

NEV// MAXIMIZING VALVE LIFE IN EXCESS OF **3 M** CYCLES

SAUNDERS® Angle Seat Valves Engineered for high flow, rapid cycle hygienic applications

About SAUNDERS®

About Crane Co.

Crane Co. is a diversified manufacturer of highly engineered industrial products. Founded in 1855, Crane has over 11,000 employees operating globally and is traded on the New York Stock Exchange (NYSE:CR). The SAUNDERS® brand is part of Crane ChemPharma & Energy (within Crane Co's Process Flow Technologies segment) which designs and manufactures a variety of high performance fluid handling products destined for the most demanding corrosive, erosive and high purity applications. Crane solves customers' toughest challenges in the chemical, biopharmaceutical, oil & gas, refining, and power generation industries.

About SAUNDERS®

Since P.K. Saunders invented the original diaphragm valve in 1928, SAUNDERS® has led the way in providing classleading fluid handling solutions to a diverse range of critical industries. The SAUNDERS® brand remains synonymous with security, reliability, and trouble-free operation in meeting the challenge of corrosive and abrasive industrial applications as well as providing zero deadleg, intelligent sensing aseptic solutions to the Life Science industry. Simplicity in design coupled with over 80 years of cutting edge innovation has resulted in SAUNDERS® diaphragm valve technology handling a wider range of fluids than any other valve type.

Fluid handling solutions for demanding sterile applications

SAUNDERS® applies a unique understanding of aseptic valve technology, in-house polymer core competence and class leading sensing/controls to deliver unrivalled processing solutions to our customers in the Clean Process industries.

SAUNDERS® diaphragm valves lie at the heart of every Biopharmaceutical process and play a key role in controlling flow of high value, sterile media, many of which become the next generation Biologic drugs and life saving vaccines of tomorrow.

The same focus and dedication to innovation has now been applied to the development of a complementary Angle Seat Valve to further extend the SAUNDERS® Life Science portfolio. The new Angle Seat Valve range is underpinned with the unique assurance and quality of the SAUNDERS® brand providing unrivalled reliability and outstanding service life.

Aseptic Diaphragm Valve

Technical Specification

Temperature Range

- Ambient -10 to 60°C (14 to 140°F)
- Operating Max PTFE Seat -10°C to 180°C (14 to 356°F)
- Operating Max PEEK Seat -10°C to 220°C (14 to 428°F)

Working Pressure

- 25bar (262psi) dependant on actuator selection
- Suitable for vacuum up to 20mbar

Testing

- BS EN 12266-1 Leakage Rate A (Air)
- ANSI Class VI

Operating Modes

- Normally Close NC
- Normally Open NO
- Double Acting DA

Surface Finish

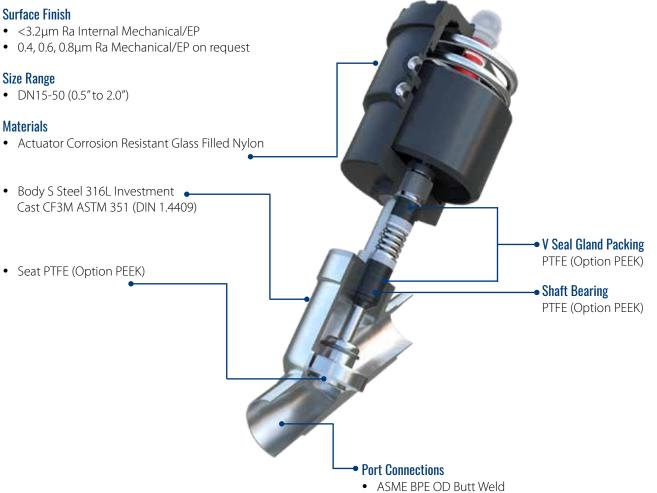
- <3.2µm Ra Internal Mechanical/EP
- 0.4, 0.6, 0.8µm Ra Mechanical/EP on request

Size Range

• DN15-50 (0.5" to 2.0")

Materials

- Body S Steel 316L Investment Cast CF3M ASTM 351 (DIN 1.4409)
- Seat PTFE (Option PEEK)


Compliance/Certification

- FDA Conformance PTFE Seat, Shaft Bearing, V Seal Gland Packing
- PED/CE
- EN10204 3.1 Traceability (Media Contact Parts)

• ASME BPE Clamp EN558-1 Series 1 Face to Face

Features and Benefits

SAUNDERS® Angle Seat Valves

Engineered for high flow, rapid cycle hygienic applications, the SAUNDERS® Angle Seat Valve combines a number of innovative design features to maximise service lifetime, minimise the need for routine or unplanned maintenance and optimise performance efficiency. The SAUNDERS® Angle Seat Valve represents the ideal choice for on/off and control applications and offers outstanding service life (factory tested in excess of 3 M Cycles).

With the SAUNDERS Angle Seat Valve, security, reliability and repeatability are ensured across the spectrum of challenging clean utility applications in Life Science, Food and Beverage and Cosmetics processing.

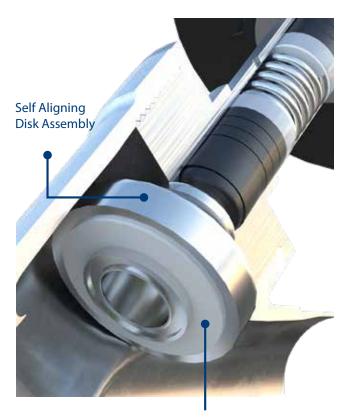
Highly engineered self adjusting packing system and self aligning seat eliminate need for routine maintenance, saving significant operational costs and unplanned downtime

EFFICIENT OPERATION

360° head rotation permits ease of mounting, installation and operation

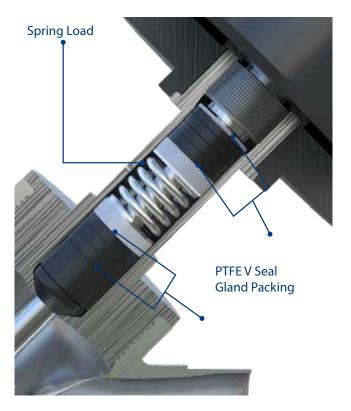
Features and Benefits

The SAUNDERS® Angle Seat Valve presents a compact, minimum maintenance, "fit and forget" solution. The simplicity and innovation of Saunders design is built around key features that provide unrivalled service life and reduce or eliminate unplanned maintenance.


The universal, single body design is good for both low and high pressure applications, and is perfectly suited for liquids (clean or with particulates), steam and gas service as well as vacuum up to 20mbar.

The SAUNDERS® range of Angle Seat Valves delivers outstanding service life across a spectrum of high flow, rapid cycle utility applications. Tested and validated at greater than 3 M cycles.

Design Features


The SAUNDERS® Angle Seat Valve is designed with optimum seat position incline meaning flow is minimally impeded in open position. This results in excellent flow and low pressure loss.

Self Aligning Seat ensures media containment and repeatable, maintenance-free operation. Its engineered design permits a flexible, controlled movement as the valve is closed to self adjust and align on the orifice seat. Sealing is 100% ensured.

PTFE Seat

Unique Self Adjusting Spring Loaded V Seal Gland Packing maintains constant pressure on stem packing providing a high integrity and secure sealing arrangement. It prevents both emission of the working media into the actuator and penetration of foreign matter into the working media from external environment.

This ensures trouble-free operation, avoids any unplanned maintenance and optimises total cost of ownership.

Design Features

The SAUNDERS® compact high performance polymer actuator allows full 360° head rotation which facilitates ease of installation, mounting and operation. This removes risk of possible exhaust air contamination and sedimentation of particles in operator crevices. Air port alignment can be configured in any desired position to suit system layout and operation.

360 Degree head rotation

Precision Polished Spindle interface

Maintenance-Free design provides a perfect fit for high cycle life application. The SAUNDERS® Angle Seat design has a **precision, engineered interface** between sealing system and dynamic components to provide the security and longevity of low friction operation. To further guarantee repeatable operation, a contoured wiper ring protects the spindle from possible contamination and damage.

Class Leading Accessory Platform

Intelligent class-leading accessory platform delivers unrivalled accuracy and total cost of ownership savings

VUE Intelligent Sensors

- Industry-leading automation technology
- State of the art continuous electro magnetic sensing technology
- Contactless calibration operation with no routine maintenance
- Offers remote diagnostics to optimise preventative maintenance

Powerflow Intelligent Positioners

- Microprocessor controlled digital valve positioner
- Ease of operation via OLED display and keypad
- Positioner adjusts valve stroke quickly and accurately utilizing an automatic control algorithim and pulse width modification control technology

Applications

Used to regulate the flow of liquids, gases, steam and vacuum, the SAUNDERS® Angle Seat Valve is ideally suited to the demands of hygienic processing applications in Life Science, Cosmetics and Food & Beverage industries.

- High flow rate perfectly suited to steam, heat exchange and control applications
- Fast cycling capability (500 ops/hr single acting, 1000 ops/hr Double Acting)
- High temperature (PTFE Seat/Seal 180°C, 356°F, PEEK option 220°C, 428°F)
- Maximum viscosity up to 500mm²/s
- Suitable for vacuum application up to 20mbar
- Compact construction (reduces vertical installation space)

Media

- Liquids water, glycol, salt solution, organic solvents, oils, alkalis, cooling lubricant
- Steam industrial steam, saturated steam, sterile steam
- Gases air, nitrogen, oxygen

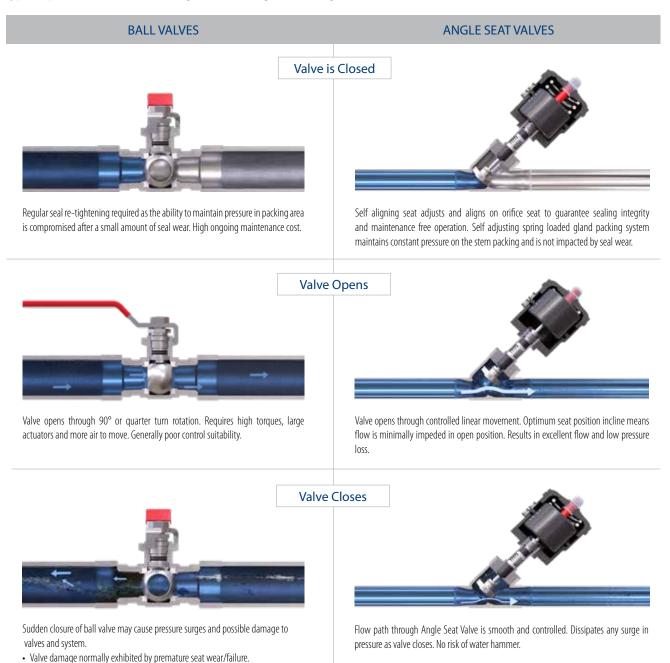
Applications

- Generation and distribution of industrial and sterile steam
- Freeze drying/lyophilisation
- Autoclave/steam sterilisers
- Cleaning and sterilisation (chemical and steam)
- Pure water generation
- High purity water pre treatment
- Electro deionisation skids
- Generation of sterile compressed air, biogas
- Medical grade washing systems
- Sterile air filtration
- Hygienic cleaning/decontamination systems
- Ultra filtration pre treatment (WFI water)
- Heat exchanger systems
- Steam distillation of essential oils
- Batch and filling processes
- Keg cleaning/filling/sterilisation

Industries

Biotech

Pharmaceutical



Eliminating Risk of Water Hammer

Water Hammer is defined as a pressure surge when an incompressible fluid is forced to stop suddenly in a closed system. The cumulative effect of these pressure waves may cause damage to valves and surrounding equipment. Quarter turn style valve technologies (ball) may pose a particular risk of water hammer due to their "quick closure" design. Below we compare a typical quarter turn ball valve design with the angle seat design.

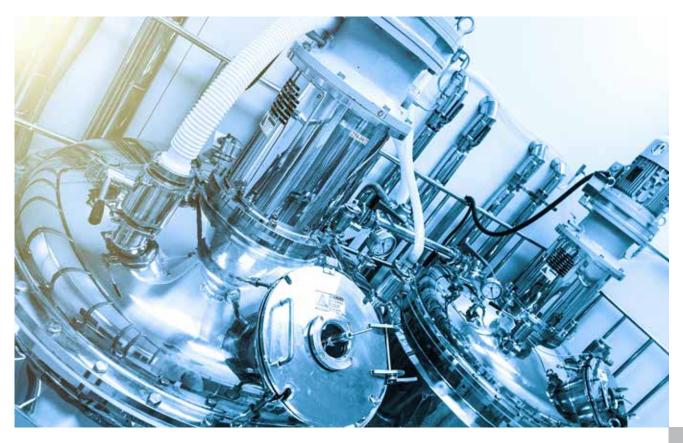
maintenance downtime.

· System efficiencies may be impacted by leaks with significant increase in

How SAUNDERS® Angle Seat Valves eliminate risk of water hammer

Correct selection of SAUNDERS® Angle Seat Valves eliminates risk of water hammer as the design permits controlled closure and allows any pressure surge to dissipate past the seat. There is no risk of valve or system damage and no unplanned maintenance downtime.

Performance Summary


SAUNDERS® Angle Seat Valve

Design is inherently maintenance free and ensures consistent, repeatable, trouble free operation over millions of cycles. The self adjusting spring loaded V seal gland packing system maintains constant pressure on the stem packing and is not impacted by seal wear. The self aligning disk requires no maintenance.

MAINTENANCE-FREE DESIGN – SIGNIFICANT REDUCTION IN TOTAL COST OF OWNERSHIP

- Security of operation guaranteed
- No unplanned downtime
- Major total cost of ownership savings
- Outstanding service life >3M cycles

CRANE CHEMPHARMA & ENERGY

4526 Research Forest Drive, Suite 400 The Woodlands Texas 77381, U.S.A. Tel. : +1 936 271 6500 Crane Process Flow Technologies Ltd. Grange Road Cwmbran, Gwent NP44 3XX United Kingdom Tel.:+44-1633-486666 Crane Process Flow Technologies Ltd. Solitaire, 5th & 6th Floor, S.No. 131 / 1+2, ITI Road, Aundh, Pune - 411007 India Tel: +91 20 3056 7800 Crane Process Flow Technologies BVBA/SPRL Avenue Léonard de Vinci 11 1300 Wavre, Belgium Tel.: +32-10 8184444

Crane Co., and its subsidiaries cannot accept responsibility for possible errors in catalogues, brochures, other printed materials, and website information. Crane Co. reserves the right to alter its products without notice, including products already on order provided that such alteration can be made without changes being necessary in specifications already agreed. All trademarks in this material are the property of the Crane Co. or its subsidiaries. The Crane and Crane brands logotype (CENTER LINE®, COMPAC-NOZ®, CRANE®, DEPA® & ELRO®, DUO-CHEK®, FLOWSEAL®, GYROLOK®, GO REGULATOR®, HOKE®, JENKINS®, KROMBACH®, NOZ-CHEK®, PACIFIC VALVES®, RESISTOFLEX®, REVO®, SAUNDERS®, STOCKHAM®, TEXAS SAMPLING®, TRIANGLE®, UNI-CHEK®, VALVES®, WESTLOCK CONTROLS®, WTA®, and XOMOX®) are registered trademarks of Crane Co. All rights reserved.

CPE-SAUNDERS-ANGLE SEAT VALVES-BU-EN-A4-2021_05_07

brands you trust.

Industrial Diaphragm Valves

www.cranecpe.com

OVERVIEW

Pioneers in Diaphragm Valve Technology

Since P.K. Saunders invented the original diaphragm valve in 1928, Saunders[®] has led the way in providing solutions to industries where flawless operation and resistance to corrosion, abrasion and contamination are imperative. Simplicity of design coupled with more than 85 years of innovation has resulted in the Saunders[®] diaphragm valve's ability to handle a wider range of fluids than any other valve type. As a result, Saunders[®] diaphragm valves have gained an excellent reputation for versatility and reliability, establishing a presence in every process industry sector.

Today, Saunders[®] is an international leader in the design, development and manufacture of diaphragm valves. As part of Crane Co, a diversified global manufacturer of engineered industrial products, Saunders[®] has a strong worldwide presence via dedicated sales companies and distribution partners.

History of Innovation

Saunders[®] has led the way in the development of the diaphragm valve to meet the ever-increasing demands of industrial applications:

- PTFE and modified PTFE diaphragms
- Glass and fluorocarbon valve linings
- Non-bonded PTFE diaphragm
- Compact pneumatic actuators
- Three layer diaphragm for corrosive-gas applications
- Diaphragm resistant to both chemical and abrasive attack (XA grade)

Saunders site circa 1939, Cwmbran, UK

Saunders site today, Cwmbran, UK

CONTENTS

A Continuing Story of Success

Millions in Service

Saunders[®] diaphragm valves are used in every process industry. Millions of Saunders[®] diaphragm valves are currently installed in process plants around the world and they are renowned for versatility and reliability.

Dependable Operation

Engineers know they can trust Saunders® Valves. They set the industry standard for dependable, consistent operation, even in the most adverse conditions with years of trouble-free performance.

Customer Service

Customers know they can depend on Saunders[®] for after sales service and technical support from one of our many locally-based sales associates and distribution partners.

The Science Inside

Backed by more than 80 years of experience in polymer technology, Saunders[®] proudly develops and manufactures its own polymer compounds. . It is "The Science Inside[™]" our valves which sets us apart.

Global Compliance

Saunders[®] diaphragm valves are fully compliant to all relevant global standards.

Overview and Introduction

Features & Benefits	4
Key Products	5
Why Diaphragm Valves?	6
Valve Comparison	7
Corrosive Applications	8
Abrasive Applications	9
Other Applications	10
Polymer Science	11
Supporting Data and Certification	12
A Type – Weir Design	
Features	13
Standards	14
Body	15
Diaphragm	16
Diaphragm Dimensions	17
Top Works	18
Pressure & Temperature Limits	19
Assembled Valve Dimensions	20
Flow Coefficients	21
KB Type – Straight Through Design	
Features	23
Standards	24
Body	25
Diaphragm	26
Diaphragm Dimensions	27
Top Works	28
Pressure & Temperature Limits	29
Assembled Valve Dimensions	30
Flow Coefficients	31
WFB Type Design	
Features	33
Standards	34
Body & Diaphragm	35
Fully Assembled Valve	36
Special Versions	37
NX – Check Valves	
Features	38
Assembled Valve Dimensions	39
Disc Type & Flow Coefficients	40
Actuation	
ES Modular Design	41
Model Range & Modes of Operation	42
Sizing Your Actuator	43
ESM/ES Actuators	44
EC Actuators	47
ECX Actuators	49
Actuation Accessories	51
Catalogue Codes	52
Storage, Installation, Operation & Maintenance	56

FEATURES & BENEFITS

Superior Sealing for Chemical and Abrasive Processing Applications.

