TLV. BALANCED PRESSURE THERMOSTATIC STEAM TRAPS

LV21 DU87662

PMA 6.3 MPaG / 425°C PMO 2.1 MPaG / 235°C

60

SIZE 15

Extremely stro

Pressure resistant capsule

The X-Element responds alternately to internal pressure (pressure of evaporated fill) and external pressure (primary steam pressure). The internal pressure builds up according to the steam or condensate temperature. The temperature can be very high as a result of superheated steam (5.0 MPaG and higher) or the external pressure may decrease suddenly (e.g. when steam is blown off during batch operation) while the internal pressure remains high, resulting in sudden and high stress to the element. To withstand such harsh conditions the element is built of sufficiently thick, high-tensile stainless steel plate.

Diaphragm support 1

Shape of valve supports element

The design of the valve matches the shape of the diaphragm so that the latter is well supported and the

danger of deformation or rupture of the element is eliminated.

SAFETY - "FAIL OPEN" FEATURE

What does "fail open" mean?...

The "fail open" feature means that the valve will open even if the diaphragm (the most delicate part of a thermostatic capsule element) should break. This is an advantage because a valve closed in case of failure allows condensate to accumulate and pose the following problems and hazards:

- 1. Temperature drop in process equipment.
- Interruption of production or deterioration of product quality.
- 3. Water hammer.

...the "fail open" feature minimizes the danger of production losses and safely avoids water hammer in the event of trap failure.

Failure of capsule elements with only one diaphragm (including some bellows elements):

1. When the diaphragm breaks, its fill escapes and the primary pressure P1 builds up in the element above the diaphragm.

2. The internal pressure of the capsule P3 becomes equal to P1 so that the valve closes. P1 = P3 > P2

The closed valve causes condensate to accumulate.

ong capsule element for reliability and safety.

Diaphragm support 2

Case supports diaphragm

The case is designed to completely match the shape of the diaphragm. Therefore, even with excessive internal pressure, the diaphragm is effectively protected from damage.

Safety - "fail open" feature

The unique configuration of multiple diaphragms and a valve with a hole through the center of its plug results in a "fail open" valve position should these parts fail. Condensate will be discharged even after damage to the X-element occurs. Consequently, the process will not be disturbed or interrupted, nor will there be a danger of water hammer due to condensate build-up.

Inline repairable

Inline maintenance of valve and screen is easy with L-Series steam traps. After removing trap cover and spring clip the valve is accessible, while the screen can be reached by removing the screen holder plug.

Rupture of Diaphragm A in the X-Element

The pressure P3 approaches P2 and the valve plug is pushed up by the primary pressure P1 to open the valve.

As long as the primary pressure is maintained, the valve remains in the upper position and the "FAIL OPEN" feature works.

Rupture of Diaphragm B in the X-Element

Even in an extreme case, where the valve plug is severed completely from the lower diaphragm, the condensate can drain through the hole in the valve plug center.

In this "OPEN" failure, the condensate discharge rate is approximately 60% of the maximum discharge rate of the steam trap. When the diaphragm B suffers only a slight

rupture and the valve plug is not severed, the valve stays 100% open for maximum discharge.

Specifications

Model	Size (mm)	Maximum Operating Pressure (MPaG)	Maximum Operating Temperature (°C)	Connection		
L21S		2.1				
L32S	15 20 25	3.2		Screwed		
FL21	15, 20, 25	2.1	See graph	Flanged		
FL32		3.2	Below	. J		
LV21	8, 10, 15	2.1				
LV13L	15 20	1.2	200	Screwed		
LV13N	15, 20	1.3	200			

(1)

			Mat	erial					
No.	Description	L21S L32S	FL21 FL32	LV21	LV13L LV13N				
0	Body	Carbon Steel	Stainless Steel	Stainless Steel	Brass				
0	Cover	Carbon Steel	Carbon Steel	Stainless Steel	Brass				
Θ	X-element		Stainle	ss Steel					
0	Screen	Stainless Steel							
0	Valve Seat		Stainle	ss Steel					

Discharge Capacity

N To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted.

capsule element for reliability and safety.

