt, and do not need any maintenance. They are suitable for cold and hot water up to \(80^{\circ} \mathrm{C}\) for maximum upstream pressure of 25 bar and reduce pressure between 0.5 and 7 bar. They can be installed in any position if flow direction stipulated by the arrow is respected. They can be fitted on compressed air, neutral gases and fuel oil at ambient temperature circuits.

\section*{Type 11}

F/F Bronze casing, Stainless steel seat. \(1 / 4^{\prime \prime}\) plugs on both sides to allow pressure gauge connection
(1) Maximum working temperature : \(80^{\circ} \mathrm{C}\)
(B) Maximum working pressure : 25 bar

Type 11BIS

\section*{Type JUNIOR}

F/F Bronze casing. \(1 / 4^{\prime \prime}\) pressure gauge connection and drain at the bottom of the casing
(1) Maximum working temperature : \(80^{\circ} \mathrm{C}\)
(- Maximum working pressure : 16 bar

Type 7EP

\section*{Type MULTI 7}

F/F Bronze casing. \(1 / 4^{\prime \prime}\) pressure gauge connection and drain at the bottom of the casing
(1) Maximum working temperature : \(80^{\circ} \mathrm{C}\) D Maximum working pressure : 16 bar

Consult us for CE marking which is requested starting DN50 on compressed air and neutral gases applications.
The ranges of figures 7, 8, 9, 10 and 11 are in accordance with the european standard EN1567. Series 11 and 11bis fulfil higher specification controlled by NF label.
All pressure reducing valve bodies are guaranteed for 5 years.

\section*{General characteristics}

Flats and houses individual water supply
Settings : from 1 bar to 5.5 bar
Pre-set at 3 bar
11 : male/male
11BIS : female/female
11EP : union-nut/male
11D0 : male/male
\begin{tabular}{|c|c|c|c|c|cc|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ D } & A & B & C & \multicolumn{3}{c|}{ E mm } & \multicolumn{3}{c|}{ Kg } \\
\hline n & mm & mm & mm & mm & 11 & 11 Bis & 11 DO & 11 & 11 Bis & 11 DO \\
\hline \(1 / 2\) & \(15 / 21\) & 31 & 60 & 59 & 85 & 66 & 140 & 0,70 & 0,70 & 0,90 \\
\hline \(3 / 4\) & \(20 / 27\) & 32 & 75 & 73 & 100 & 76,5 & 160 & 0,90 & 0,90 & 1,30 \\
\hline 1 & \(26 / 34\) & 40 & 102 & 94 & 122 & 98 & 180 & 2,00 & 1,90 & 2,50 \\
\hline \(11 / 4\) & \(33 / 42\) & 51 & 179 & 104 & 132 & 126 & 200 & 3,90 & 3,90 & 4,60 \\
\hline \(11 / 2\) & \(40 / 49\) & 46 & 185 & 104 & 132 & 132 & 220 & 5,00 & 4,20 & 5,00 \\
\hline 2 & \(50 / 60\) & 54 & 194 & 104 & 146 & 146 & 250 & 5,30 & 5,20 & 5,50 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{11 EP} \\
\hline \multicolumn{2}{|r|}{D} & A & B & C & E & F & \\
\hline " & mm & mm & mm & mm & mm & mm & K \\
\hline 3/4 & 20/27 & 31 & 75 & 73 & 112 & 50 & 0,88 \\
\hline
\end{tabular}

\section*{General characteristics}

Flats and houses individual water supply
Settings : from 1 bar to 5.5 bar
Pre-set at 3 bar downstream
7BIS : female/female
7EP : union-nut/male
7SP : male/union-nut
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{D} & A & B & C & E & F & G & H & \multicolumn{3}{|c|}{Kg} \\
\hline " & mm & mm & mm & mm & mm & " & mm & " & 7815 & 7EP & 7SP \\
\hline 1/2 & 15/21 & 30 & 56 & 64,5 & 92 & 3/4 & 50 & - & 0,50 & 0,50 & - \\
\hline 3/4 & 2027 & 33,5 & 61 & 70 & 95 & 3/4 & 57 & 3/4 & 0,60 & 0,80 & 0,80 \\
\hline 1 & \(26 / 34\) & 30 & 68 & 81 & - & - & 70 & - & 0,95 & - & \\
\hline \(11 / 4\) & 33/42 & 34,5 & 91 & 97 & - & - & 81 & - & 1,55 & - & - \\
\hline \(11 / 2\) & 40/49 & 36,5 & 106 & 110 & - & - & 92 & - & 2,05 & - & - \\
\hline 2 & 50,60 & 45,5 & 106 & 135 & - & - & 120 & - & 3,70 & - & - \\
\hline
\end{tabular}

\section*{General characteristics}

Flats and houses individual water supply Settings : from 1 bar to 5.5 bar, Pre-set at 3 bar downstream Delivered with 3 nuts allowing 16 different connecting possibilities in \(1 / 2^{\prime \prime}\) and \(3 / 4^{\prime \prime}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ D } & A & B & C & G \\
\hline " & mm & mm & mm & mm & mm \\
\hline \(3 / 4\) & \(20 / 27\) & 33 & 61 & 70 & 57 \\
\hline
\end{tabular}

\section*{\(-20-\) \\ Desbordes}

\section*{APPROVALS IN EUROPE}

The following approval Institutes have controlled and accepted the products shown in the present brochure, which concern their country (the products are shown with the marking of the corresponding institution).

The approval means that the devices have been tested according to the construction and performance specifications in force in the country (some of them corresponding to the european standards in preparation).

The protection method and the choice of adequate products depend on the sanitary regulations valid in each country.

We invite you to approach your competent authorities to help you in your choice in order to set up your installations in accordance to your legislation.

Protection

Non return

Regulation

Shut Off

\section*{Socla sAS}

365 rue du Lieutenant Putier 71530 VIREY-LE-GRAND BP10273-71107 Chalon S/Saône Cedex Tel. +33 385974242 - Fax +33385979742 Friday 8 a.m. to 1.30 p.m.```

[^0]: - Flange bolt holes PN 10 , dease isticate for PN 16 holes

[^1]: Setting ranges : Altitude pressure ranges
 $\frac{0.14 \text { to } 1.38 \mathrm{bar}}{1.38 \text { to } 2.75 \mathrm{bar}}$
 2.07 to 5.5 bar

[^2]: Setting ranges
 Flow rates range : $1 \mathrm{~m} / \mathrm{s}$ to $4,5 \mathrm{~m} / \mathrm{s}$

[^3]: For index of icones, see flap fold on the last page

[^4]: Triphase multiturn with gear box