- The Science Inside[®]: Proprietary diaphragm technology provides exceptional sealing and complete emissions control.
- 2 Unmatched Expertise & Innovation: A comprehensive selection of polymers delivers superior corrosion and abrasion resistance for a wide range of demanding applications, since 1928.
- **Efficient Operation:** Top-entry design enables in-line maintenance to reduce plant downtime.

KEY PRODUCTS

A Type Weir Design for Corrosive Media and Utilities

- Versatile and extensively used in industrial applications
- Can handle up to 15% solids (depending on process conditions)
- Perfect valve for on/off or control applications on corrosive processes

KB Straight Through Designs for Solids Handling

- Smooth, straight-through design
- High flow capacity
- Can handle highly abrasive fluids

WFB For Marine and Fire Applications

- Weir type valve for fire fighting, tank cleaning or wash down on land or sea
- Guaranteed operation even after years of being static
- Fire tested diaphragm

NX Check Valve

- Low pressure and vacuum duties
- Unidirectional full flow design
- Corrosion resistant linings

Actuation - Modular or Compact Actuators

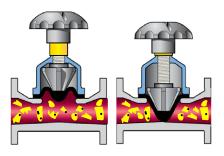
- Different actuator types that cover up to DN250
- Wide range of line and operating pressure options
- Conceived to withstand the most adverse conditions

In-house Manufacture of All Diaphragms

- Vulcanized layers with high strength woven reinforcement in elastomerbased diaphragms
- Range of PTFE-type diaphragms for critical applications
- Innovative compounding based on extensive polymer knowledge

"We are pleased to inform that we are using Saunders in our Runcorn chloralkali and chlorine derivatives plants. We are very satisfied with the product's reliability, low maintenance costs and with the quality of the technical service. We hope to get the same support in all our future supplies/ requirements **INEOS ChlorVinyls (UK)**

"We specified Saunders WFB 65mm nominal bore fire-mains hydrant valves for our ferries and cruise liners. Significant factors behind this choice are the excellent reliability and the low maintenance costs." **P&O Cruises (UK) Ltd**


WHY DIAPHRAGM VALVES?

Ocrosion Resistance

Saunders lined valves are the first choice for highlycorrosive applications. We offer an extensive range of linings and diaphragms to suit most applications. This wide selection of body lining and diaphragm materials provides an effective and economical solution by eliminating the need for exotic alloys. Our extensive range of valve options include elastomer and fluoropolymer linings, designed especially to combat corrosion.

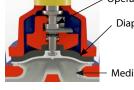
2 Abrasion Resistance

Saunders polymer technology provides superior abrasion resistance. The KB straight through valve will handle up to 100% solids and ensure leak-free shut off with a soft rubber diaphragm.

E Leak Tight

In pressure and vacuum services, Saunders diaphragm valves deliver 100% leak-tight shutoff in accordance with standards MSS SP-88 and BS EN 12266-1, even after thousands of operations. This reduces processing and handling costs by eliminating emissions commonly associated with other valve designs.

• Easy Maintenance


A three-part design allows maintenance and actuator retrofitting without removing the valve body from the pipeline. Overall, this results in lower cost of ownership compared to other valve types.

Linear Operation

Linear movement of the valve eliminates the rotational seat wear that is characteristic of quarter-turn valves, resulting in a longer service life and reduced total cost of ownership. This results in a longer service lifetime.

Operating Mechanism Isolated from Line Media

All working parts of the valves are isolated from the line media and positive closure is obtained even on frequent cycling or with entrained particulates in the line, unlike other valve types.

Operating mechanism

Diaphragm

Media/Fluid

G Suitable for Control

acteristics are enhanced by a streamlined flow path that is cavity free and provides excel-

Throttling and control char-

lent flow control capabilities.

Installation Versatility

The Saunders valve can be installed in any position without affecting its operation. However, we recommend installation to be at least six times the pipe diameter from a bend or pump (ten times the pipe diameter if the valve is used for control).

Links to animations depicting the concepts discussed here are available on the Saunders section of the Crane ChemPharma & Energy website.

VALVE COMPARISON

Valve/Service Feature	Diaphragm	Ball	Butterfly	Globe	Gate	Lubricated Plug
Leak tight* shut-off against gases, liquids and solids						
Resistance to abrasion and erosion						
Wide choice of materials to match service conditions						
Non-turbulent flow path						
Low fluid friction loss						
Resistance to corrosion						
Vacuum capability						
In-line maintenance, low cost spares						
Resistance to seat wear						
High purity						
Control applications						
On/off applications						
Temperature range						
Pressure range						
Weight/size ratio						
Suitable				Not Suit	table	

Saunders® offers a comprehensive range of diaphragm valves for use in any industry. They encompass the full spectrum of corrosive and abrasive applications that require reliable valve operation. Easily maintained to ensure many years of trouble-free operation, Saunders® diaphragm valves have become a standard in industries such as chemical production, mining, water treatment, fertilizers and marine.

*in accordance with standards MSS SP-88 and BS EN 12266-1

APPLICATIONS

CORROSIVE

Chlor-alkali Sulfuric Acid Hydrochloric Acid Nitric Acid Aromatics Effluent Treatment Potable Water Pulp & Paper Organics Toxic Fluids Iron and Steel Fine Chemicals

"We are pleased to inform that we are using Saunders in our Runcorn chlor-alkali and chlorine derivatives plants. We are very satisfied with the product's reliability, low maintenance costs and with the quality of the technical service. We hope to get the same support in all our future supplies/requirements."

INEOS ChlorVinyls (UK)

Corrosion is estimated to cost worldwide industry more than \$300 billion dollars every year, affecting every process industry sector. Saunders[®] lined diaphragm valves are the best option to handle these media and therefore reduce the cost of ownership.

Strong Acids

Saunders[®] Industrial Diaphragm Valves are available in a wide range of linings and are used to handle strong acids such as sulfuric acid, hydrochloric acid, acetic acid and nitric acid. In the most demanding applications, Saunders[®] valves offer the highest resistance and durability. Diaphragm reliability, results in long life and simplified maintenance. Saunders® diaphragms achieve this through using the best materials and stringent quality controls.

ETFE lined valve with PTFE diaphragm Page 15

PFA lined A Type body Page 15

Glass lined A type body Page 15

PFA lined valve with PTFE diaphragm and EC actuator

Туре	Applications	Body/lining	Diaphragm
С	Strong Acids	ETFE, PVDF, PFA, glass ¹	PTFE
С	Fine Chemicals and Chlor-alkali	Hard natural rubber, glass ¹ , ETFE, PFA	Fluoroelastomer, Chlorosulfonated polyethylene, PTFE

C = Corrosive

¹ Glass is not suitable for applications with thermal cycling. Chemical etching may occur when in contact with hydrofluoric acid acid or highly concentrated alkali solutions. Please contact Saunders® for precise recommendations.

APPLICATIONS

ABRASIVE

Fertilizers Titanium dioxide Phosphate Copper mining Gold mining Sand Coal slurry FGD Cement Ceramics Sewage Sugar The secret to the reliability and durability of Saunders[®] valves lies in the careful selection of lining and diaphragm material, according to the application.

The Ultimate XA diaphragm was specially developed for highly corrosive and abrasive applications. Page 25

Applications requiring a combination of corrosion and abrasion resistance, such as phosphate rock/sulfuric acid, together with reliability and long service life are ideal applications for Saunders[®] KB Valves

Туре	Applications	Body/lining	Diaphragm
C/A	Mineral processing	Butyl, soft rubber	Butyl, natural rubber, ultimate XA
C / A	Gypsum (FGD)	Butyl	Butyl, ultimate XA
<mark>C / A</mark>	Titanium dioxide	Glass, butyl, soft rubber	Butyl, natural rubber
C / A	Fertilizers	Butyl, polychloroprene	Butyl, polychloroprene, ultimate XA
C/A	Paper & pulp	Glass, butyl	EPM, butyl, polychloroprene, ultimate XA
Α	China clay	Butyl, soft rubber	Natural rubber, polychloroprene

C = Corrosive, A = Abrasive

Page 25

Glass lined KB type body

Butyl lined KB type body Page 25

APPLICATIONS

GENERAL INDUSTRY

Water demineralization Marine Vegetable oils Paints Fire fighting Tanning Oil production Automobile Air Effluent Gases, fuels Dye fluids Food & beverage Wastewater HVAC

Туре	Applications	Body/lining	Diaphragm
G	Water demineralization, desalination, sewage treatment	Hard rubber, soft rubber, butyl	EPM, butyl, polychloroprene, butadiene acrylonitrile
G	Marine, fire fighting ¹	SG iron and gunmetal	Chlorosulfonated polyethylene (fabric reinforced)
G	HVAC, utilities (air, water and gas lines)², drinking water	Screwed/flanged unlined valves in iron, stainless steel or gunmetal	EPM, butyl, polychloroprene

G = General Industry

¹ Used primarily as water hydrant valves.

² Used in copper or stainless steel piping in water, oxygen and other gases.

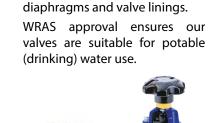
Water treatment

Water demineralization, desalination and basic treatment are ideal applications for diaphragm valves. Valves typically used include unlined cast iron or stainless steel bodies, as well as hard, soft or butyl rubber lined bodies, combined with natural rubber, EPDM or butyl diaphragms.

Marine

We offer a specialized range of valves for marine and fire fighting applications, 100% reliable in adverse conditions even after long idle periods. Available with unique fire resistant diaphragm design.

"We specified Saunders WFB 65mm nominal bore fire-mains hydrant valves for our ferries and cruise liners. Significant factors behind this choice are the excellent reliability and the low maintenance costs." P&O Cruise (UK) Ltd



in a lower valve cost.

HVAC and Utilities

Saunders® valves are widely used

on utility (air, water and gas)

service lines. Screwed unlined

valves both A and KB types in

cast iron and gunmetal, are used

in several water applications -

screwed end connections result

Saunders® offers FDA and

WRAS approved A and KB type

POLYMER SCIENCE

At Saunders[®], we apply rigorous quality control measures at every manufacturing step of our polymer materials. For many years, we have increased our expertise and accumulated experience in the production of our own <u>diaphragms</u> and valve <u>linings</u>. As a result, our valves can handle the most challenging fluids with total security. The name Saunders[®] is synonymous with innovation, continuous product development and the highest standards of quality control.

A type, butyl diaphragm

KB type, soft natural rubber diaphragm

PTFE diaphragm with butyl rubber backing

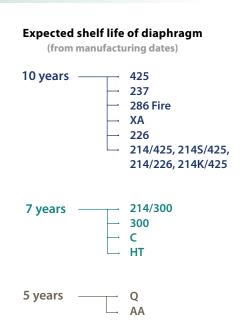
214K diaphragm for high performance in chlorine applications

Fitments Features

Rubber diaphragms Screw fitment

PTFE diaphragms Bayonet fitment

BEST MATERIALS


STRINGENT QUALITY CONTROLS

RELIABILITY, LONG LIFE AND SIMPLIFIED MAINTENANCE

Diaphragm Construction

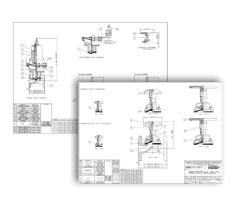
Feature	Benefit
Premium grade raw materials	Maximum performance and
and fabric reinforcement in a	durability in the most
multi-layer construction	demanding applications
Studs attached with bonding	Strength and durability for
adhesive and mechanical	intensive and systematic
anchorage	mechanical operation
Dual sealing ribs (across the	Enhanced leak tight sealing
weir and around the	capabilities and lower closure
diaphragm periphery)	torques
Two-piece diaphragm construction - PTFE face and reinforced rubber backing	Increased pressure rating and durability

PTFE Diaphragm

SUPPORTING DATA AND CERTIFICATION

Saunders® Data Sheets

Digital copies of technical data sheets, which provide detailed information on the Saunders[®] IDV range, can assist with valve selection and are available upon request.


Contact your local sales office or distributor for more details on how to obtain the data sheet package.

Material Compatibility Database

Saunders® has a database of over 800 chemicals, which can be used to aid lining and diaphragm material selection. By selecting the process fluid, temperature and concentration, the suitable material options are identified.

Data sheet index and typical valve information

Example of 2D Drawings available on Saunders® website.

Ş Material Compatability for 📼 💷 🔀			
Chemical			
Please select a chemical, from the list, and select the maximum working temperature, and concentration			
Salicylic Acid			
Rock Salt Roling Oil Rosin Rubber Adhesives Rubber Latex Rum			
Salicylic Acid			
Salicylic Aldehyde Salt			
Max Temperature: Max Concentration: 80 °C - 50% -			
Reset << Back Next >>			

Screenshot of Saunders® Material Compatibility Database

Saunders[®] 2D Drawings

A library containing technical drawings of the Saunders Industrial Diaphragm Valve and Actuator range is available online at www.saundersdrawings.com.

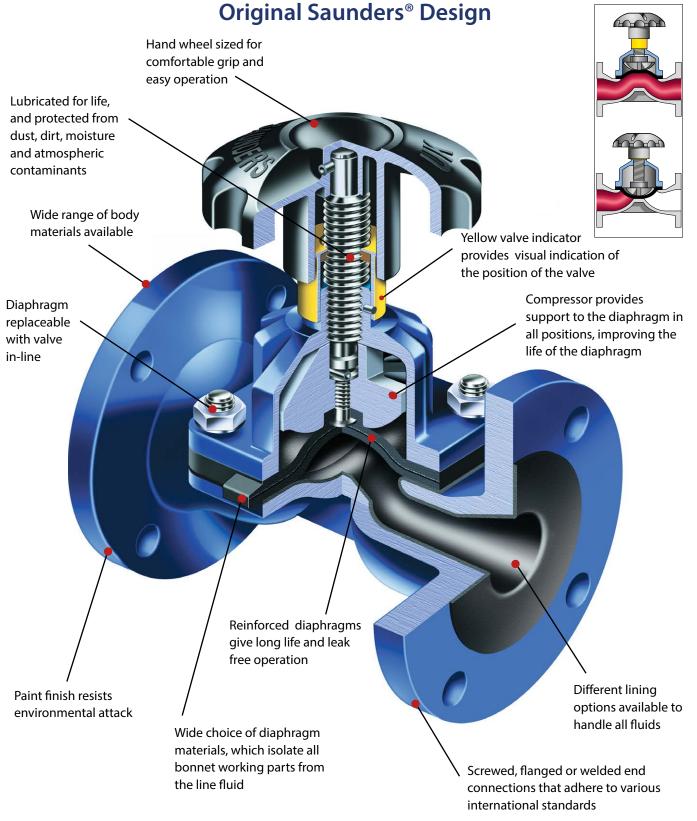
Quality Statements And Approvals

CERTIFIED QUALITY FROM SAUNDERS®

- Quality Management system registered to ISO 9001 standard in which our R&D and manufacturing process are optimized to maintain our product quality and service
- Certified compliance to the European Pressure Equipment Directive 97/23/EC, authorizing Saunders® to CE mark relevant valve products
- TUV-Merkblatt HPO Qualification for our product manufacturing and certification
- International product approval from authorities such as Bureau Veritas, Lloyds, ABS, RINA and TSG
- Polymer materials certified as meeting the requirements of FDA, USP and WRAS

EXAMPLES OF PRODUCT AND SYSTEM APPROVALS

- ISO 9001
- PED 97/23/EC
- WRAS (Water Regulations Advisory Scheme)
- Lloyds Register of Shipping
- Bureau Veritas
- ATEX Directive (94/9/EC)
- Food & Drug Administration (FDA)
- United States Pharmacopeia (USP)
- Registro Italiano Navale (RINA)



Compliance WITH FDA Code 21 TNO CERTIFICATION 3A

cGMP USP 23

A TYPE – FEATURES

Saunders[®] A type Diaphragm Valve: the valve of choice to handle highly corrosive media

A TYPE – STANDARDS

Diaphragm

- Flanged and screwed design
- Lined and unlined
- Cast iron, SG iron, cast steel, stainless steel or gunmetal

As well as meeting the overall lengths specified in EN 558-1 Series 1, Series 7* and MSS SP-88, Saunders® valves are manufactured to the following standards:

	Flanged	
	ASME B16.1 Class 125	
American	ASME B16.24 Class 150	
	ASME B16.5 Class 150	
British	BS 10 Tables D and E	
	BS EN 1092-1 PN10/16	
British/European ¹	BS EN 1092-2 PN10/16	
	BS EN 1092-3 PN10/16	
	JIS B 2220 10K	
Japanese	JIS B 2239 10K	
	JIS B 2240 10K	
¹ Replaces BS 4504 PN10/16		

Screwed				
American ² ASME B1.20.1				
British/European ³	BS EN 10226-1 Parallel			
	BS EN 10226-1 Taper			
European ⁴	EN ISO 228-1			
	ISO 7-1 Parallel			
International	ISO 7-1 Taper			

² Replaces ANSI 2.1

³ Replaces BS 21 Parallel and Taper

⁴ Replaces DIN 259

* Series 7 is the original IDV standard from when PK Saunders invented the diaphragm valve.

Replaces BS 4504 PN10/16

A TYPE – BODY

Lined and Unlined Options

Our metal bodies provide simultaneous mechanical support for the lining and protection against Ultraviolet (UV) attack. The nominal bore thicknesses of Saunders® linings range from 1 to 5.5 mm, depending on lining material and valve size: glass 1 mm, rubber 2-4.5 mm and plastic 4-5.5 mm.