The capsule element contains a liquid whose saturation temperature is slightly lower than the saturation temperature of water. With rising temperature in the trap, the fill evaporates; the resulting internal pressure expands the diaphragm to close the valve. When the temperature decreases, the fill condenses and the resulting pressure reduction allows the diaphragm to contract and open the valve.

During start up of steam-using equipment while the capsule is still cold, the fill is in liquid state. The internal pressure is lower than the external pressure so that the diaphragm is pushed up to open the valve. Air, gases and condensate are discharged.

VALVE CLOSED

As the condensate temperature approaches steam temperature, the capsule fill boils and evaporates, increasing the internal pressure which expands the diaphragm.

- The valve closes.

When the temperature of the condensate around the element drops due to heat loss to the environment, the fill will cool as well; it condenses and the internal vapour pressure decreases. The diaphragm is lifted up by the higher external pressure.

- The valve opens and discharges condensate again.
- The cycle repeats itself frequently.

TLV. INTERNATIONAL, INC.

Tel: [81]-(0)79-427-1818 E-mail: tlv-japan@tlv.co.jp

881 Nagasuna, Noguchi, Kakogawa, Hyogo 675-8511, JAPAN Fax: [81]-(0)79-425-1167 https://www.tlv.com

Pamphlet M2012 Rev. 12/2019 Specifications subject to change without notice.

Copyright © TLV (O)

TLX. TEMPERATURE CONTROL STEAM TRAPS

With Built-in Scale Removal Function

Maintain the proper temperature of oils and other fluids in supply piping and heating tanks

What is a Temperature Control Steam Trap?

Temperature control steam traps can control the temperature of discharged condensate*. Condensate with temperatures above the adjustable set temperature is held back in the piping, allowing the sensible heat in the condensate to be used for various heating applications.

The temperature control trap is useful for maintaining the fluidity of heavy oils, facilitating fluid pumping and

transportation, preventing chemical or physical changes in the product due to cooling and preventing water from freezing in transportation pipes in cold areas.

* Temperature of the condensate accumulating in the equipment or pipe and the product temperature cannot be set.

Construction

Benefits

- 1. Maintains temperature at preset levels by adjusting the valve closing temperature.
- 2. Saves steam by heating the fluid to the optimum temperature utilizing the sensible heat of condensate.
- 3. No steam leakage.
- 4. Condensate discharge temperature can be adjusted without disconnecting the trap from the piping.
- 5. Initial air and cold condensate can be discharged quickly, with no air binding.
- 6. Scale removal function can eliminate obstructive buildup from the valve seat, even during operation.
- 7. All stainless construction.
- 8. The overexpansion mechanism prevents possible damage to the bimetal from superheated steam.
- 9. Built-in screen ensures trouble-free operation.
- 10. Easy, inline access to internal parts simplifies cleaning and maintenance.
- 11. Can be used as an automatic non-freeze valve.
- 12. Quiet operation.

Operation

At startup, the bimetal element is contracted. The coil spring holds the valve open, quickly discharging the cold air and initial condensate.

When the condensate temperature rises, the bimetal begins to expand. The valve begins to close, allowing less condensate to flow.

When the condensate reaches the preset temperature, the valve shuts tightly, stopping all condensate discharge.

When the condensate temperature drops below the preset level, the element contracts. The coil spring opens the valve, allowing condensate to be discharged. Steps 3 and 4 alternate as condensate temperature changes.

Scale Removal Function

Clogs in the valve seat can be eliminated by simply isolating the trap, no need to remove the trap from the line.

The temperature control steam trap used in tracing lines has a small opening in the valve seat designed to reduce the flow velocity – a functional requirement. However, because of this, the possibility of the valve clogging due to the scale and other buildup is higher than for other traps. The scale removal device enables the elimination of obstructions from the valve seat.

Operating Scale Removal Device

- 1. Using a flat-head screwdriver, turn the adjusting screw. The sharp edge of the valve head shaves off scale and other buildup blocking the valve seat orifice.
- 2. By raising the adjusting screw, steam or condensate blows off the residue. This also cleans the other surfaces on the valve seat.

Overexpansion Mechanism

Adjusting Screw

Cover

Damage to the bimetal is prevented by the overexpansion mechanism.

