Anderson Greenwood Instrumentation Keyblok - Interlock Manifold

A double block and bleed valve offering unique solutions to High Integrity Pressure Protection Systems (HIPPS) and Safe Plant Shut-Down Systems applications for isolation and calibration of instrumented equipment

General Application

Suitable for use in instrumented pressure protection systems requiring SIL3 capabilities and where full flow relief proves impractical. Process to instrument isolation with controlled operation of isolation and vent functions for operator and system safety

TECHNICAL DATA

Materials

Stainless steel, LT carbon steel, duplex, Inconel®

Sizes:

Inlet: 1" to 2" (DN 25 to 50) **Outlet:** 1/2" (DN 15)

Connections: Transition plate x threaded; Flanged x threaded

Pressure and temperature ratings:

Valve pressure ratings in accordance with ASME B16.5/API 6A (as applicable)

PEEK seats:

400°F (204°C) max

Minimum temperature rating:

-70°F to (-57°C)

Features

- Compact and ergonomic single-piece body design reduces installation cost due to reduced weight and smaller envelope space than alternative designs.
- Unique single key interlock system provides enhanced safety with reduced chance of error.
- Easy to identify actuation position increases safety in process operations by visual confirmation of valve position.
- Application flexibility increases cost savings by utilizing only specification required valve(s) compared to alternative designs.
- Flexibility of design through a single design style provides a cost effective solution for single or multiple pressure tap points.
- Sequenced valve operation.
- PEEK seats (ANSI Classes 150 and 2500).
- Proximity switch (SIL3, ExII 1G Exia IIC T6) plus bracket.
- Compliant with Pressure Equipment Directive.
- Body material certified to EN10204 3.1.

TESCOM

Anderson Greenwood Instrumentation Keyblok - Interlock Manifold

Overview

The Keyblok interlock manifold's simple, single step key operation and quarter-turn positive visible indication provides a safer manifold for HIPPS applications.

It represents the ultimate solution in a range of compact, single-piece, forged-body assemblies, featuring a choice of end connections and mounting styles.

Interlock DBB valve assemblies are designed to comply with the following code requirements:

- ASME B16.34 Material wall thickness
- ASME VIII, DIV 1 Design procedures and materials
- ASME B1.20.1 National Pipe Threads
- Compliant to IEC 61508.2010 and IEC 61511:2003

SIL compliance

The Keyblok interlock manifold is suitable for use in SIL3 and above applications. Manifold arrangements: HFT0 = SIL3; HFT1 = SIL4; HFT2 = SIL4.

Safety Function:

The valves within the HIPPS manifold will be open allowing the end device to read the process pressure.

Summary of Clauses, IEC 61 2/7.4.2 and 2/7.4.4	508	HIPPS Manifold PTI = 1 year	HIPPS ManifoldHIPPS ManifoldPTI = 5 yearsPTI = 8 years		Verdict		
Architectural constraints		HFT = 0	HFT = 0	HFT = 0 HFT = 0			
Safe Failure Fraction (SFF)		92%	92% 92%		SIL 3		
Random hardware failures: [h-1] (dangerous)	λ DD λ DU	1.94E-07 2.67E-08	1.94E-07 2.67E-08				
Random hardware failures: [h-1] (safe)	λ SD λ SU	0.00E+00 1.20E-07	0.00E+00 1.20E-07	00.0E+00 1.20E-07			
Diagnostic coverage (DC)		89%	89%	89%			
PFD @ PTI MTTR = 8 Hrs[1]		1.19E-04	5.87E-04	9.38E-04	SIL 3		
Risk Reduction factor (RRF)		8417	1704 1066				
Hardware safety integrity co	mpliance	2]	Route 1H				
Systematic safety integrity co	ompliance	[3]	Route 1s				
Systematic Capability[3] (SC1, SC	2, SC3, SC4)		SC3				
Overall RRF			RRF = 1066 & 8 yrs which meets SIL 3				

	Type A Subsystem						
Sate Failure Fraction (SFF)	Hardware Fault Tolerance						
	0	1	2				
90% - < 99%	SIL3	SIL4	SIL4				
≤ 99%	SIL3	SIL4	SIL4				

NOTES

1. Table from IEC61508-2 2010

2. Hardware Fault Tolerance = HFT

- HFT: 0 = 1 out of 1
 - 1 = 1 out of 2

2 = 2 out of 3

TESCOM

Anderson Greenwood Instrumentation Keyblok - Interlock Manifold

Materials of Construction

	Standard	Options available
Body	Stainless steel (ASTM A182 F316)	LT carbon steel (ASTM A350 LF2)
		Duplex (ASTM A182 F51)
		Inconel® 625 (ASTM B564 UNS N06625)
Trim	316 SS (available for all body materials)	Duplex SS UNS S31803 (Duplex F51 body only) Inconel® UNS N06625 (Inconel® body only)
Bolting	ASTM A193 B8M Class 2	

Optional versions

- Compliant to NACE MR0175.
- Master key per manifold set.
- Enclosure protection designed and fitted solutions can be provided to meet with customer requirements.