Unlined Bodies

Material	Connection	Standard	Material Grade	Size	Temperature
Cast Iron	Flanged	BS EN1561	GJL-250	DN15-DN500	-10°C to 175°C
SG Iron	Screwed	BS EN1563	GJS-450-10	DN8-DN50	-10°C to 175°C
JO IIOII	Flanged	D3 EN 1303	GJS-400-18 ¹	DN15-DN350	-10 C to 173 C
Cast Steel	Flanged	ASTM A216	WCB	DN15-DN250	-30°C to 175°C
Gun	Screwed	BS EN1982	CC491K-GS	DN8-DN80	-30°C to 175°C
Metal	Flanged	D3 EN 1982	CC492K-GS	DN15-DN200	-30 C to 1/3 C
Stainless	Screwed	BS EN10283	1.4408 ²	DN8-DN80	20°C to 175°C
Steel	Flanged	D3 EN 10265	1.4408	DN15-DN200	-30°C to 175°C

 $^{\rm 1}$ For some sizes GJS-400-18-LT grade is available with a low temperature limit of -20 $^{\circ}{\rm C}$ ² Replaces the standard BS3100 316C16

Standard material grade fasteners:

Stainless steel fasteners - All stainless steel, plastic lined and glass lined valves

Aluminium Bronze fasteners - Gunmetal flanged valves

Carbon Steel fasteners - All remaining valves. Special material grade fasteners available upon request

Plastic Lining

PFA Perfluoroalkoxy - Excellent suitability for concentrated strong acids at high temperature, aromatics, aliphatic and chlorinated solvents. (White colour)

ETFE Ethylene Tetrafluoroethylene – Suitable for strong acids, salts in water, solvents at medium temperature. ETFE has the highest abrasion resistance of all the fluorocarbon linings. (Red colour)

PP Polypropylene - Economic solution for mineral acids, salts in water, de-ionised water and effluent treatment chemicals. (Light grey colour)

PVDF Polyvinylidene Fluoride – Suitable for mineral acids, salts in water, water and effluent treatment, additionally it is the best solution for wet chlorine gas or chlorine in water. (Black colour)

Glass Lining

Used in many different applications, including strong acids. Very high corrosion and abrasion resistance within a wide range of temperature. Note that glass is not suitable for applications where thermal cycling occurs. (Blue colour)

Lined Options - Flanged Bodies Only

Lining	Body Material	Size	Temperature
PFA	SG Iron	DN15-DN200	-10°C to 175°C
ETFE	SG Iron	DN15-DN150	-10°C to 150°C
PVDF	SG Iron	DN20-DN150	-10°C to 125°C
PP	SG Iron	DN20-DN150	-10°C to 85°C
Glass	Cast Iron	DN15-DN200	-10°C to 175°C
Butyl	Cast Iron		-10°C to 110°C
(Isobutylene	SG Iron	DN20-DN500	-10°C to 110°C
lsoprene)	Cast Steel		-30°C to 110°C
	Cast Iron		-10°C to 105°C
Neoprene (Polychloroprene)	SG Iron	DN20-DN500	-10°C to 105°C
(Polychloroprene)	Cast Steel		-30°C to 105°C
	Cast Iron		-10°C to 85°C
HRL (Hard Natural Rubber)	SG Iron	DN20-DN500	-10°C to 85°C
	Cast Steel		-30°C to 85°C

Rubber Lining

HRL Hard Natural Rubber – Used for salts in water, diluted acids, de-ionised water, plating solutions and potable water. HRL has better chemical resistance than SRL. (Black)

Butyl Isobutylene Isoprene – Great for corrosive & abrasive slurries, and acidic slurries. Additional applications are salts in water, dilute acids and alkalis, and lime. (Black)

Neoprene Polychloroprene - Perfect solution for a combination of abrasive slurries containing hydrocarbons, sludge oils and also sea water. (Black)

The temperature ranges above are given for general reference purposes only. Service conditions, such as media being handled and concentration of solids, will determine the highest possible working temperature. Additionally, the performance of the valve will also depend on the diaphragm material.

A TYPE – DIAPHRAGM

A Type Diaphragm

Diaphragm	Composition	Size	Temperature
425	EPM (Ethylene Propylene)	All Sizes	-40°C to 130°C
300	Butyl (Isobutylene Isoprene)	All Sizes	-40°C to 130°C
237	CSM (Chlorosulfonated Polyethylene)	All Sizes	-10°C to 100°C
ХА	EPDM (Ethylene Propylene Diene)	All Sizes	-40°C to 130°C
HT	Neoprene (Polychloroprene)	All Sizes	-30°C to 100°C
226	FKM (Fluoroelastomer)	All Sizes	-5°C to 150°C
C	Nitrile (Butadiene Acrylonitrile)	All Sizes	-20°C to 100°C
Q	Natural Rubber	All Sizes	-50°C to 100°C
214/300	PTFE/Butyl	DN8-DN250	-20°C to 150°C
214/425	PTFE/EPM	DN8-DN250	-20°C to 160°C
214/226	PTFE/FKM	DN8-DN250	-5°C to 175°C
214S/425	TFM/EPM	DN8-DN150	-20°C to 160°C
214K/425	PTFE/PVDF/EPM	DN15-DN150	-20°C to 100°C

In the range of PTFE diaphragms, Saunders offers both moulded open and closed options for your convenience. The 214S is available as moulded closed and was designed specifically to reduce polymeric creep, therefore increasing the sealing properties and life of the diaphragm.

Moulded closed

Moulded open

PTFE Diaphragm

214/300 - Used in strong acids and alkalis, and salts in water at high temperature. Sulfuric acid is a good example with temperatures up to 110°C and concentrations up to 96 %.

214/425 - Typical applications are strong acids, alkalis and salts in water at high temperature. Constant steam is also another important application.

214/226 - Strong acid, diluted chlorine, bromine solutions at low concentration.

214S/425 - Strong acids, alkalis and salts in water at high temperature. Constant steam applications where the valve is mainly closed (diaphragm is moulded closed).

214K/425 - Three layer PTFE/ diaphragm with PVDF/425, the best option for chlorine, bromine gas and chlorinated solutions.

425 - Salts in water, acids 237 - The best solution for soand alkalis, ozone, water, intermittent steam. Great solution for food and beverages applications. FDA and USP approved¹.

300 - Chemicals, diluted acids and alkalis, drinking water. Additional abrasive applications like phosphoric acid in low concentrations. FDA, USP and WRAS approved¹.

Corrosion & Chemical Resistance

214/300 & 214/425

226

214K/425, 214S/425 & 214/226

нт

237

XA

300 & 425

0

dium hypochlorite. Great with strong acids and low concentration chlorine gas. It is also oil resistant.

Rubber Diaphragm

XA - Specifically designed for both abrasive and corrosive applications such as phosphoric acid, metal treatment, mining applications.

HT - Suitable for abrasive slurries containing hydrocarbons.

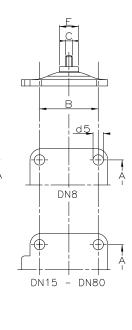
226 - Great solution for hydrogen at high temperature, concentrated acids, aromatic solvents, low concentrated chlorine solutions, ozone, unleaded petroleum.

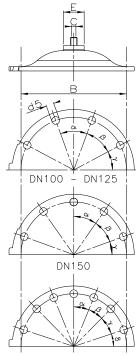
C - Lubricating oil, cutting oils, paraffin, animal vegetable oils, aviation kerosene at low temperatures. Cv is ideal for vacuum applications, where oils are present, e.g. (compressed air, acetylene gas, LPG).

Q - Salts in water, diluted acids and alkalis, and abrasive applications.

¹ **FDA** - Food and Drug Administration **USP** - United States Pharmacopeia WRAS - Water Regulations Advisory Scheme

All rubber diaphragms have threaded brass fixings, except vacuum diaphragm (Cv, 300v, 425v), which have steel fitments. PTFE diaphragms have a stainless steel bayonet fitments.


Abrasion Resistance



A TYPE – DIAPHRAGM DIMENSIONS

Diaphragm Identification Back Face

 $B^{(1)}$ $B^{(1)}$ DN8 - DN10 DN8 C DN8 DN10 DN8 DN8 DN10 DN8 DN8 DN10 DN8 DN8DN15 - DN20

DN200 - DN350

Grade identification

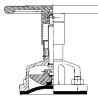
Wetted Face

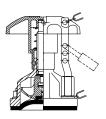
Size			Principal D)iaphragm D			Angles fro	m the holes			
(DN)	A	В	C	D (thickness)	E	d5	Number of Holes	α	β	γ	δ
8	35	28	9.5	3.2	-	5	2	-	-	-	-
10	43	35	10	4	-	6	2	-	-	-	-
15	33	37	13	5	-	6	4	-	-	-	-
20	40	44	13	5.4	-	7	4	-	-	-	-
25	46	54		5.5	17.5	10	4	-	-	-	-
32	60	67	1/4" BSW	7.2	19	10	4	-	-	-	-
40	65	70	1/4 D3W	6	22	11	4	-	-	-	-
50	78	83		6.2	25.4	13	4	-	-	-	-
65	95	102		7.9	28.6	14	4	-	-	-	-
80	114	127	5/16" BSW	7	32	17	4	-	-	-	-
100	-	194		8	38	14	8	40°	42°	56°	-
125	-	222	2/0" DCW/	11.1	44.5	17	8	43°20'	43°20'	50°	-
150	-	273	3/8" BSW	11.9	50	17	10	35°	35°	40°	-
200	-	381		10	63.5	19	14	22°30'	22°30'	27°	36°
250	-	438	7/8" BSW	14	76	22	14	22°30'	22°30'	22°30'	45°
300	-	508	//CO 0//	15.2		25	14 245	240 240	240	36°	
350	-	527		15.9	89	25	14	24°	24°	24°	00

BSW=British Standard Whitworth thread

Note: Dimensions in mm unless otherwise stated.

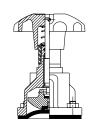
A TYPE – TOP WORKS


Standard Range

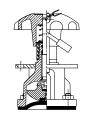


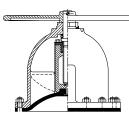
Rising handwheel (2 bolt) DN8 - DN10

Cast iron bonnet with rising plastic handwheel DN15 - DN50

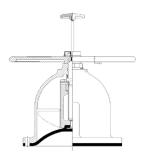


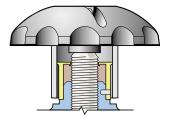
Cast iron bonnet with rising metal handwheel DN15 - DN150


Rising handwheel with indicator (simple padlocking) DN15 - DN150

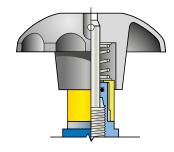


Fluoroelastomer sealed bonnet DN15 - DN150


Note: Designs may vary across size range


Fluoroelastomer sealed with padlocking DN15 - DN150

Standard non-rising handwheel without indicator DN200 - DN350

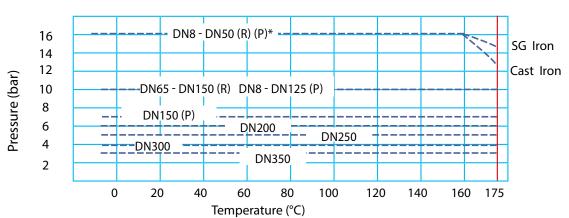

Non-Rising handwheel with indicator DN200 - DN350

Lubrication Bonnet assembly lubricated for life. Needs no additional grease. The indicator lip seal stops the ingress of dust, dirt and atmospheric contaminates.

Padlock Bonnet Restricted valve operation can be achieved by utilizing the padlocking bonnet option.

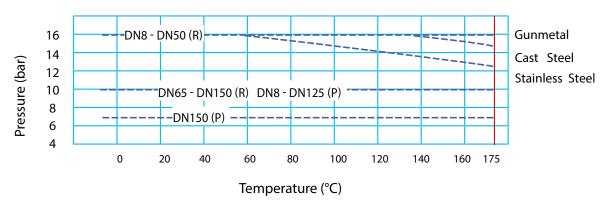
Sealed Bonnet In cases where hazardous liquids or gases are being handled and where additional safety features are considered to be necessary.

A TYPE – PRESSURE & TEMPERATURE LIMITS


Maximum manual working pressures for Saunders® A type diaphragm valves. For actuated valves, please refer to the appropriate datasheets.

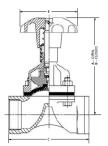
Bonnet pressure limits

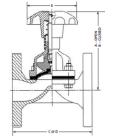
		Size (DN)	8	10	15	20	25	32	40	50	65	80	100	125	150	200	250	300	350
	Diaphragm	Handwheel																	
	PTFE	Rising	10	10	10	10	10	10	10	10	10	10	10	10	7	-	-	-	-
Pressure	PIFE	Non-rising	-	-	-	-	-	-	-	-	-	-	-	-	-	6	5	-	-
(bar)	Rubber	Rising	16	16	16	16	16	16	16	16	10	10	10	10	10	-	-	-	-
	Kubber	Non-rising	-	-	-	-	-	-	-	-	-	-	-	-	-	6	5	4	3.5


All Saunders® valves are pressure tested in accordance with BS EN12266-1 standard.

- Shell test: 1.5 times maximum rated working pressure
- Seat test: 1.1 times maximum rated working pressure

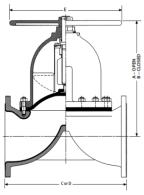
Pressure/Temperature Relationships Cast Iron and SG Iron





(R) = Rubber diaphragm (P) = PTFE diaphragm * 214S Moulded closed version only

A TYPE – ASSEMBLED VALVE DIMENSIONS



Screwed DN8-DN80

Flanged DN15-DN50

Flanged DN65-DN150

Flanged DN200-DN350

Size (DN)	8	10	15	20	25	32	40	50	65	80	100	125	150	200	250	300	350
	A	54	67	90	94	119	154	164	188	241	263	-	-	-	-	-	-	-
Screwed	В	52	61	84	88	108	142	148	164	209	229	-	-	-	-	-	-	-
Unlined	C	49	49	64	83	111	125	145	168	206	257	-	-	-	-	-	-	-
	Weight	0.11	0.15	0.45	0.9	1.13	1.8	3	5	9	13	-	-	-	-	-	-	-
	A	-	-	100	91	108	143	157	175	226	243	308	388	442	495	581	679	660
	В	-	-	93	85	98	131	141	152	194	208	262	322	367	495	581	679	660
Flanged Unlined	C	-	-	108	117	127	146	159	190	216	254	305	356	406	521	635	749	749
Unineu	D	-	-	130	150	160	180	200	230	290	310	350	400	480	600	730	850	980
	Weight	-	-	2	2	3	4	5	8	14	19	32	48	63	152	270	360	506
	A	-	-	-	97	111	146	160	177	229	246	311	391	445	498	585	683	664
Flanged	В	-	-	-	91	101	134	144	154	197	212	265	325	370	498	585	683	664
Rubber	C	-	-	-	121	131	150	163	194	220	258	309	362	412	527	641	755	755
Lined	D	-	-	-	150	160	180	200	230	290	310	350	400	480	600	730	850	980
	Weight	-	-	-	3	4	5	6	9	15	21	32	50	63	154	273	365	512
	A	-	-	101	92	109	144	158	176	227	244	309	389	443	496	582	680	661
Flanged	В	-	-	94	86	99	132	142	153	195	210	263	323	368	496	582	680	661
Glass/Halar	C	-	-	110	119	129	148	161	192	218	256	307	358	408	523	637	751	751
Lined	D	-	-	130	150	160	180	200	230	290	310	350	400	480	600	730	850	980
	Weight	-	-	2	2	4	5	6	9	15	20	33	49	63	153	272	362	508
	Α	-	-	-	97	112	147	162	179	230	246	313	391	450	-	-	-	-
Flanged	В	-	-	-	91	101	133	145	155	198	211	267	322	374	-	-	-	-
Plastic	C	-	-	-	123	133	152	165	196	222	260	311	356	412	-	-	-	-
Lined	D	-	-	-	150	160	180	200	230	290	310	350	394	480	-	-	-	-
	Weight	-	-	-	3	4	5	6	9	15	21	34	50	63	-	-	-	-
	E	38	50	62	62	80	120	120	120	170	230	280	280	368	482	584	699	699

Note: Dimensions in mm. Weights in kg. Weight may vary with materials, lining and standards. For exact weights please contact Saunders[®]. **C** valve length = EN 558 Series 7 (ex BS 5156). **D** valve length = EN 558 Series 1 (ex DIN 3202 Series F1).

Glass lining is typically available in the size range DN15 - DN200 for A Type valves. Contact Saunders® for further requirements.