Temperature control steam traps function through the deflection of bimetals due to rising or falling temperature, allowing the valve to open and close. Due to the possibility of damage to the bimetal following temperature rises when the valve is already on the seat, the LEX3N-TZ employs a coil spring to allow further expansion of the bimetal while the valve is closed: up to 200 °C above the set value.

Temperature Setting

The discharge temperature can be adjusted and set to the desired temperature by simply adjusting the screw on the upper part of the LEX3N-TZ with a flat-head screwdriver.

Increasing the set temperature

Turn the screw:

Counterclockwise

Decreasing the set temperature

Turn the screw: Clockwise

Standard Factory Setting ("0" Position)

The standard "0" position is the position where point (A), the bottom of the adjusting screw slot is even with point (B), the top surface of the cap threads.

LEX3N-TZ : 100 °C at 0.9 MPaG

CAUTION

From "0" on the graph, adjust the screw to the desired temperature

- +: counterclockwise
- : clockwise

LEX3N-TZ Adjustment chart

Clogging due to Scale

After Cleaning

DO NOT REMOVE CAP NUT OR COVER WHILE TRAP IS UNDER PRESSURE. Allow trap body temperature to cool to room temperature before removing cap nut or cover. Failure to do so may result in burns or other injury. READ INSTRUCTION MANUAL CAREFULLY.

Bimetal

Correct Usage of Temperature Control Steam Traps

Examples of Correct Use:

Applications designed to utilize sensible heat of condensate

- **SUITABLE** for steam tracing lines or storage tank coils **ONLY IF** the required product viscosity will be maintained when the condensate is sub-cooled at least 15 °C, even to the point of the condensate having a lower temperature than the product temperature.
- **SUITABLE** for use on instrument enclosures **ONLY IF** the steam or condensate temperature in the enclosures will **NOT** damage the instrument.
- **SUITABLE** for use as an external air vent for TLV steam traps, or as a non-freeze valve for freeze protection of condensate lines.

Examples of Incorrect Use:

Example: Steam tracing on an oil supply pipe

X Applications requiring the rapid removal of condensate or applications designed to use latent heat of steam

- **DO NOT USE** on any application **except** steam tracing lines, storage tank coils, instrument enclosures, steam trap air venting, and freeze protection of condensate lines.
- NOT SUITABLE FOR USE on steam tracing lines or storage tank coils IF the required product viscosity will NOT be maintained when the condensate is sub-cooled at least 15 °C.
- NOT SUITABLE FOR USE on steam tracing lines or storage tank coils IF the heated product will solidify at temperatures of 80 °C or higher. (e.g., asphalt or sulfur).
- NOT SUITABLE FOR USE on steam tracing lines or storage tank coils designed to use only the latent heat of steam to maintain product fluidity at temperatures of 80 °C or less. (e.g., certain heavy oils).

Incorrect use of a temperature control steam trap could lead to significant system problems. Careful consideration is required, bearing the following in mind.

Heating with sensible heat Temperature control

Heating with latent heat

LEX3N-TZ

15 °C below saturated steam temperature

Temperature Setting Range

0.5 0.7 1.0

Operating Pressure (MPaG)

2.0 3.0

4.6

General purpose steam trap

20

150

50 L 0.1

0.2 0.3

Set Temperature (°C

Specifications

Model	Connection	Size (mm)	Maximum Operating Pressure (MPaG)	Minimum Operating Pressure (MPaG)	Maximum Operating Temperature (°C)	Condensate Temperature Setting Range (°C)	Maximum Discharge Capacity** (kg/h)	
	Screwed	10, 15,	4.6	0.1	350	50 - 200*	440	
LEX3N-TZ	Socket Welded	20, 25						
	Flanged	15, 20, 25	-					

1 MPa = 10.197 kg/cm²

* Set temperature should be more than 15°C below the steam saturation temperature; see graph, right ** Actual discharge capacity will vary depending on operating conditions; see specification data sheet (SDS) for details

PRESSURE SHELL CONDITIONS (**NOT** OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG) PMA: 6.3 Maximum Allowable Temperature (°C) TMA: 425

The trap may be installed either horizontally or vertically. However, when installing horizontally, make sure that the trap is installed with the temperature adjusting screw positioned higher than the piping in which the trap is installed. (Upside-down installation is not permissible.)