Testing

All valves are tested in accordance with API 598 as standard.

Ball valve technical specifications

The Keyblok interlock DBB valve features our high performance ball valve design for reliable performance and bubble-tight isolation. The isolation and vent functions are achieved with our 10 mm (3/8") bore ball valve which has a floating pattern, through bore - fully roddable, anti-static design.

- Precision machined solid ball and seats to provide effective isolation and repeatability, with a low operating force.
- Anti-blow out stem design.
- Valve design provides cavity relief and uni-directional flow.
- Fire-safe design and tested to API 607.
- Pressure rating up to 10,000 psig (680 barg).
- Temperature range -70°F to +400°F (- 57°C to +204°C).
- Soft seat PEEK.
- One piece stem design.
- Graphite fire-safe seal.
- 316 SS lever handle.
- T-ball vent valve.
- Cam handle anti-tamper system.

Quarter-turn ball valve for isolation and T-ball vent

Anderson Greenwood Instrumentation Keyblok - Interlock Manifold

Installation Variants

DBB valve - The Keyblok interlock manifold is available in two designs to provide the ideal solution in accommodating different installation practices.

H64T style - Transition plate version for multiinstruments on single tapping point.

H64F style - Flanged version for instrument on individual tapping point.

Product Configurations^[1]

Single transmitter assembly - for individual tapping connections

H64F style

Individual pressure tapping arrangement HFT0 = SIL3

Arrangement of three transmitters on individual tappings HFT2 = SIL4

NOTE

1. It is important that any device (instrument) connected to the outlet of the manifold must be SIL3 or greater to maintain SIL compliance.

Anderson Greenwood Instrumentation Keyblok - Interlock Manifold

Multiple Transmitter Assemblies - for instrument redundancy applications

H64T_TP*2 style

1002 (one out of two) arrangement HFT1 = SIL4

H64T_TP*3 style

2003 (two out of three) arrangement HFT2 = SIL4

Option: Instrument enclosure for protection of assembly

H64T_TP** Enclosure style

Where environmental conditions require the manifold DBB assembly to be protected, we can provide design and supply to fit the manifold system into our instrument enclosure range to satisfy the installation specification.

NOTE

1. It is important that any device (instrument) connected to the outlet of the manifold must be SIL2 or greater to maintain SIL compliance.

Anderson Greenwood Instrumentation Keyblok - Interlock Manifold

Selection Guide

	H64T	E		S		S	-081A			۹.		
	BASIC SERIES	BALL VALVE SEAT MATERIAL		VALVE BODY MATERIAL		TRIM MATERIAL ^[4]	STANDARD INLET CONNECTI			ECTION		
Ba	ll valve type isolate											
H64T	Transition plate x threaded - double block and bleed interlock	e peek	s	Stainless steel (A182 F316)	s	316 SS	08	1"	1	RF	A	ANSI CL150
H64F	Flanged x threaded - double block and bleed interlock		L	LT carbon steel (A350 LF2)	D	Duplex stainless steel UNS S31803	12	1 1/2"	3	RTJ	J	ANSI CL300
			D	Duplex stainless steel (A182 F51	N	Inconel [®] 625. UNS N06625	16	2"	4	BX(AP)	к	ANSI CL600
			N	Inconel® 625 (B564 UNS N06625)			17	1 13/16"			Р	API 10,000
											т	ANSI CL900
											L	ANSI CL1500
											м	ANSI CL2500

-047B

TPS2

STANDARD OUTLET CONNECTION ^[5]				ONNE	CTION ^[5]	OPTIONS						
04	1/2"	7	Female	В	NPT	TP*2	Transition plate for two DBB assembly $^{\left[1 ight] }$	AL	Low temperature service (-70°F [-57°C])			
		2	Male			TP*3	Transition plate for three DBB assembly ^[1]	SG	(Sour gas) meets the requirements of NACE MR0175/ISO 15156-3 Corrigendum 2 (for Chloride conditions < 50 mg/l [ppm]*) and NACE MR0103-2005			
OPTIONAL OUTLET CONNECTION (H64F STYLE)			ection		* Add material suffix Std 'S' = 316 SS	BD	Bi-directional flow					
08	1"	1	RF	A	ANSI CL150			PV	Plugged vent			
12	11/2"	3	RTJ	1	ANSI CL300			МК	Interlock master key			
16	2"	4	BX(AP)	к	ANSI CL600			ENCL	Instrument enclosure arrangement as per specification			
17	113/16"			Р	API 10,000							

NOTES

- 1. When option TP*2 or 3 are selected, this identifies an assembly arrangement and includes the same number of DBB valve units within the supply.
- Use product configuration H64T coding.
- 2. For sour gas with chloride > 50 mg/l [ppm] consult factory.
- 3. $\mathsf{Inconel}^{\scriptscriptstyle \circledcirc}$ is a registered trademark of the Special Metals Corporation.
- 4. Standard trim combinations:
- S and L Body = S Trim, D Body = D Trim, N = N Trim
- 5. All ASME B1.20.1