A TYPE – FLOW COEFFICIENTS

			0	DN15										
		Body Material / Lining Cast Rubber Glass / Plastic												
%	Ca	st	Rub	ber	Gla	ss /	Pla	stic						
0pen	(Unli	ned)	Lin	led	Ha	lar	Lir	ned						
	Сv	Kv	Сv	Kv	Cv	Kv	Сv	Kv						
100	5.5	4.8	-	-	6.0	5.2	-	-						
90	5.3	4.6	-	-	5.8	5.0	-	-						
80	5.1	4.4	-	-	5.5	4.8	-	-						
70	4.8	4.2	-	-	5.3	4.6	-	-						
60	4.6	4.0	-	-	5.0	4.4	-	-						
50	3.8	3.3	-	-	4.2	3.6	-	-						
40	3.1	2.7	-	-	3.4	2.9	-	-						
30	2.3	2.0	-	-	2.5	2.2	-	-						
20	1.5	1.3	-	-	1.7	1.4	-	-						
10	0.8	0.7	-	-	0.8	0.7	-	-						
0	0	0	-	-	0	0	-	-						

	DN32 Body Material / Lining														
			Body	Mate	rial / L	ining									
%		st	Rubber Glass / Plas												
Open	(Unli	ned)	Lir	ied	Ha	lar	Lined								
	Сv	Кv	Сv	Kv	Cv	Kv	Сv	Kv							
100	28	24	22	19	28	24	17	14							
90	26	23	21	18	27	23	16	14							
80	25	22	20	18	26	22	15	13							
70	24	21	19	17	25	21	15	13							
60	23	20	18	16	24	20	14	12							
50	19	17	15	13	20	17	12	10							
40	15	13	12	11	16	14	9.4	8.1							
30	12	10	9.2	8.0	12	10	7.0	6.1							
20	7.7	6.7	6.2	5.3	7.8	6.8	4.7	4.0							
10	3.8	3.3	3.1 2.7		3.9	3.4	2.3	2.0							
0	0	0	0	0	0	0	0	0							

DN65

Rubber

Lined

Си Kv Си Kv

%

Open

Cast

(Unlined)

Cv Kv

127 110

Body Material / Lining

Glass /

Halar

Plastic

Lined

Kv

Сv

%

0pen

Cast

(Unlined)

Си Kv

	Body Material / Lining									
%	Ca	st	Rub	ber	Gla	ss /	Pla	stic		
0pen	(Unli	ined)	Lined		Ha	lar	Lined			
	Сv	Kv	Сv	Kv	Cv	Kv	Cv	Kv		
100	12	9.9	9.2	8.0	12	10	6.5	6		
90	11	9.5	9.0	7.8	12	10	6.2	5		
80	11	9.1	8.8	7.6	11	9.5	6.0	5		
70	10	8.8	8.4	7.3	11	9.1	5.7	5		
60	9.7	8.4	7.7	6.7	10	8.7	5.5	5		
50	8.1	7.0	6.7	5.8	8.4	7.3	4.5	4		
40	6.4	5.6	5.5	4.8	6.7	5.8	3.6	3		
30	4.8	4.2	4.1	3.5	5.0	4.4	2.7	2		
20	3.2	2.8	2.5	2.2	3.4	2.9	1.8	2		
10	1.6	1.4	1.0	0.9	1.7	1.4	0.9	1		
0	0	0	0	0	0	0	0	0		

DN20

			0	DN40											
		Body Material / Lining Cast Rubber Glass / Plastic													
% Open	Ca (Unli		Rub Lin			ss / Iar		stic Ied							
	Сv	Кv	Сv	Кv	Сv	Kv	Сv	Kv							
100	43	37	35	30	45	39	31	27							
90	41	36	34	29	43	37	30	26							
80	40	34	34	29	41	36	29	25							
70	38	33	32	28	40	34	27	24							
60	36	31	29	25	38	33	26	23							
50	30	26	26	22	32	27	22	19							
40	24	21	21	18	25	22	17	15							
30	18	16	16	14	19	16	13	11							
20	12	10	9.5	8.2	13	11	8.7	7.5							
10	6.0	5.2	3.9	3.4	6.3	5.4	4.3	3.7							
0	0	0	0	0	0	0	0	0							

DN80

Rubber

Lined

Cv Kv

Body Material / Lining

Glass /

Halar

Cv Kv

128 186 161 148

 Plastic

Lined

Сv Kv

			[)N25												
		Body Material / Lining Cast Rubber Glass / Plastic														
%	Ca	st	Rub	ber	Gla	ss /	Pla	stic								
0pen	(Unli	ned)	Lin	ed	Halar		Lin	ed								
	Сv	Кv	Сv	Kv	Сv	Kv	Сv	Kv								
100	18	15	14	12	18	16	11	9.7								
90	16	14	14	12	17	15	11	9.3								
80	16	14	13	12	17	14	10	8.9								
70	15	13	13	11	16	14	9.9	8.5								
60	15	13	12	10	15	13	9.4	8.1								
50	12	11	10	9	13	11	7.8	6.8								
40	9.9	8.5	8.4	7.3	10	8.7	6.3	5.4								
30	7.4	6.4	6.3	5.4	7.6	6.5	4.7	4.1								
20	4.9	4.3	3.8	3.3	5.0	4.4	3.1	2.7								
10	2.5	2.1	1.5	1.3	2.5	2.2	1.6	1.3								
0	0	0	0	0	0	0	0	0								

	DN50														
		Body Material / Lining													
%	Ca	st	Rub	ber		ss /	Pla	stic							
Open	(Unli	ned)	Lir	ied	Ha	lar	Lir	ied							
	Cv	Kv	Cv	Kv	Cv	Kv	Cv	Kv							
100	80	69	64	55	88	76	59	51							
90	77	66	63	54	84	73	56	48							
80	74	64	61	53	81	70	54	47							
70	70	61	58	50	77	67	52	45							
60	67	58	53	46	74	64	50	43							
50	56	48	47	41	62	53	41	35							
40	45	39	38	33	49	43	33	29							
30	34	29	29	25	37	32	25	22							
20	22	19	17	15	25	21	16	14							
10	11	9.7	7.0	6.1	12	11	8.0	6.9							
0	0	0	0	0	0	0	0	0							

			D	N100	1					
			Body	Mate	rial / L	ining				
%	Ca	st	Rub	ber	Gla	ss /	Pla	stic		
0pen	(Unli	ned)	Lin	ied	Ha	lar	Lined			
	Сv	Kv	Cv	Kv	Cv	Kv	Cv	Kv		
100	315	273	252	218	336	291	270	234		
90	302	261	247	214	322	279	259	224		
80	289	250	242	203	309	267	248	215		
70	277	240	229	198	295	255	237	205		
60	264	228	209	181	202	244	226	196		
50	220	190	184	159	235	203	189	164		
40	176	152	151	131	188	063	151	131		
30	132	114	113	98	141	122	113	98		
20	88	73	68	59	94	81	76	65		
10	44	38	28	24	47	41	38	33		
0	0	0 0 0 0 0 0 0 0								

Cv = flow in US gal/min through a valve with $\Delta P = 1$ psi

Kv = flow in m^3/hr through a valve with $\Delta P = 1$ bar

1.156 Kv = Cv

Note: All Kv and Cv values shown here refer to flanged valves. Valves with screwed ends demonstrate different Kv/Cv values. For more information contact Saunders®.

A TYPE – FLOW COEFFICIENTS

			D	N125					
			Body	Mate	rial / L	ining			
%	Ca	st	Rub	ber	Gla	ss /	Pla	stic	
0pen	(Unli	ned)	Lin	led	Ha	lar	Lin	ned	
	Сv	Kv	Cv	Kv	Cv	Kv	Сv	Kv	
100	420	363	363	314	440	381	-	-	
90	403	349	348	301	422	365	-	-	
80	386	334	333	288	404	349	-	-	
70	369	319	319	276	387	335	-	-	
60	352	304	304	263	369	319	-	-	
50	294	254	254	220	308	266	-	-	
40	235	203	203	176	246	213	-	-	
30	176	152	152	131	184	159	-	-	
20	117	101	101	87	123	106	-	-	
10	59	51	51	44	62	54	-	-	
0	0	0	0	0	0	0	-	-	

	(1		Body		DN150													
	()		200)	Mate	rial / L	ining												
%	Cd	st	Rub	ber	Gla	ss /	Pla	stic										
Open	(Unli	ned)	Lin	ed	Ha	lar	Lined											
	Сv	Kv	Cv	Kv	Cv	Kv	Cv	Кν										
100	605	523	484	419	630	545	505	437										
90	580	502	474	410	604	522	484	419										
80	556	481	465	402	579	501	464	401										
70	532	460	440	381	554	479	444	384										
60	508	439	402	348	529	458	424	367										
50	423	366	353	305	441	381	353	305										
40	338	292	290	251	352	304	282	244										
30	254	220	218	189	264	228	212	183										
20	169	146	131	113	176	152	141	122										
10	85	74	53	46	88	76	71	61										
0	0	0	0	0	0	0	0	0										

DN200								
	Body Material / Lining							
%	Ca	st	Rub	ber	Glass /		Plastic	
0pen	(Unli	ned) Lin		ied Ha		lar	Lined	
	Сv	Kv	Сv	Kv	Сv	Kv	Сv	Kv
100	1300	1125	1309	1132	1320	1142	-	-
90	1248	1080	1256	1087	1267	1096	-	-
80	1196	1035	1204	1042	1214	1050	-	-
70	1144	990	1151	996	1161	1004	-	-
60	1092	945	1099	951	1108	958	-	-
50	910	787	916	792	924	799	-	-
40	728	630	733	634	739	639	-	-
30	546	472	549	475	554	479	-	-
20	364	315	366	317	369	319	-	-
10	182	157	183	158	184	159	-	-
0	0	0	0	0	0	0	-	-

DN250								
	Body Material / Lining							
% Open	Ca (Unli		Rubber Lined		Glass / Halar ¹		Plastic Lined	
	Сv	Kv	Сv	Kv	Сv	Kv	Сv	Kv
100	1980	1713	2000	1730	2100	1817	-	-
90	1900	1644	1920	1661	2016	1744	-	-
80	1821	1575	1840	1592	1932	1671	-	-
70	1742	1507	1760	1522	1848	1599	-	-
60	1663	1439	1679	1452	1763	1525	-	-
50	1386	1199	1400	1211	1470	1272	-	-
40	1108	958	1120	969	1176	1017	-	-
30	831	719	839	726	881	762	-	-
20	554	479	560	484	588	509	-	-
10	277	240	280	242	294	254	-	-
0	0	0	0	0	0	0	-	-

DN300								
	Body Material / Lining							
% Open	Ca (Unli		Rub Lin	ber Ied	Glass / Halar ¹		Plastic Lined	
	Сv	Kv	Сv	Kv	Сv	Kv	Сv	Kv
100	2550	2206	2600	2249	2700	2336	-	-
90	2448	2118	2496	2159	2592	2242	-	-
80	2346	2029	2392	2069	2484	2149	-	-
70	2244	1941	2288	1979	2376	2055	-	-
60	2142	1853	2184	1889	2268	1962	-	-
50	1785	1544	1820	1574	1890	1635	-	-
40	1428	1235	1456	1260	1512	1308	-	-
30	1071	926	1092	945	1134	981	-	-
20	714	618	728	630	756	654	-	-
10	357	309	364	315	378	327	-	-
0	0	0	0	0	0	0	-	-

DN350								
	Body Material / Lining							
% Open		ist ined)	Rubber Lined		Glass / Halar ¹		Plastic Lined	
	Cv	Kv	Сv	Kv	Сv	Kv	Сv	Kv
100	3700	3201	3750	3244	3880	3356	-	-
90	3552	3073	3500	3028	3724	3221	-	-
80	3404	2945	3450	2984	3569	3087	-	-
70	3256	2817	3300	2855	3414	2953	-	-
60	3107	2688	3149	2724	3259	2819	-	-
50	2590	2240	2625	2271	2716	2349	-	-
40	2072	1792	2100	1817	2172	1879	-	-
30	1553	1343	1574	1362	1629	1409	-	-
20	1036	896	1050	908	1086	939	-	-
10	518	448	525	454	543	470	-	-
0	0	0	0	0	0	0	-	-

¹ Glass lining is typically available in the size range DN15 - DN200 for A Type valves. Contact Saunders® for further requirements.

 $\textbf{Cv} = flow in US gal/min through a valve with <math display="inline">\ \Delta P \ = 1 \ psi$

 $\textbf{Kv} = flow in \text{ m}^3/\text{hr}$ through a valve with $\Delta P = 1 \text{ bar}$

1.156 Kv = Cv

Variations in Flow Coefficients (Cv and Kv) ratings can be derived depending on the test method used. The flow coefficient provides a measure of the flow capacity of a valve. It is defined as the volume flow of water at a controlled temperature and a given pressure drop across the valve. This coefficient allows engineers to compare flow capacities of valves of different sizes, types and manufacturers.

KB TYPE – FEATURES

Saunders[®] KB Design

Hand wheel sized for comfortable grip and easy operation —

Lubricated for life, and – protected from dust, dirt and atmospheric contaminants

Double threaded stem reduces handwheel turns

Yellow valve indicator provides visual indication of the position of the valve

> Smooth non-turbulent body design for unrestricted flow and minimum pressure drop

Diaphragm replaceable with valve in line

Paint finish resists environmental attack Resilient diaphragm handles abrasives and suspended particles in the line, but still provides positive shut-off and isolates all bonnet working parts from the line fluid

> Reinforced diaphragms give long life and leak-free operation

Body lining including glass and a wide range of elastomers

Screwed and flanged options in a wide range of body materials

Saunders[®] KB and K type (higher flow) valves: the choice for corrosive slurry applications

KB TYPE – STANDARDS

As well as meeting the overall lengths specified in EN 558-1 Series 1, Series 7* and MSS SP-88, Saunders[®] valves are manufactured to the following standards:

	Flanged				
	ASME B16.1 Class 125				
American	ASME B16.24 Class 150				
	ASME B16.5 Class 150				
British	BS 10 Tables D and E				
	BS EN 1092-1 PN10/16				
British/European ¹	BS EN 1092-2 PN10/16				
	BS EN 1092-3 PN10/16				
	JIS B 2220 10K				
Japanese	JIS B 2239 10K				
	JIS B 2240 10K				

Screwed					
American ²	ASME B1.20.1				
British/European ³	BS EN 10226-1 Parallel				
british/European	BS EN 10226-1 Taper				
European ⁴	EN ISO 228-1				
International	ISO 7-1 Parallel				
International	ISO 7-1 Taper				

² Replaces ANSI 2.1

³ Replaces BS 21 Parallel and Taper

⁴ Replaces DIN 259

* Series 7 is the original IDV standard from when PK Saunders invented the diaphragm valve.

¹ Replaces BS 4504 PN10/16

KB TYPE – BODY

Lined and Unlined Options

Saunders[®] full bore KB type diaphragm valves, with their smooth non-turbulent body design, have proven to be outstanding in resisting the erosion effect of abrasive media, providing low pressure drop and high flow characteristics.

Unlined Bodies

Material	Connection	Standard	Material Grade	Size	Temperature
Cast Iron	Screwed	BS EN1561	GJL-250	DN15-DN50	-10°C to 175°C
	Flanged	D3 EN 1301	GJC-230	DN15-DN350	-10 C to 175 C
SG Iron ¹	Screwed	BS EN1563	GJS-450-10	DN8-DN50	-10°C to 175°C
30 11011	Flanged	D2 LN 1202	GJS-400-18 ¹	DN15-DN350	
Gun	Screwed	BS EN1982	CC491K-GS	DN15-DN50	-30°C to 175°C
Metal	Flanged	D3 EN 1902	CC492K-GS	DN15-DN100	-50 C to 175 C
Stainless Steel	Flanged	BS EN10283	1.4408 ²	DN15-DN250	-30°C to 175°C

 1 For some sizes GJS-400-18-LT grade is available with a low temperature limit of -20°C 2 Replaces the standard BS3100 316C16

Standard material grade fasteners:

Stainless steel fasteners - All stainless steel, plastic lined and glass lined valves Aluminium Bronze fasteners - Gunmetal flanged valves

Carbon Steel fasteners - All remaining valves.

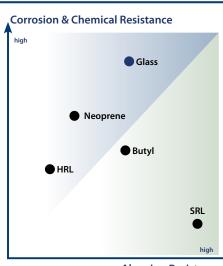
Special material grade fasteners available upon request

The flexible diaphragms ensure consistent leak tightness even when solids, powders and dry media are present. The wide range of lining materials make the valve suitable for many corrosive/abrasive applications up to a maximum pressure of 10 bar.

Lined Options - Flanged Bodies Only

<u> </u>			
Lining	Body Material	Size	Temperature
	Cast Iron		-10°C to 110°C
Butyl (Isobutylene Isoprene)	SG Iron	DN25-DN350	-10°C to 110°C
isopielle)	Cast Steel		-30°C to 110°C
	Cast Iron		-10°C to 105°C
Neoprene (Polychloroprene)	SG Iron	DN25-DN350	-10°C to 105°C
,	Cast Steel		-30°C to 105°C
	Cast Iron		-10°C to 85°C
HRL (Hard Natural Rubber)	SG Iron	DN25-DN350	-10°C to 85°C
	Cast Steel		-30°C to 85°C
	Cast Iron		-10°C to 85°C
SRL (Soft Natural Rubber)	SG Iron	DN25-DN350	-10°C to 85°C
	Cast Steel		-30°C to 85°C

Glass Cast Iron


Glass Lining

Used in many different applications, including strong acids, salts and halogenated gases. Superior corrosion and abrasion resistance within a wide range of temperatures and concentrations. *Note that glass is not suitable for applications where thermal cycling occurs*. (Blue)

Rubber Lining

Butyl *Isobutylene Isoprene* — Great for corrosive and abrasive slurries, and acidic slurries. Additional applications are salts in water, dilute acids and alkalis, and lime. WRAS approved. (Black)

Neoprene *Polychloroprene* — Perfect solution for a combination of abrasive slurries containing hydrocarbons, sludge oils and also sea water. (Black)

Abrasion Resistance

Rubber Lining

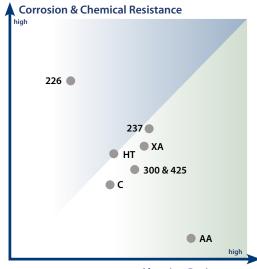
HRL Hard Natural Rubber — Used for salts in water, diluted acids, deionised water, plating solutions and potable water. HRL has better chemical resistance than SRL. (Black)

SRL Soft Natural Rubber — High abrasion resistance on powders, abrasive slurries, clays, coal dust, dry fertilizers, gypsum, as well as titanium dioxide and sewage. (Brown)

The temperature ranges above are given for general reference purposes only. Service conditions, such as media being handled and concentration of solids will determine the highest possible working temperature. Additionally, the performance of the valve will also depend on the diaphragm material.

The nominal bore thicknesses of Saunders[®] linings range from 1 to 5.5 mm, depending on lining material and valve size: glass 1 mm, rubber 2-4.5 mm and plastic 4-5.5 mm.

DN15-DN150 -10°C to 175°C



KB TYPE – DIAPHRAGM

Diaphragm

Many factors can accelerate the aging of polymer compounds. Temperature and abrasion have a significant impact on the effect of chemicals on rubber compounds. At Saunders[®], we are proud of our core competence, the in-house manufacture of Saunders[®] diaphragms. Our expertise in polymer science assures the best range of diaphragms to suit the most challenging duties with total security. This explains why Saunders[®] diaphragms are a synonymous with longer life, reduced maintenance and higher plant operating efficiencies.