To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside the specification range. Local regulations may restrict the use of this product to below the conditions quoted.

TLY. INTERNATIONAL, INC.

 881 Nagasuna, Noguchi, Kakogawa, Hyogo 675-8511, JAPAN

 Tel: [81]-(0)79-427-1818
 Fax: [81]-(0)79-425-1167

 E-mail: tlv-japan@tlv.co.jp
 https://www.tlv.com

Manufacturer TLAN, co., LTD. Kakogawa, Japan is approved by LRQA Ltd. to K0 9001/14001

Copyright © TLV (M) Pamphlet M2008 Rev. 8/2020 Specifications subject to change without notice.

Clean Steam Traps LV6 Series SS3-P/SS5-P

Designed for Bio and Clean Steam Applications Clean Steam Trap

All Stainless Steel Construction

Low-quality stainless steel may corrode when exposed to water with even low ionic content. To solve this problem, the LV6 series uses AISI316L, and the SS3-P/SS5-P body and cover are made of A351 Gr. CF3M with an SUS316L float.

Prevents Condensate Accumulation

- Smooth, virtually crevice-free interior allows for complete condensate drainage.
- The SS3-P/SS5-P has a small drain hole to prevent condensate pooling.

Drain Hole

3-piece

clamp

LV6 Series

SS3-P

Easy Disassembly and Cleaning

- Consists of only 5 simple components held together by easily removable clamps.
- Clamp pipe connections enable the trap to be easily removed from the pipeline.

Prevents Bacterial Contamination

- Simply constructed clamp has few projections.
- Sanitary highperformance fluorine resin gasket complies with FDA 21 CFR 177, USP Class VI and EN 1935.
- Ferrule clamp joint for clean steam, in accordance with ISO and ASME-BPE (Tri-Clamp compatible) standards, is used for connection to piping. Tube end connections are also available.

Uniquely designed free-draining X-element* case with large openings allows for complete fluid drainage and easy cleaning. It is electropolished for the LV6-P and the optional LV6-EP.

*LV6-CE is equipped with a standard X-element. ■ The SS3-P and SS5-P free floats have an internal 0.8µm Ra buff polish.

(The optional SS3-EP and SS5-EP have a 0.4μm Ra buff and electro-polish [internal and external])

Thermostatic Clean Steam Trap Compact LV6 Series

What is the X-element?

A multi-diaphragm valve mechanism filled with a thermoliquid which opens and closes the valve at approximately 6 °C less than saturated steam temperature.

Thermoliquid

Fail-open Safety Mechanism

■ In the event of a damaged diaphragm, the LV6 is not blocked, but remains open, ensuring the operation of the steam using equipment.

Automatic Air Venting

- The LV6 rapidly vents low temperature air and condensate at system start up, therefore reducing overall start-up time and improving productivity.
- In addition to rapid air venting at start up, air at near-to-steam temperature can be almost completely vented during operation, making the LV6 suitable for batch processes.

Free Float Clean Steam Trap Continuous Discharge SS3-P/SS5-P

Continuous Discharge of Condensate

The self-modulating free float automatically adjusts to the level of condensate allowing continuous discharge. There is no condensate backup or accumulation in the equipment.

High Durability and Long Life

The free float with simple construction and only one moving part, without levers or hinges, has less failure. Valve wear is distributed across the entire float surface, greatly improving valve service life.

Suitable for Condensate Recovery

Even with a back pressure of 99% of operating steam pressure, the free float operates without fail. The SS3-P and SS5-P are therefore suitable for condensate recovery in closed systems.