Abrasion Resistance

Rubber Diaphragm

226 - Great solution for hydrogen at high temperature, concentrated acids, aromatics solvents, low concentrated chlorine solutions, ozone, unleaded petroleum.

300 - Chemicals, diluted acids and alkalis, drinking water. Additional abrasive applications like phosphoric acid with low concentration. FDA, USP and WRAS approved¹.

HT - Suitable for abrasive slurries containing hydrocarbons.

425 - Salts in water, acids and alkalis, ozone, water, intermittent steam. Great solution for on food and beverages applications. FDA and USP approved¹.

237 - The best solution for sodium hypochlorite. Great with strong acids and low concentration chlorine gas. It is also oil resistant.

XA - Specifically designed for both abrasive and corrosive application such as phosphoric acid, metal treatment and mining applications.

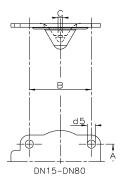
C - Lubricating oil, cutting oils, paraffin, animal vegetable oils and aviation kerosene at low temperatures.

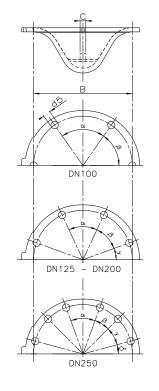
AA - Excellent choice on abrasive applications such as slurries. The diaphragm has a light brown colour, and is sulfur cured.

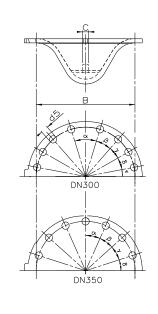
¹ FDA - Food and Drug Administration USP - United States Pharmacopeia WRAS – Water Regulations Advisory Scheme

Crane ChemPharma & Energy

KB Type Diaphragm


Diaphragm	Composition	Size	Temperature
425	EPM (Ethylene Propylene)	All sizes	-40°C to 130°C
300	Butyl (Isobutylene Isoprene)	All sizes	-40°C to 130°C
237	CSM (Chlorosulfonated Polyethylene)	All sizes	-10°C to 100°C
ХА	EPDM (Ethylene Propylene Diene)	All sizes	-40°C to 130°C
HT	Neoprene (Polychloroprene)	All sizes	-30°C to 100°C
226	FKM (Fluoroelastomer)	DN15-DN300	-5°C to 150°C
C	Nitrile (Butadiene Acrylonitrile)	All sizes	-20°C to 100°C
AA	Natural Rubber	All sizes	-40°C to 90C




KB TYPE – DIAPHRAGM DIMENSIONS

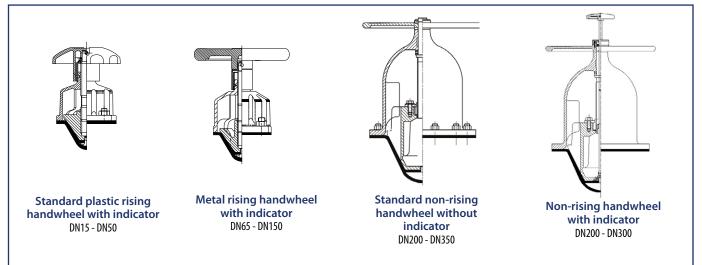
Diaphragm Identification

KB Diaphragms

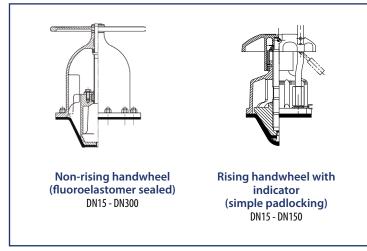
Back Face Size Grade identification Wetted Face

Size		Prin	cipal Diaphr	agm Dimens	sions			Angle	es From the	Holes	
(DN)	A	В	C	D (Thickness)	d5	Number of Holes	α	β	γ	δ	3
15	30	54	3/16" BSW	5	7	4	-	-	-	-	-
20	30	54	3/10 D3W	5	7	4	-	-	-	-	-
25	51	64		5	9	4	-	-	-	-	-
32	51	64	1/4" BSW	5	9	4	-	-	-	-	-
40	51	64	1/4 D3W	5	9	4	-	-	-	-	-
50	64	89		5	12	4	-	-	-	-	-
65	83	102	5/16" BSW	5.6	7/16"UNC	4	-	-	-	-	-
80	102	137		6.4	5/8"UNC	4	-	-	-	-	-
100	-	171	3/8" BSW	5.5		6	70°	55°	-	-	-
125	-	205		7.9	7/16"UNC	8	50°	45°	40°	-	-
150	-	254		7.9	1/2"UNC	8	60°	40°	40°	-	-
200	-	305	5/8" BSW	7.9		8	60°	40°	40°	-	-
250	-	381		9.5	5/8"UNC	12	40°	25°	30°	45°	-
300	-	451	1" BSW	10.3		16	34°	24°20'	19°	19°	21°20'
350	-	527		10.3	7/8"UNC	14	24°	24°	24°	36°	-

BSW = British Standard Whitworth Thread


UNC = Unified Coarse Thread

Note: Dimensions in mm unless otherwise stated

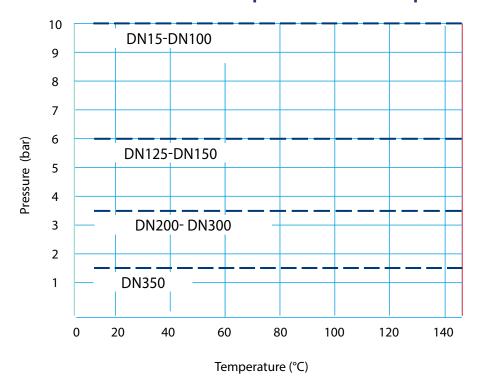


KB TYPE – TOP WORKS

Standard Range

High Performance

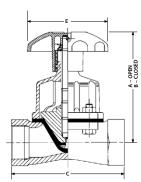
KB TYPE – PRESSURE AND TEMPERATURE LIMITS

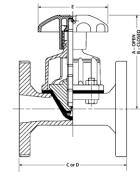

Maximum manual working pressures for Saunders[®] KB type diaphragm valves. For actuated valves, please refer to the appropriate datasheets.

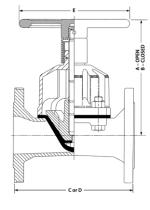
Bonnet pressure limits

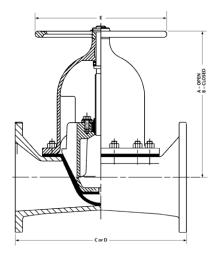
	Size (DN)	8	10	15	20	25	32	40	50	65	80	100	125	150	200	250	300	350
	Handwheel																	
Pressure	Rising	10	10	10	10	10	10	10	10	10	10	10	6	6	-	-	-	-
(bar)	Non-rising	-	-	-	-	-	-	-	-	-	-	-	-	-	3.5	3.5	3.5	1.5

All Saunders® valves are pressure tested in accordance with BS EN12266-1 standard.


- Shell test: 1.5 times maximum working pressure
- Seat test: 1.1 times maximum working pressure




KB Valve Pressure/Temperature Relationship



KB TYPE – ASSEMBLED VALVE DIMENSIONS

Screwed DN15 - DN50

Flanged DN15 – DN50

Flanged DN65 – DN150

Flanged DN200 - DN350

Size (DN)	15	20	25	32	40	50	65	80	100	125	150	200	250	300	350
	A	106	-	166	-	166	182	-	-	-	-	-	-	-	-	-
Screwed	В	98	-	159	-	159	162	-	-	-	-	-	-	-	-	-
Unlined	с	64	-	111	-	143	168	-	-	-	-	-	-	-	-	-
	Weight	1	-	2	-	3	5	-	-	-	-	-	-	-	-	-
	A	105	105	165	165	165	176	234	270	313	335	435	406	557	628	665
	В	97	97	159	159	159	156	210	238	277	293	379	406	557	628	665
Flanged	с	108	117	127	146	159	190	216	254	305	356	406	521	635	749	980
Unlined	D	130	150	160	180	200	230	290	310	350	400	480	600	730	850	980
	Weight	3	3	5	5	6	11	12	18	32	47	68	109	195	294	462
	А	-	-	168	168	168	176	234	270	313	335	435	408	559	630	667
	В	-	-	162	162	162	156	210	238	277	293	379	408	559	630	667
Flanged Rubber Lined	с	-	-	131	150	163	194	220	258	309	362	412	527	641	755	986
Lined	D	-	-	160	180	200	230	290	310	350	400	480	600	730	850	980
	Weight	-	-	5	5	6	11	12	18	32	47	68	109	195	294	462
	А	106	106	166	166	166	177	235	271	314	336	436	407	558	629	666
	В	98	98	160	160	160	157	211	239	278	294	380	407	558	629	666
Flanged Glass* /	с	110	119	129	148	161	192	218	256	307	358	408	523	637	751	982
Halar Lined	D	130	150	160	180	200	230	290	310	350	400	480	600	730	850	980
	Weight	2	3	5	6	7	11	12	21	34	47	72	118	201	294	462
	E	80	80	120	120	120	120	170	230	280	280	368	368	483	584	699

Note: Dimensions in mm. Weights in kg. Weight may vary with materials, lining and standards. For exact weights please contact Saunders®

C valve length = EN 558 Series 7 (ex BS 5156). D valve length = EN 558 Series 1 (ex DIN 3202 Series F1).

* Glass lining is typically available in the size range DN15 - DN150 for KB Type valves. Contact Saunders® for further requirements.

KB TYPE – FLOW COEFFICIENTS

DN15											
Body Material / Lining											
% Open		st ned)	Rub Lin	Glass / Halar							
	Cv	Kv	Cv	Kv	Cv	Kv					
100	8.6	7.4	-	-	9.0	7.8					
90	8.0	6.9	-	-	8.4	7.3					
80	7.3	6.3	-	-	7.7	6.7					
70	6.6	5.7	-	-	6.9	6.0					
60	6.0	5.2	-	-	6.3	5.4					
50	5.2	4.5	-	-	5.4	4.7					
40	4.3	3.7	-	-	4.5	3.9					
30	3.2	2.8	-	-	3.3	2.9					
20	2.1	1.8	-	-	2.2	1.9					
10	1.0	0.9	-	-	1.1	1.0					
0	0	0	-	-	0	0					

DN25												
	Body Material / Lining											
% Open		ist ined)		ber Ied		ss / Iar						
	Cv	Kv	Cv	Kv	Cv	Kv						
100	38	33	31	26	39	34						
90	35	30	28	25	36	31						
80	32	28	26	23	33	29						
70	29	25	24	20	30	26						
60	27	23	21	19	27	24						
50	23	20	18	16	23	20						
40	19	16	15	13	20	17						
30	14	12	11	9.8	14	12						
20	9.1	7.9	7.3	6.3	9.4	8.1						
10	4.5	3.9	3.7	3.2	4.7	4.1						
0	0	0	0	0	0	0						

	DN32												
Body Material / Lining													
% Open	Ca (Unli	ist ined)	Rub Lin	ber Ied	Gla Ha	ss / lar							
	Cv	Kv	Cv	Kv	Cv	Kv							
100	56	48	46	40	58	50							
90	52	45	42	36	54	47							
80	48	42	39	34	50	43							
70	44	38	36	31	46	40							
60	40	35	32	28	42	36							
50	34	29	28	24	35	30							
40	28	24	23	20	29	25							
30	22	19	18	16	23	20							
20	16	14	13	11	16	14							
10	8.0	6.9	6.0	5.2	8.0	6.9							
0	0	0	0	0	0	0							

	DN40												
		Bod	y Mate	rial / Liı	ning								
% Open	Ca (Unli		Rub Lin		ss / lar								
	Cv	Kv	Cv	Kv	Cv	Kv							
100	75	65	66	57	79	68							
90	70	61	61	53	73	63							
80	64	55	56	48	67	58							
70	58	50	51	44	61	53							
60	52	45	46	40	55	48							
50	45	39	40	35	47	41							
40	38	33	33	29	40	35							
30	28	24	24	21	29	25							
20	18	16	16	14	19	16							
10	9.0	7.8	7.9	6.8	9.5	8.2							
0	0	0	0	0	0	0							

		ROC	y mate	rial / Lii	ning	
% Open	Ca (Unli			ber Ied		ss / Iar
	Cv	Kv	Cv	Kv	Cv	Kv
100	128	111	107	93	138	119
90	119	103	99	86	128	111
80	109	94	91	79	117	101
70	99	86	82	71	106	92
60	90	78	75	65	97	84
50	77	67	64	55	83	72
40	64	55	53	46	69	60
30	47	41	40	35	51	44
20	31	27	26	22	33	29
10	15	13	13	11	17	14
0	0	0	0	0	0	0

DN50 Dadu Matarial / Linix

	DN65											
		Bod	y Mate	rial / Liı	ning							
% Open	Ca (Unli	ist ined)		ber Ied		ss / lar						
	Cv	Kv	Cv	Kv	Cv	Kv						
100	238	206	195	169	254	220						
90	221	191	181	157	236	204						
80	202	175	166	144	216	187						
70	183	158	150	130	196	170						
60	167	145	136	118	178	154						
50	143	124	117	101	152	132						
40	119	103	97	84	127	110						
30	88	76	72	62	94	81						
20	57	49	47	40	61	53						
10	29	25	23	20	20	17						
0	0	0	0	0	0	0						

DN80										
	Body Material / Lining									
% Open		ist ined)		ber Ied	Glass / Halar					
	Cv	Kv	Cv	Kv	Cv	Kv				
100	330	285	264	228	342	296				
90	307	266	246	213	318	275				
80	281	243	224	194	291	252				
70	254	220	203	176	263	228				
60	231	200	185	160 239	239	207				
50	198	171	159	138	205	177				
40	165	143	132	114	171	148				
30	122	106	98	85	127	110				
20	79	68	63	54	82	71				
10	40	35	32	28	41	35				
0	0	0	0	0	0	0				

DN100										
	Body Material / Lining									
% Open	Cast (Unlined)		Rubber Lined		Glass / Halar					
	Cv	Kv	Cv	Kv	Cv	Kv				
100	588	509	480	415	618	535				
90	547	473	446	386	575	497				
80	500	433	408	353	525	454				
70	453	392	370	320	476	412				
60	412	356	336	291	433	375				
50	353	305	288	249	371	321				
40	294	254	240	208	309	267				
30	218	189	178	154	229	198				
20	141	122	115	99	148	128				
10	71	61	58	50	74	64				
0	0	0	0	0	0	0				

DN125										
	Body Material / Lining									
% Open	Cast (Unlined)		Rubber Lined		Glass / Halar					
	Cv	Kv	Cv	Kv	Cv	Kv				
100	924	799	720	623	960	830				
90	859	743	670	580	893	772				
80	785	679	612	529	816	706				
70	711	615	554	479	739	639				
60	647	560	504	436	672	581				
50	555	480	432	374	576	498				
40	462	400	360	311	480	415				
30	342	296	266	230	355	307				
20	222	192	173	150	230	199				
10	111	96	86	74	115	99				
0	0	0	0	0	0	0				

Note: All Kv and Cv values shown here refer to flanged valves. Valves with screwed ends demonstrate different Kv/ Cv values. For more information contact Saunders®.

Cv = flow in US gal/min through a valve with ΔP = 1 psi Kv = flow in m³/hr through a valve with ΔP = 1 bar

KB TYPE – FLOW COEFFICIENTS

DN150									
Body Material / Lining									
% Open		ist ined)		ber Ied	Glass / Halar				
	Cv	Kv	Cv	Kv	Cv	Kv			
100	1680	1453	1260	1090	1800	1557			
90	1562	1351	1172	1014	1674	1448			
80	1428	1235	1071	926	1530	1324			
70	1294	1119	970	839	1386	1199			
60	1176	1017	882	763	1260	1090			
50	1008	872	756	654	1080	934			
40	840	727	630	545	900	779			
30	622	538	466	403	666	576			
20	403	349	302	261	432	374			
10	202	175	151	131	216	187			
0	0	0	0	0	0	0			

DN200											
	Body Material / Lining										
% Open		ist ined)	Rub Lin	ber Ied	Glass / Halar¹						
	Cv	Kv	Cv	Kv	Cv	Kv					
100	2580	2232	2196	1900	2724	2356					
90	2399	2075	2042	1766	2533	2191					
80	2193	1897	1867	1615	2315	2003					
70	1987	1719	1691	1463	2097	1814					
60	1806	1562	1537	1330	1907	1650					
50	1548	1339	1318	1140	1634	1413					
40	1290	1116	1098	950	1362	1178					
30	955	826	813	703	1008	872					
20	619	535	527	456	653	565					
10	310	268	264	228	327	283					
0	0	0	0	0	0	0					

DN250										
Body Material / Lining										
% Open	Cast (Unlined)			ber Ied	Glass / Halar ¹					
	Cv	Kv	Cv	Kv	Cv	Kv				
100	4020	3478	3420	2958	4296	3716				
90	3739	3234	3181	2752	3995	3456				
80	3417	2956	2907	2515	3652	3159				
70	3095	2677	2633	2278	3308	2862				
60	2814	2434	2394	2071	3007	2601				
50	2412	2087	2052	1775	2578	2230				
40	2010	1739	1710	1479	2148	1858				
30	1487	1286	1265	1094	1590	1375				
20	965	835	821	710	1031	892				
10	482	417	410	355	516	446				
0	0	0	0	0	0	0				

DN300									
Body Material / Lining									
% Open		ist ined)	Rub Lin	ber Ied	Glass / Halar 1				
	Cv	Kv	Cv	Kv	Cv	Kv			
100	6060	5242	4884	4225	6200	5363			
90	5636	4875	4542	3929	5800	5017			
80	5151	4456	4151	3591	4500	3893			
70	4666	4036	3761	3253	5000	4325			
60	4242	3670	3419	2958	4500	3893			
50	3636	3145	2930	2535	3900	3374			
40	3030	2621	2442	2112	3200	2768			
30	2242	1939	1807	1563	2600	2249			
20	1454	1258	1172	1014	1900	1644			
10	727	629	586	507	1000	865			
0	0	0	0	0	0	0			

DN350										
	Body Material / Lining									
% Open	Ca: (Unlii			ber Ied	Glass / Halar 1					
	Cv	Kv	Cv	Kv	Cv	Kv				
100	10300	8910	9950	8607	-	-				
90	9579	8286	9253	8004	-	-				
80	8755	7574	8457	7316	-	-				
70	7931	6861	7661	6627	-	-				
60	7210	6237	6965	6025	-	-				
50	6180	5346	5970	5164	-	-				
40	5150	4455	4975	4304	-	-				
30	3811	3297	3681	3184	-	-				
20	2472	2138	2388	2066	-	-				
10	1236	1069	1194	1033	-	-				
0	0	0	0	0	-	-				

Cv = flow in US gal/min through a valve of ΔP = 1 psi Kv = flow in m³/hr through a valve of ΔP = 1 bar

1.156 Kv = Cv

¹ Glass lining is typically available in the size range DN15 - DN150 for KB Type valves. Contact Saunders® for further requirements.

Note:

The flow coefficient provides a measure of the flow of a valve. It is defined as the volume flow of water at a controlled temperature and a given pressure drop across the valve. This coefficient allows engineers to compare flow capacities of valves of different sizes, types and manufacturers.

WFB TYPE – FEATURES

Saunders® WFB Design

Saunders[®] WFB valves provide a reliable solution for fire and marine applications.

With fire you only get one chance!

WFB TYPE-STANDARDS

Saunders® WFB valves are utilised as fire mains hydrants and in tank cleaning services for marine and offshore oil installations. Available in DN40 and DN65 sizes, these are highly specialised valves that have been tested and approved by the world's leading safety agencies, and are designed to work up to a maximum pressure of 15 bar.

"We specified Saunders WFB 65 mm nominal bore fire-mains hydrant valves for our ferries and cruise liners. Significant factors behind this choice are the excellent reliability and the low maintenance costs." P&O Cruises (UK) Ltd

Valve Standards

Saunders® WFB valves are manufactured to the following standards:

Flanged				
A	ASME/ANSI B16.24 Class 150 (Gunmetal)			
American	ASME/ANSI B16.34 Class 150 (SG iron)			
British BS 10 Tables D & E (Gunmetal and SG iron)				
Duitich / Furren een 1	BS EN 1092-2 PN10/16 (SG iron)			
British/ European ¹	BS EN 1092-3 PN10/16 (Gunmetal)			
Japanese	JIS 2239 10K (SG iron)			
	JIS 2240 10K (Gunmetal)			

Screwed							
A	NFPA ² 1963 1.5-9 NH (DN40)						
America	NFPA ² 1963 2.5-7.5 NH (DN65)						
Dritich / European ³	BS EN 10226-1 Parallel						
British/ European ³	BS EN 10226-2 Taper						
National Fire Protection Association							

lational Fire Protection Association eplaces BS 21 Parallel and Taper

¹Replaces BS 4504 PN10/16

Lloyds Register of Shipping LR Type Approval Certificate Certificate No: 97/00047 Model: DN40, DN65

Bureau Veritas Type Approval Certificate Certificate No: 2207 3457 C10 H Model: DN40, DN65

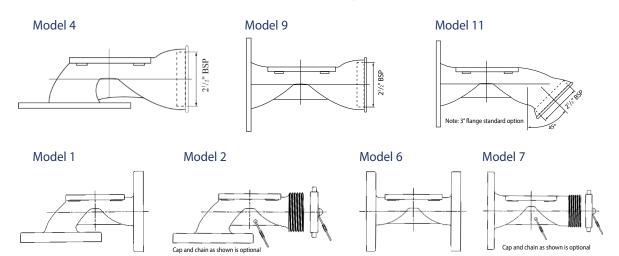
Registro Italiano Naval American Bureau of Shipping List of Type Approved Equipment Page 25. Certificate No: 96-WM10305-X Certificate No: MAC/057/94 Model No: DN40, DN65

Rina

Type Approval

Model: DN65

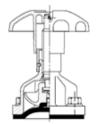
Product Approvals


The whole fire hydrant valve has successfully undergone a high-temperature resistance test (540°C for 20 minutes), BS 5041 Part 1, audited by a Lloyds Surveyor.

WFB TYPE - BODY AND DIAPHRAGM

Body

WFB valves are available in SG iron or gunmetal providing high mechanical strength and resistance to accidental impact. Gunmetal bodies provide superior corrosion resistance, even on highly-demanding applications. Saunders[®] provides different WFB valve designs with both female and male end connections for different applications. Additionally, couplings and chains e.g. Morris Instantaneous coupling for the female screwed ends, are available.


Diaphragm

The diaphragm separates the working parts of the valve from the line media, so there is no chance of internal corrosion of the valve, which is the main cause of fire valve failure.

Diaphragm	Composition	Applications
286	CSM (Chlorosulfonated Polyethylene)	Fire resistant diaphragm specifically designed for fire application valves.
226	FKM (Fluoroelastomer)	This diaphragm (not fire resistant) is a perfect solution for wash decks, with great resistance to lubricating oils and fuel.

Top Works

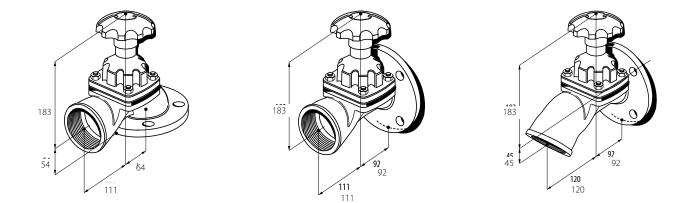
Standard bonnet - Rising handwheel with indicator All valve sizes

WFB TYPE - FULLY ASSEMBLED VALVE

Body Material Options and Weights

Size	Models							Body
(DN)	1	2	4	6	7	9	11	Materíals
40	-	✓	✓	-	~	~	-	Gunmetal
65	~	~	~	~	~	~	~	Gunmetal or SG Iron

Body	Size	Weight (kg) / Model									
Body Materials	(DN)	4	9	11							
Gunmetal	40	8.8	8.5	9.8							
Gunmetai	65	10.3	10.0	11.5							
SG Iron	65	8.4	7.9	9.8							


Model 4 with body and bonnet material in SG iron

Model 9 with body and bonnet material in gunmetal

Model 11 with body and bonnet material in gunmetal

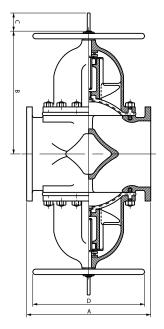
All dimensions are specified in mm.

Pressure testing: Saunders[®] WFB valves tested in accordance with the BS5041 standard i.e. body strength test to 22.5 bar, seat test to 16.5 bar (1.1 x maximum working pressure).

SPECIAL VERSIONS

Saunders® environmental protective coating has been developed specifically to provide unrivaled corrosive resistance in the industrial processing industry. The green Tefzel[™] coating is applied before the injection moulding of PFA or ETFE lining, using an electrostatic powder coating method. By coating the valve body, bonnet and hand wheel, both internal and external corrosive protection is maximized to provide peace of mind in extreme corrosive material processing applications. Available in DN20-DN200 with PFA lining and DN20-DN150 with ETFE lining.

High vacuum duty valves are designed for use down to 10⁻⁵ Torr. Vacuum grade diaphragms contain extra nylon reinforcement for sizes DN100 and above, as well as a steel stud (not brass) as standard for all sizes. Available for C, 300 & 425 grade diaphragms.


Halar[®] (ECTFE – ethylene chlorotriflurorethylene) lining (dark grey) prepared using an electrostatic powder method demonstrates excellent resistance to mineral and oxidising acids, inorganic bases, salts and alcohols, and some resistance to aliphatic and aromatic hydrocarbons. Available in all sizes.

Large "double weir" valves in sizes DN400, DN450 and DN500 are available and consist of two DN300 or DN350 bodies and bonnets (see table below). Please contact Saunders[®] for more information. Note: these valves are not suitable for use with Group 1 (dangerous) gases.

Size (DN)	A	В	C (Travel)	D			
400	750	750	190	700			
450	450 750		190	700			
500	750	780	230	700			

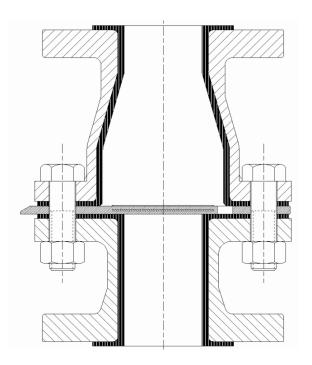
Valve Sizes	
DN400	Fitted with two DN300 bonnets
DN450	Fitted with two DN300 bonnets
DN500	Fitted with two DN350 bonnets

Note: Dimensions in mm

Schematic of large size double weir valves.

NX CHECK VALVE - FEATURES

Saunders® NX Check Valve



NX is the check valve of choice; a full bore non return valve capable of handling corrosive media and slurries

NX CHECK VALVE - ASSEMBLED VALVE DIMENSIONS

A simple one-part disc is the only moving part in the Saunders[®] NX check valve. This simplicity assists in guaranteeing a long and maintenance-free life in the prevention of reverse flow leakage. The Saunders[®] NX can be used in vacuum conditions and up to a line pressure of 7 bar. It prevents flow reversal for pressures \geq 0.35 bar, ensuring 100 % shut off with repeated reliability.

Body

- Cast iron
- SG iron hard rubber lined

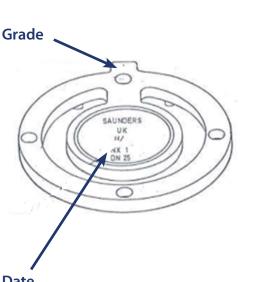
Disc

Seat

- Cast iron

- Rubber coated steel

- SG iron hard rubber lined


Ð		ll Length m)	B- Overall Diameter (mm)
Size (DN)	Cast Iron	Rubber	All Specifications
25	150	157	124
40	180	186	149
50	200	204	162
80	260	265	216
100	350	356	295
150	400	406	327

For other rubber lining material options, please contact Saunders®.

Standards
BS EN 12334 — Design standard
BS 10 Table D — Flanged body ends
EN 1092-2 PN10/16 — Flanged body ends
ASME B16.1 Class 125 — Flanged body ends

NX CHECK VALVE - DISC TYPE & FLOW COEFFICIENTS

Disc	Composition	Applications	Temperature
226	FKM (Fluoroelastomer)	Sulfur cured. Specially recommended for applications involving gases at high temperature, concentrated acids, aromatic solvents, low concentrated chlorine solutions, ozone and unleaded petroleum.	-5°C to 150°C
300	Butyl (Isobutylene isoprene)	Sulphur cured with carbon black reinforcement. It is a great solution for diluted acids and alkalis, drinking water and abrasive applications like phosphoric acid in low concentration.	-30°C to 100°C

Weights with reference to HRL model

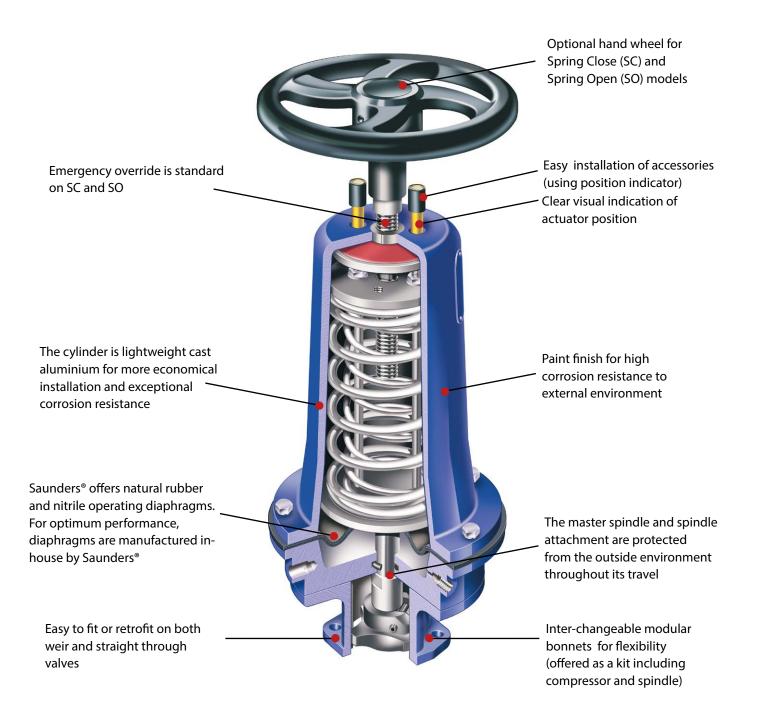
Size (DN)	Weight (kg)
25	4
40	6.8
50	8.6
80	15
100	30
150	50

Flow coefficients

Body material/ lining		lron ned	SG Iron rubber lining					
Size (DN)	Cv	Kv	Cv	Kv				
25	28	24	25	22				
40	79	68	71	61				
50	135	117	121	105				
80	285	247	256	221				
100	486	420	437	378				
150	811	702	729	631				

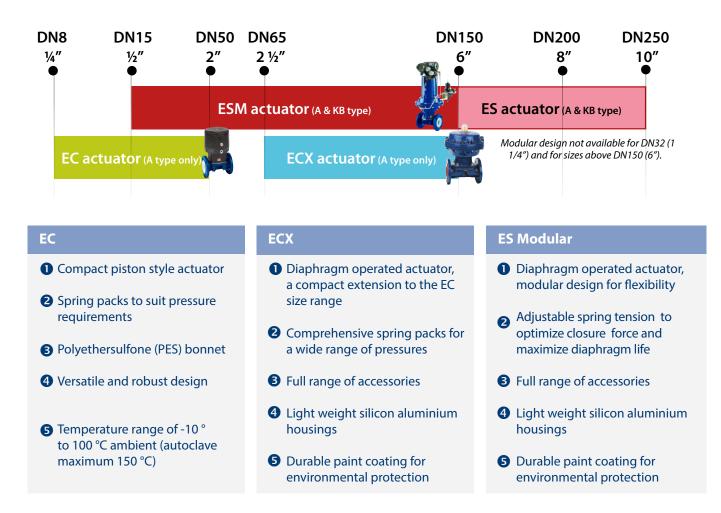
 $\mathbf{Cv} = \text{flow in US gal/min through a value at } \Delta P = 1 \text{ psi}$

 $\mathbf{Kv} = \text{flow in m}^3/\text{hr through a valve at } \Delta P = 1 \text{ bar}$


1.156 Kv = Cv

Note: The flow coefficient provides a measure of the flow of a valve. It is defined as the volume flow of water at a controlled temperature and a given pressure drop across the valve. This coefficient allows engineers to compare flow capacities of valves of different sizes, types and manufacturers.

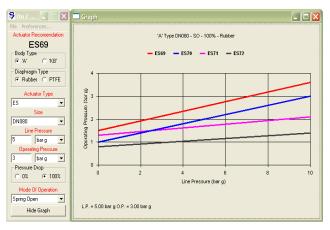
ACTUATION - ES MODULAR DESIGN



Wide range of actuators that provide reliable remote control

ACTUATION - MODEL RANGE AND MODES OF OPERATION

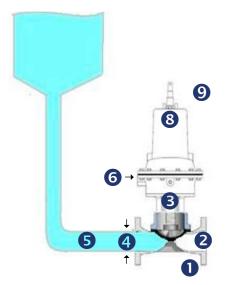
When manual operation is inadequate or inconvenient, Saunders[®] offer a variety of actuators covering valve sizes up to DN250 (10"), for different line and operating pressure options. We offer three different actuators, designed for various characteristic performances.


		Spring Close (SC)	Spring Open (SO)	Double Acting (DA)
	de of ration	Closes the valve against line pressure in the event of failure (or intended shutoff) of operating pressure to the actuator.	Opens the valve to allow line fluid to flow in the event of failure (or intended shutoff) of operating pressure to the actuator.	Operating pressure opens and closes the valve. Requires a lock up valve to retain the position preced- ing the failure.
Norn	nal use	When valve is usually in the closed posi- tion (to avoid using a constant supply of operating pressure).	When valve is usually in the open posi- tion (to avoid using a constant supply of operating pressure).	When a failsafe mode is not required.

SIZING YOUR ACTUATOR

To be able to properly size the actuators you will need the following information:

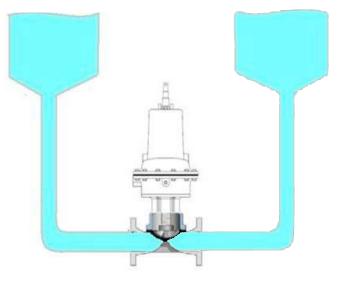
- **1** Valve Type A or KB type
- **2** Diaphragm Type Rubber or PTFE diaphragm
- **3** Actuator Type EC, ECX, or ES
- 4 Valve Size Typically the same size as the pipe system
- **5** Line Pressure Pressure in the *pipeline* that the actuator needs to close
- **6 Operating Pressure** Pressure available in the system to *operate* the valve
- Pressure Drop As represented in figure below, there are two extreme options (0 % or 100 % pressure drop)



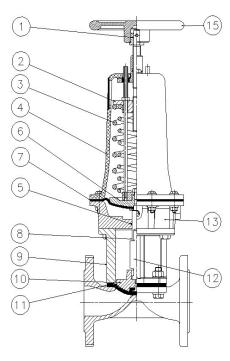
Saunders® On/Off Actuation Selection Software To use this software, you simply enter your process data into the selection boxes. The program then sizes the actuator to suit your specific requirements.

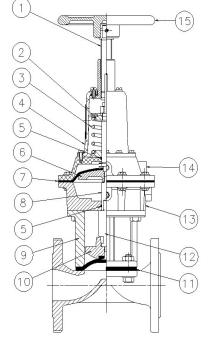
- 8 Actuator Mode Spring Close, Spring Open, Double Acting
- O Accessories Solenoid valves, switchboxes, positioners, limit stops, etc

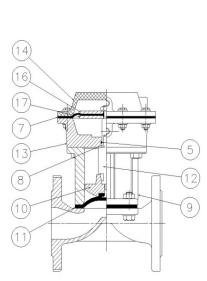
100 % Pressure Drop


The line pressure is on one side of the weir only. This is the most common service condition.