Specifications

SS3-P/

SS5-P

LV6

Model	LV6-CE	LV6-SF	LV6-P	LV6-EP*					
Material		Stainless Ste	el AISI316L						
Connection		Clamp End** / Tube End***							
Size (mm)		15, 20, 25 /	8, 10, 15, 20, 25						
Maximum Operating Pressure (MPaG) PMO		0.	.6						
Minimum Operating Pressure (MPaG)	0.01								
Maximum Back Pressure	90% of Inlet Pressure								
Maximum Operating Temperature (°C) TMO		16	55						
Maximum Discharge Capacity (kg/h)		77	70						
Subcooling of X-element Fill (°C)		Up	to 6						
X-element type (for Clean Steam Traps)	Standard	Free-draining	Free-draining (E	lectro-polished)					
Clamp Type	2-piece Clamp (Buff-polished) 3-piece Clamp (Buff-poli								
Finishing (Internal/External)	Natural Machining	0.8 μm Ra / 1.2 μm Ra Fine Machining	0.8 μm Ra / 1.2 μm Ra Buff-polished	0.4µm Ra Electro-polished					
1 MPa - 10 197 kg/cm									

* Option ** ISO 2852, ASME-BPE (Tri-Clamp compatible), other standards available. 1 MPa = 10.197 kg/cm⁻ *** ISO 1127, other standards available

PRESSURE SHELL DESIGN CONDITIONS (**NOT** OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG) PMA : 1.0 Maximum Allowable Temperature (°C) TMA : 185

Specifications

Model		SS3-E*	SS3-P	SS3-EP*	SS5-P	SS5-EP*		
Material			Body: Cast St Float: Stainle	ainless Steel A3 ss Steel SUS31	351 Gr.CF3M 6L (AISI316L)			
Connection				Clamp End**	ŕ			
Size (mm)			15, 20		25,	38		
Maximum Operating Pressu	ure (MPaG) PMO	0.6						
Maximum Differential Press	ure (MPa) △PMX	0.6						
Maximum Operating Temp	erature (°C) TMO	165						
Maximum Discharge Capac	ity (kg/h)		155		53	30		
Finishing***	Internal	25µm Ra	0.8µm Ra Buff-polished	Buff-polished then	0.8µm Ra Buff-polished	Buff-polished then		
Finishing	External	Electro-polished	25µm Ra Electro-polished	Electro-polished	Bead blasted and Electro-polished	Electro-polished		

* Option ** ISO 2852, ASME-BPE (Tri-Clamp compatible) *** Treated base surfaces are lost-wax casted 1 MPa = 10.197 kg/cm² PRESSURE SHELL DESIGN CONDITIONS (**NOT** OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG) PMA : 1.0 Maximum Allowable Temperature (°C) TMA : 185

To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted.

Full product details (sizes, pressures, capacities and materials, etc.) are included in the individual specification data sheets (SDS).

TLV Stainless Steel Product Series

Steam	Traps	PowerTrap	Pressure Rec	ducing Valves	Separator Filters	Separators					
SSIN	بینی ۲-25L			Clean PRV							
SS3N	JH7RM-P	GP10	COS DR20	DR8-P	SF1	DC7					
Valves	Flowmeters	Air \	Air Vents		Check Valves	Strainers					
		VS1C	Clean Air Vent		CKF3M	N.S.					
BV1	EF200	LA21	VS3-P	SS1VG	СКЗ	Y3					
Contact TLV for	Contact TLX for more information on these and other stainless steel products.										

TLV. INTERNATIONAL, INC.

 881 Nagasuna, Noguchi, Kakogawa, Hyogo 675-8511, JAPAN

 Tel: [81]-(0)79-427-1818
 Fax: [81]-(0)79-425-1167

 E-mail: tlv-japan@tlv.co.jp
 http://www.tlv.com

Manufacturer TLN, co., LTD. Kakogawa, Japan is approved by LRIA Ltd. to K0 9001/14001

Pamphlet M2088 Rev. 2/2017 Specifications subject to change without notice.

Shorten Start-up and Batch Cycles;

One of the most effective ways to improve productivity and reduce costs of steam equipment operation is to automate the systems that control processes — from steam supply to condensate discharge. The MBT3N (motorized) and BT3N (hand-operated) bypass blowdown steam traps increase efficiency of production equipment.

FEATURES

Condensate, air, steam and cooling water blowdown operations are automated (motorized), resulting in increased equipment productivity and cost reductions.

The MBT3N, in combination with an MC-COS automatic multi-control valve or various types of sensors, permits automation of the rapid blowdown in a variety of situations, such as when heating patterns for the equipment are changed.