0 % Pressure Drop

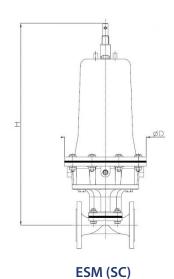

7

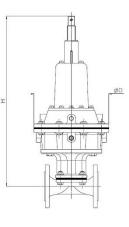

The line pressure is on both sides of the weir. Maximum force is working against the actuator.



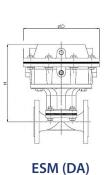
ESM/ES ACTUATORS

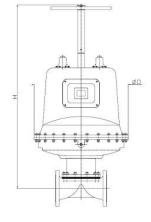
Spring Close


Spring Open


Double Acting

ltem	Component		Material								
Item	Component	Spring Close	Spring Open	Double Acting							
1	Handwheel spindle	Mild	steel	-							
2	Upper spring plate	Mild	steel	-							
3	Spring	Ste	eel	-							
4	Cover	Silicon al	uminium	-							
5	Cylinder "O"ring	Nit	rile	-							
6	Diaphragm plate	SG	-								
7	Operating diaphragm										
8	Master spindle										
9	Bonnet										
10	Compressor		Cast Iron								
11	Line diaphragm		Rubber or PTFE								
12	Spindle attachment		Stainless steel								
13	Lower cylinder		Silicon aluminium								
14	Upper cylinder		Silicon aluminium								
15	Handwheel	Cast	Iron								
16	Upper diaphragm plate	-	-	Mild steel							
17	Lower diaphragm plate	-	-	Mild steel							




ESM/ES ACTUATORS

ESM (SO)

ES66

The table below shows the diameter/width and the maximum height of the actuator from the centre of the valve flange or pipeline.

Note: Dimensions are based on unlined bodies and bareshaft actuators. Add-on handwheel dimensions are displayed in the adjacent table.

Actuator Model	Add-on						
68/69/70	+14mm						
61/62/63	+14mm						
71/64	+18mm						
or all FS (non-modular)							

For all ES (non-modular) actuators, dimensions include handwheel add-on as it is provided as standard.

Dimensions

				H (mm) – A type valves												H (mm) – KB type valves									
	Actuator Model	D (mm)	DN 15	DN 20	DN 25	DN 32	DN 40	DN 50	DN 65	DN 80	DN 100	DN 125	DN 150	DN 200	DN 250	DN 25	DN 32	DN 40	DN 50	DN 65	DN 80	DN 100	DN 125	DN 150	DN 200
	ESM61	169	408	413	423	390	435	462 ¹	-	-	-	-	-	-	-	480	480	480	-	-	-	-	-	-	-
	ESM62	260	-	-	463	451	476	503	502	504 ¹	-	-	-	-	-	517	517	517	522	546	-	-	-	-	-
Spring	ESM63	316	-	-	-	-	-	721	732	735	759 ¹	-	-	-	-	-	-	-	744	764	791	820	-	-	-
Ċlose	ESM64	425	-	-	-	-	-	-	-	788	809	828	899	-	-	-	-	-	-	-	844	870	878	947	-
	ESM65	549	-	-	-	-	-	-	-	-	1012	1040	1106	-	-	-	-	-	-	-	-	1176	1089	1155	-
	ES66	750	-	-	-	-	-	-	-	-	-	-	1459	1529	1589 ¹	-	-	-	-	-	-	-	-	1511	1529
	ESM68	169	382	377	389	351	401	428	-	-	-	-	-	-	-	522	522	522	-	-	-	-	-	-	-
	ESM69	260	-	-	497	401	511	537	536	538	-	-	-	-	-	555	555	555	560	581	-	-	-	-	-
Spring	ESM70	316	-	-	-	-	-	773	783	786	810	-	-	-	-	-	-	-	795	814	841	859	-	-	-
Öpen	ESM71	425	-	-	-	-	-	-	-	-	783	822	878	-	-	-	-	-	-	-	834	858	838	-	-
	ESM72	549	-	-	-	-	-	-	-	-	879	907	974	-	-	-	-	-	-	-	-	955	935	1034	-
	ES73	750	-	-	-	-	-	-	-	-	-	-	978	1236	1245 ¹	-	-	-	-	-	-	-	-	1337	1264
	ESM54	260	156	162	171	130	183	208	-	-	-	-	-	-	-	228	228	228	-	-	-	-	-	-	-
	ESM55	316	-	-	222	190	235	261	261	262	-	-	-	-	-	279	279	279	284	305	-	-	-	-	-
Double Acting	ESM56	425	-	-	-	-	-	306	313	315	339	-	-	-	-	-	-	-	331	350	381	406	-	-	-
Acting	ESM57	549	-	-	-	-	-	-	-	-	357	385	451	-	-	-	-	-	-	-	396	421	401	500	-
	ESM58	650	-	-	-	-	-	-	-	-	383	411	477	-	-	-	-	-	-	-	-	447	427	526	-
	E	xisting	g ES d	actua	tor o	nly	1	PTFE	diap	hragi	m noi	t avai	ilable	- rubł	per dia	phra	gm o	nly							

D = Actuator diameter/width **H** = Actuator height

www.cranecpe.com

ESM/ES ACTUATORS

Head Volumes

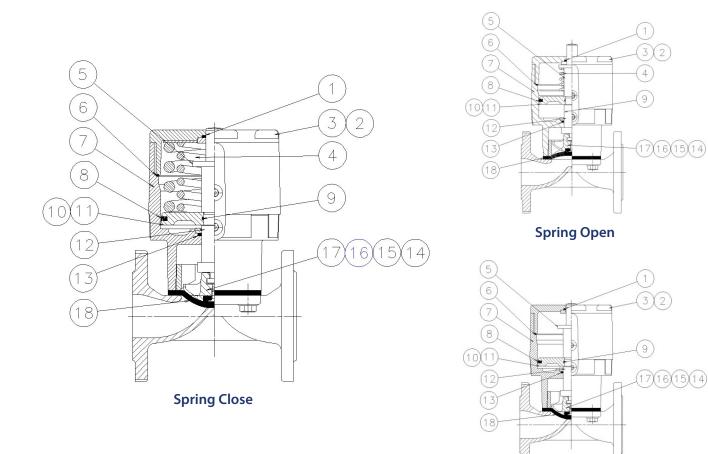
		Head Volume (cm³)											
Model	DN15	DN20	DN25	DN32	DN40	DN50	DN65	DN80	DN100	DN125	DN150	DN200	DN250
ESM 54/61/68	147	164	196	230	260	328	-	-	-	-	-	-	-
ESM 55/62/69	-	-	1150	1360	1425	1490	1575	1670	-	-	-	-	-
ESM 56/63/70	-	-	-	-	-	2890	3050	3245	3440	-	-	-	-
ESM 57/64/71	-	-	-	-	-	-	-	6640	6965	7440	7835	-	-
ESM 58/65/72	-	-	-	-	-	-	-	-	11470	11470	14915	-	-
ES 66/73	-	-	-	-	-	-	-	-	-	-	-	49170	49170

Weights

Assembled weight (kg) – Head, bonnet, attachment and compressor

			A type valves											KB type valves										
	Model	DN 15	DN 20	DN 25	DN 32	DN 40	DN 50	DN 65	DN 80	DN 100	DN 125	DN 150	DN 200	DN 250	DN 25	DN 32	DN 40	DN 50	DN 65	DN 80	DN 100	DN 125	DN 150	DN 200
	ESM61	7.1	7.1	7.5	8	8	8.9 ¹	-	-	-	-	-	-	-	8.6	8.6	8.6	-	-	-	-	-	-	-
	ESM62	-	-	17	19	18	19	20	21 ¹	-	-	-	-	-	19	19	19	20	20	-	-	-	-	-
Spring	ESM63	-	-	-	-	-	34	34	36	37 ¹	-	-	-	-	-	-	-	34	35	37	40	-	-	-
Ċlose	ESM64	-	-	-	-	-	-	-	74	76	80	89	-	-	-	-	-	-	-	77	78	83	92	-
	ESM65	-	-	-	-	-	-	-	-	122	126	135	-	-	-	-	-	-	-	-	123	128	137	-
	ES66	-	-	-	-	-	-	-	-	-	-	345	390	440 ¹	-	-	-	-	-	-	-	-	350	395
	ESM68	5.6	5.8	5.9	7.0	6.5	7.3	-	-	-	-	-	-	-	7.1	7.1	7.1	-	-	-	-	-	-	-
	ESM69	-	-	14	13	14	15	16	17	-	-	-	-	-	15	15	15	16	17	-	-	-	-	-
Spring	ESM70	-	-	-	-	-	27	28	29	31	-	-	-	-	-	-	-	28	28	30	33	-	-	-
Ópen	ESM71	-	-	-	-	-	-	-	-	54	58	67	-	-	-	-	-	-	-	56	56	61	-	-
	ESM72	-	-	-	-	-	-	-	-	74	78	87	-	-	-	-	-	-	-	-	76	81	90	-
	ES73	-	-	-	-	-	-	-	-	-	-	-	345	390 ¹	-	-	-	-	-	-	-	-	-	350
	ESM54	4.2	4.4	4.5	5.3	5.0	5.9	-	-	-	-	-	-	-	8.6	8.6	8.6	-	-	-	-	-	-	-
	ESM55	-	-	11	9.4	12	13	14	15	-	-	-	-	-	15	15	15	16	17	-	-	-	-	-
Double Acting	ESM56	-	-	-	-	-	21	22	23	25	-	-	-	-	-	-	-	22	23	25	27	-	-	-
	ESM57	-	-	-	-	-	-	-	-	49	53	62	-	-	-	-	-	-	-	50	50	56	65	-
	ESM58	-	-	-	-	-	-	-	-	72	76	85	-	-	-	-	-	-	-	-	73	79	88	-
		Fv	victin	TES C	ictua	tora	nlv	1	DTEE	dian	hraai	nno	avai	lahlo	- ruh	hord	ianh	raam	only					

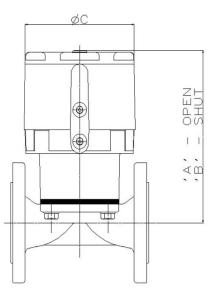
Existing ES actuator only ¹ PTFE diaphragm r


¹ PTFE diaphragm not available - rubber diaphragm only

		ES 53/60/67 ²	ESM 54/61/68	ESM 55/62/69	ESM 56/63/70	ESM 57/64/71	ESM 58/65/72	ES 66/73
Operating Diaphragm	Natural rubber (Q grade)	VS00867RD1	VS01568RD1	VS04069RD1	VS06570RD1	VS08071RD1	VS12572RD1	VS20073RD1
(catalogue code)	Nitrile rubber (C grade)	VS00867RD2	VS01568RD2	VS04069RD2	VS06570RD2	VS08071RD2	VS12572RD2	VS20073RD2

² Obsolete models (codes provided for replacement spares purposes only)

EC ACTUATORS


Double Acting

ltem	Component	Material								
Item	component	Spring Close	Spring Open	Double Acting	Size Range (DN)					
1	Indicator seal		Viton		—					
2	Can		40 — 50							
3	Сар		8 — 25							
4	Spring	St	—							
5	Indicator		—							
6	Bonnet/cap o-ring		Nitrile							
7	Bonnet		—							
8	Piston outer seal		—							
9	Piston inner seal		—							
10	Piston		IXEF		40 — 50					
11	PISIOII		PES		8 — 25					
12	Spindle		PES		—					
13	Spindle seal		Viton		—					
14			Silicon aluminium		15 — 50					
15	Comprossor		Silicon aluminium		40 — 50					
16	Compressor		Mild steel		15 — 25					
17			Mazak		8 — 10					
18	Line diaphragm		Rubber or PTFE		_					

EC ACTUATORS

- A Actuator height (open)
- B Actuator height (closed)
- C Actuator diameter/Width

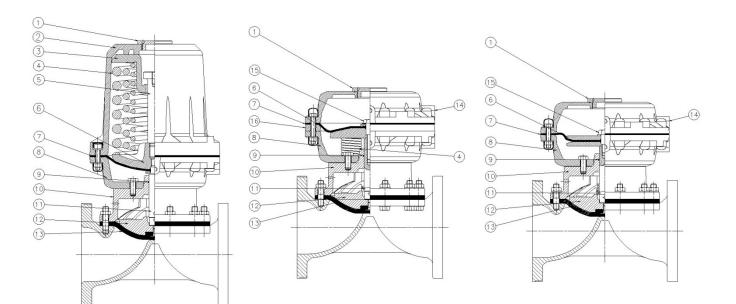
All dimensions are based on unlined bodies.

The table below shows the diameter/width and maximum height of the actuator from the centre of the valve flange or pipeline.

Dimensions & Volumes

		Dimensions (mm)									
		DN8	DN15	DN20	DN25	DN40	DN50				
Spring Open,	А	112	127	160	161	224	240				
Spring Close,	В	110	122	152	154	210	220				
Double Acting	C	58	70	103	103	153	153				
Upper Head Volume (cm ³)	(to Close)	22	49	212	212	988	995				
Lower Head Volume (cm ³)	(to Open)	8	16	62	62	244	336				

Weights

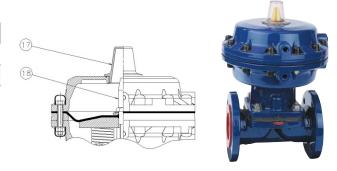

	Weight (kg)									
	DN8	DN15	DN20	DN25	DN40	DN50				
Spring Close,	0.29	0.5	1.4	1.5	4	4.9				
Spring Open,	0.25	0.46	1.1	1.3	2.9	3.2				
Double Acting	0.24	0.45	1	1.2	2.7	3				

Air Connections

All EC actuator air inlet parts are 1/8" BSP or 1/8" NPT

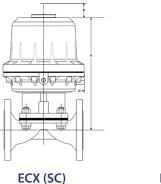
ECX ACTUATORS

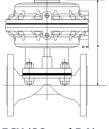
Spring Close


Spring Open

Double Acting

ltem	Component		Material				
Item	Component	Spring Close	Spring Open	Double Acting			
1	Cover plug		Mild steel				
2	Cover	Aluminium alloy	—				
3	Upper spring plate	SG Iron	—	—			
4	Spring						
5	Spring retaining bolt	Mild steel	_	_			
6	Diaphragm plate		Forged steel				
7	Operating diaphragm	Rubber					
8	Lower cylinder	Silicon aluminium					
9	Bonnet o-ring		Rubber				
10	Bonnet		SG Iron				
11	Spindle		Stainless steel				
12	Compressor		SG Iron				
13	Line diaphragm		Rubber or PTFE				
14	Upper cylinder	—	Silicon al	uminium			
15	Spindle screw	_	Sto	eel			
16	Spacer ring	_	Silicon aluminium				


Visual Indicator									
ltem	Component	Material							
17	Indicator cover	Polycarbonate							
18	Indicator	Polypropylene							


Note: The visual indicator is an optional extra on the ECX

ECX ACTUATORS

ECX (SO and DA)

There are seven models in the ECX range, split into three modes of operation: Spring Close (SC), Spring Open (SO) and Double Acting (DA).

For all the SC versions, five different spring packs are available (eg. F1 to F5). The number denotes the strength of the spring pack, 1 being the weakest and 5 the strongest.

H - Actuator HeightD - Actuator Diameter/Width

The following table shows the maximum height and the diameter of the actuator from the centre of the valve flange or pipeline.

Dimensions & Volume

	H - Height (mm)							D - D		Head Volume		
	Model	DN65	DN80	DN100	DN125	DN150	DN65	DN80	DN100	DN125	DN150	(cm ³)
Spring	Models F	363	380	419	-	-	266	266	266	-	-	1940
Spring Close	Models G	411	427	467	-	-	266	266	266	-	-	1940
Close	Models H	-	-	573	586	591	-	-	360	360	360	4320
Spring	Models S	252	268	308	-	-	266	266	266	-	-	2100
Open	Models H	-	-	353	369	371	-	-	360	360	360	5620
	Models S	252	268	308		_	266	266	266			2,125 (Open)
Double	Models 2	232	200	506	-	-	200	200	200	-	-	2,410 (Close)
Acting	Modols H			353	369	371			360	360	360	5,340 (Open)
,	Models H	-	-	222	209	3/1	-	-	500	000	000	5,200 (Close)

			Weight (kg)										
	Model	DN65	DN80	DN100	DN125	DN150							
Continue	Models F1-F3	21.8-29.1	27.2 - 31.8	32.9-35.5		—							
Spring Close	Models G1-G3	23.5 - 35.0	26.2 - 37.7	33.9-41.4		—							
CIUSE	Models H1-H3	—	—	51.8-69.0	54.8-72.0	74.7 - 87.0							
Spring	Models S	12.7	16.3	20.0	—	—							
Open	Models H	—	—	36.8	40.3	48.8							
Double	Models S	12.7	15.5	19.5	—	—							
Acting	Models H	—	—	34.3	37.8	46.0							

Air Connections and Operating Diaphragms

		Models F, G and S	Model H
Operating diaphragm	Natural rubber (Q grade)	VS04069RD1	VX150HxRD1
(catalogue code)	Nitrile rubber (C grade)	VS04069RD2	VX150HxRD2
Air connections (a	1/4″B	SP	

All dimensions are based on unlined bodies.

ACTUATION ACCESSORIES

	Accessories											
Model	Size Range	Valve type	Material	Solenoid	Switchbox	Positioner	Air Filter	Handwheel				
ES	DN15-DN250	A, KB	SiAI ⁽¹⁾	 ✓ 	\checkmark	\checkmark	 ✓ 	\checkmark				
EC	DN8-DN50	A	PES (2)	✓	✓	\checkmark	×	×				
ECX	DN65-DN150	A	SiAl ⁽¹⁾	✓	\checkmark	×	✓	×				

⁽¹⁾SiAl – Silicon-Aluminium

⁽²⁾ PES – Polyethersulfone

🗸 🖌 🗸 🗸 🗸

🗶 Unavailable

007 Switchbox

Modular switch-boxes are available for the ES Modular actuator range. Offering a wide range of both mechanical

and proximity switches as well as other options, i.e. ASi-interface.

Shown mounted to ESM Actuato

ES Positioner

Provides precise control of the flow through the valve. This long life corrosion resistant range suits a wide variety of applications with reliability and accuracy. Available as pneumatic, electro-pneumatic, intrinsically safe and explosion proof, together with a variety of feedback options. A digital option is also available.

For control application using an EC

pneumatic, electropneumatic and

digital inputs with sensor feedback

option and linear mounting design

providing a compact control solution.

actuated valve, Saunders® offers

Opti-SET

Saunders® I-VUE

Economical, compact and lightweight switchbox suitable for the EC actuator. Self setting, which minimizes validation/set-uptime, it is available with mechanical or proximity switches including an intrinsically safe option.

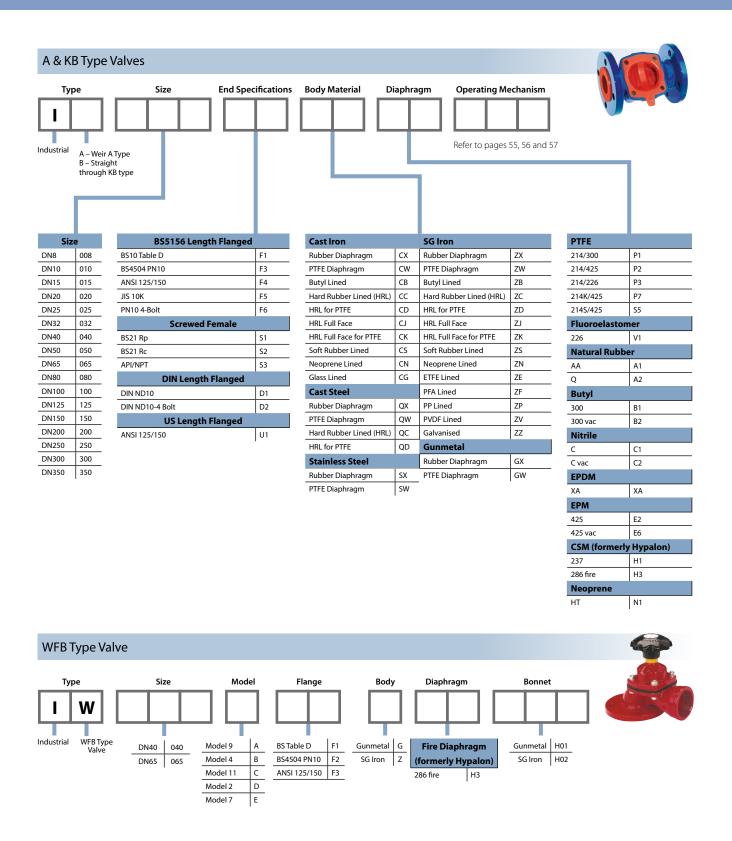
MODULE Switchbox

Mini Positioner

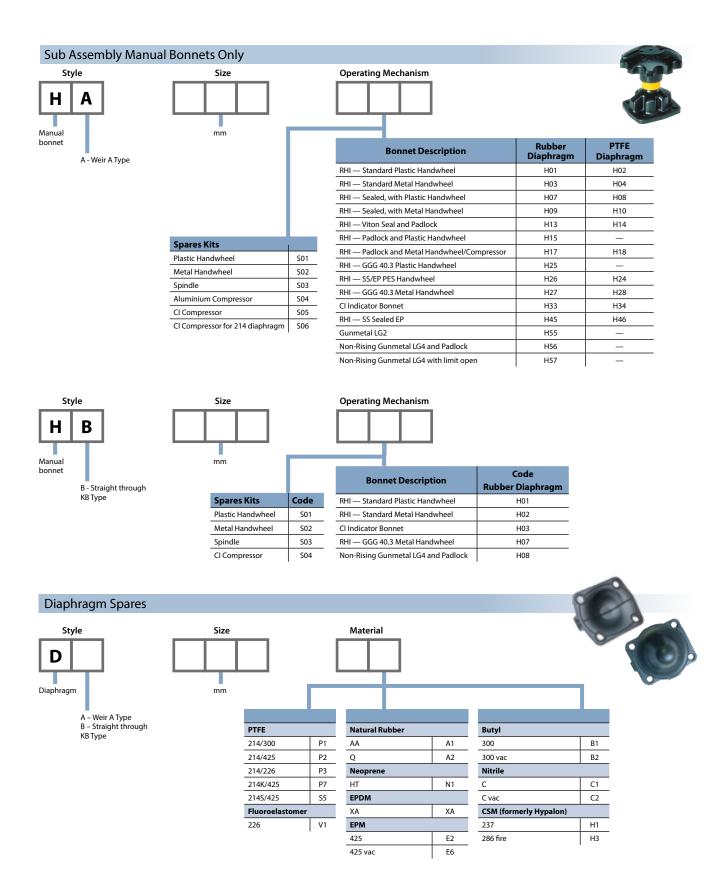
This module switchbox option is available for EC and ECX actuator ranges. The switchbox offers a wide range of mechanical and proximity sensors with space for up to 4 switches, integral solenoid valve and ASi interface (which can be retrofitted).

Solenoid valves

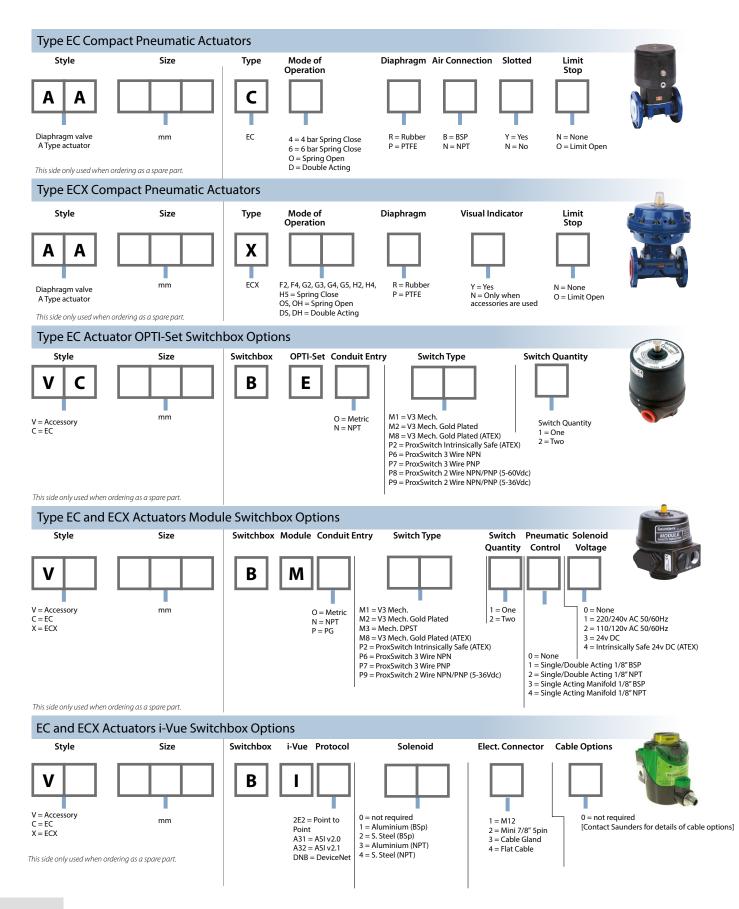
A wide range of locally mounted banjo solenoid valves can be fitted to the Saunders[®] actuator range with a manual override position and various hazardous area classifications. The solenoid range is designed to cover all requirements. Other control options available upon request. Please, contact Saunders[®] for more information

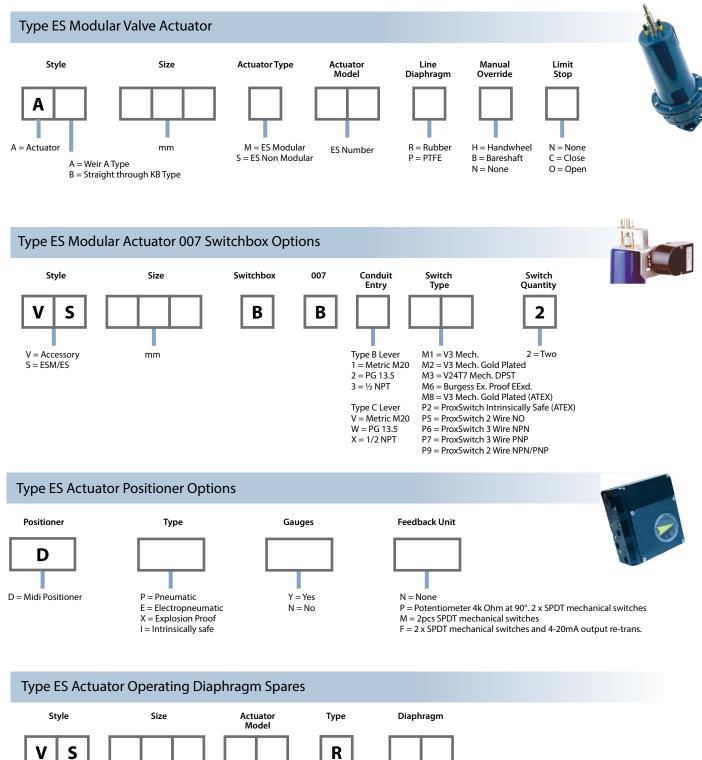


The Saunders[®] I-VUE is a compact intelligent valve sensor that provides accurate and reliable valve position feedback. It is suitable for EC or ECX actuated valves. Key Features and Benefits:


- Available as Point-to-Point or with network capabilities (ASi and DeviceNet)
- Highly accurate electronic sensing technology to continuously monitor valve position.
- Self Setting (without entry) feature that facilitates setting and programming of switch without opening the enclosure.

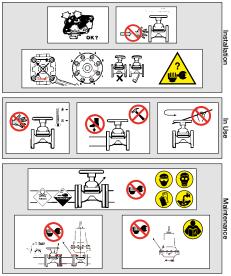
www.cranecpe.com





ESM/ES Number

R = Replacement D1 = Natural Rubber D2 = Nitrile Rubber



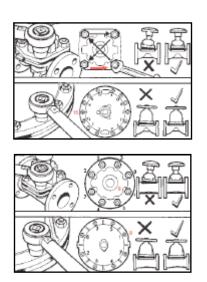
STORAGE, INSTALLATION, OPERATION & MAINTENANCE

Saunders Diaphragm Valves

Key Safety Instructions for Storage, Installation, Operation and Maintenance

Storage

Diaphragms


To achieve a long shelf life, we recommend all spare operating and line diaphragms are stored in bags on wooden shelves, away from direct sunlight and ozone (which can be formed by electrical equipment). Leave diaphragms in the provided Saunders[®] packing until required. To avoid deformation, do not place other articles on top of the diaphragm.

Bodies

Lined bodies supplied as spares will also be fitted with a protective cover across the weir face flange. Keep these protective caps and covers in position until valve/body is installed.

Complete valves

Where possible, store weir type valves (A, and WFB types) in the open position and straight through type valves (K and KB types) in an almost closed position (this retains the line diaphragm in an unstressed position). For power-actuated valves, release spring tension where appropriate. All lined valves are supplied with protective end caps. Special Note: Seal unlined valve ends with paper (especially if stored at ground level on flange face) to reduce the possibility of dirt/moisture ingress.

A leaflet detailing key instructions for safe storage, installation, operation and maintenance is supplied with each Saunders diaphragm valve. An excerpt of such a leaflet is shown above.

Check valve and body/lining for:

- correct material
- physical damage
- correct open/closed function
- cleanliness/ freedom from foreign matter
- diaphragm grade for service suitability
- (or check with Saunders[®] directly if in doubt)
 body/bonnet fastenings for tightness
 (see recommended bolting torques)

Installation

Ensure that the valves are properly aligned and the connecting pipework is adequately supported to prevent undue stress. Installing valves near bends, pumps or misaligned pipework should be avoided. According to manufacturing best practices, the valve should be located a minimum of 6 x D the pipe diameter from any bend or pump. Ensure that the intended service conditions are within the pressure/temperature rating of the valve as stated in our catalogue. Where there is an appropriate application standard or code of practice, it is the responsibility of the purchaser to ensure that equipment is compliant.

STORAGE, INSTALLATION, OPERATION & MAINTENANCE

Centralise the diaphragm as follows:

- Fit diaphragm in its natural position i.e. A types open, KB type – closed
- Mount the bonnet onto the valve body and tighten bolts finger tight.
- Fully close the valve and tighten to 3/4 of final torque value in the correct sequence ensure indent of the first and second lines is the same
- Open valve to allow the diaphragm to regain its natural moulded position i.e. weir types fully open, straight through types two turns from fully closed.
- Fasten to recommended torque in the correct sequence.

Before commissioning, the system must be thoroughly flushed through to remove all traces of foreign matter such as rust, pipescale, beads of welding metal etc., which could cause damage to the valve seating faces. Before putting the valve into service, ensure that the bonnet nuts of all valves are correctly adjusted to provide seal to atmosphere (see torque application table).

During the first 24 hours in service, further adjust the bonnet nuts to follow up any relaxation of the diaphragm.

Use

The mechanical efficiency of the handwheel, spindle threads and other bonnet components of Saunders valves is such that normal manual effort is sufficient to give leak-tight closure against the recommended working pressures.

Never use a wrench or pipe lever on the handwheel for closure

Maximum recommended working pressures are based on the assumption that the operator will have reasonable access to the valve. If the valve will not operate in either the open or closed positions, isolate, drain the system and service. Follow the Saunders[®] guide to speeds of operation, for power actuators. Valve opening load is concentrated on the diaphragm stud which can be loosened by a heavy, instantaneous opening or closing load. For this reason, Saunders[®] do not recommend the use of self-fitted direct solenoid operators. Do not overclose the valve.

Excessive closure forces can reduce diaphragm life. Valves sizes DN200 and above are provided with grease nipples for spindle, spindle nut, and bonnet neck bearing lubrication. Lubricate these valves in the open position. Rising handwheel indicator bonnets have a grease reservoir packed for long life. Lubricate spindle and spindle nut of other non-rising handwheel designs during diaphragm change. Information on recommended lubricants is available from Saunders[®]. Using a special bonnet design complying with the appropriate safety design standards, Saunders[®] can also offer chainwheel operated valves.

Inspection / service / maintenance

Valves should be periodically inspected for corrosion, wear, damage and leakage. This may be performed in line by removal of the bonnet assembly and diaphragm. Cleaning and replacement of the diaphragm, and any damaged part, other than the body, may also be carried out at this time. Full inspection/service/maintenance, including replacement of the body, must be carried out with the valve removed from the line.

Torque Application

This should be carried out at installation or when maintenance is required, using a torque wrench set to the values in the table below. Nuts should be tightened in the correct sequence, as indicated below.

\triangle	For glass lined products, please refer to the appropriate glass lined figures below.
	appropriate glass lined figures below.

	Unlined, Plastic & Rubber lined				Glass Lined Product			
Size (DN)	Weir 4	Type \'	Throug	ight h Type B′	Weir Type 'A'		Straight Through Type ′KB′	
	lbf. ft	Nm	lbf. ft	Nm	lbf. ft	Nm	lbf. ft	Nm
8	2	2						
10	2	3						
15/20	4	5	4	5	3	4	3	4
25	5	6	8	11	3	5	6	8
32	6	8	8	11	4	6	6	8
40	10	13	9	12	7	10	7	9
50	18	25	18	25	14	19	14	19
65	26	35	23	30	19	26	17	23
80	37	50	33	45	28	38	25	34
100	29	40	29	40	22	30	22	30
125	33	45	29	40	25	34	22	30
150	59	80	59	80	44	60	44	60
200	72	98	72	98	55	75	55	75
250	80	109	80	109	61	83	61	83
300	92	124	92	124	69	94	69	94
350	92	124	92	124	69	94	69	94
400	92	124						
450	92	124						
500	92	124						

* The specified ¾ of maximum torque value is a non-critical value used in order to hold the diaphragm in position until the valve is opened and the full torque applied.

A link to an animation depicting the correct diaphragm replacement procedure is available on the Saunders section of the Crane ChemPharma & Energy website.

NOTES

NOTES

India Manufacturing Plant Crane Process Flow Technologies India Pvt Ltd E7 / E8- 2, Old MIDC Satara- PIN Code 415 004, India Tel.: +91 21 62243000 Crane ChemPharma & Energy CRANE Energy Global Headquarters 4526 Research Forest Drive, Suite 400 The Woodlands, Texas 77381 U.S.A. Tel.: +1 936-271-6500 Fax.: +1 936-271-6510 www.cranecpe.com

India Head Office Crane Process Flow Technologies India Pvt Ltd Solitaire, 5th & 6th Floor S. No. 131 / 1+2, ITI Road Aundh, Pune - 411007 Tel.: +91 20 71207120

Sydney, Australia, Operations 146–154 Dunheved Circuit St. Mary's, N.S.W. 2760 Australia Tel.: + 61 (2) 9623-0234 Fax.: + 61 (2) 9673-3870

Düsseldorf, GmbH, Operations Crane Process Flow Technology, GmbH Heerdter Lohweg 63-71, D-40549 Düsseldorf, Germany Tel.: +49 211-59-56-0 Fax.: +49 211-59-56-111 Flowseal Customer Service 9860 Johnson Road Montgomery, Texas 77316 Tel.: +1 936-588-8380 Fax.: +1 936-588-8381

Crane Co., and its subsidiaries cannot accept responsibility for possible errors in catalogues, brochures, other printed materials, and website information. Crane Co. reserves the right to alter its products without notice, including products already on order provided that such alteration can be made without changes being necessary in specifications already agreed. All trademarks in this material are property of the Crane Co. or its subsidiaries. The Crane and Crane brands logotype, in alphabetical order, (ALOYCO[®], CENTER LINE[®], COMPAC-NOZ[®], CRANE[®], DEPA[®], DUO-CHEK[®], ELRO[®], FLOWSEAL[®], JENKINS[®], KROMBACH[®], NOZ-CHEK[®], PACIFIC VALVES[®], RESISTOFLEX[®], REVO[®], SAUNDERS[®], STOCKHAM[®], TRIANGLE[®], UNI-CHEK[®], WTA[®], and XOMOX[®]) are registered trademarks of Crane Co. All rights reserved.