3 Use of a unique "freefloat" trap increases the flow.

The highly durable "freefloat" trap enables continuous condensate discharge, and the 3-point seating design ensures sealtight shutoff even under no-load conditions. The bimetal allows the automatic discharge of air even during normal operation.

2 Use of a special tightsealing ball valve as the bypass valve.

A 10mm ball valve ensures immediate response for blowdown operations. Features easy confirmation of whether the valve is open or closed.

4 Built-in strainer allows blowdown of rust and scale.

Rust, scale and other impurities which have collected in the strainer will be flushed to the secondary side when the bypass valve is open.

OPERATION

At start-up, the bypass blowdown valve can be opened to allow a large quantity of condensate to be rapidly discharged, minimizing the time required for the unit to warm up. The bimetal holds the float away from the orifice so that initial air in the trap chamber is also discharged.

After the blowdown operation ends, the bimetal strip retracts and the valve closes, the float automatically adjusts the valve opening in response to the fluctuation in load, and the condensate is continuously discharged — no condensate will accumulate ahead of the steam trap.

When the amount of condensate flowing into the chamber decreases, the float gradually closes the orifice. Steam leakage is prevented through the use of a 3-point seating design and the water sealing of the valve. Normally the bimetal remains retracted and has no effect on the operation of the float, but if air should accumulate in the trap and the temperature drops, it extends, forcing the float up and the air is automatically vented.

-2-

Systemize Bypass Blowdown

CONSTRUCTION

APPLICATION

TO REDUCE START-UP TIME For multi-platen presses, roll heaters.

Automates the discharge of large quantities of condensate during start-up and the flow of cooling water during the cooling process — reducing batch processing times on presses. For garment presses, dryers, double boilers.

Allows quick-start of the blowdown operation to discharge large quantities of condensate from the chamber during start-up, either automatically (MBT3N) or by hand (BT3N) — shortening the time required to start up the unit.

-3-

WIRING • USAGE LIMITS OF MBT3N

WIRING

- AMBIENT TEMPERATURE RANGE AND RECOMMENDED OPERATION CYCLES
- Connect an ON/OFF control switch as follows:

When the control switch is on, the valve will open; when it is off, the valve will close.

- Connect the yellow and brown wires to OPEN/CLOSE indicator lamps.
 If connected to the yellow wire, a pilot lamp will light when the valve is open; if to the brown, a pilot lamp will light when the valve is closed.
- Always be sure the power is OFF before doing any electrical work.

* "Operation cycle" means the interval between the motor stop at the end of one open or close operation and the motor start at the beginning of the next.

1 MPa = 10.197 kg/cm²

As soon as the equipment is turned on, an MBT3N bypass blowdown trap attached to a temperature sensor will start an automatic blowdown to discharge large quantities of condensate from the chamber — shortening the time required to drain the system and eliminating water hammer. blo

The most effective way to increase the number of batch cycles per unit/time is to shorten the start-up and automate a forced rapid blowdown after each cycle.

DISCHARGE CAPACITY

- Differential pressure is the difference between the inlet and outlet pressure of the trap.
- Capacities are based on continuous discharge of condensate 6°C below saturated steam temperature.

SPECIFICATIONS

	Main Unti						
Body material	Cast iron						
Connection	PT,BSPT,NPT						
Size	25 mm						
Orifice No.	5	10					
Operating pressure range	0.01~0.5MPaG	0.01~1.0MPaG					
Maximum operating temperature	I 185°C						

VALVE CAPACITY

When Bypass valve is OPEN

Drive Unit (on MBT3N only)							
Motor model	Reversible motor (condenser run type single-phase induction motor)						
Start-up current	0.52A (100/110V), 0.31A (200/220V)						
Control system	ON-OFF (fully open/fully closed)						
Overload protection	Built-in thermal protector 120±5°C						
Direction of rotation	90° reciprocating						
Open/close time	Approx. 3.5 sec./90° rotation						
Water resistance	Rain-resistant						

DIMENSIONS

1 MPa = 10.197 kg/cm²

-5-

TLV. INTERNATIONAL, INC.

881 Nagasuna, Noguchi-Cho, Kakogawa Hyogo 675-8511, JAPAN Phone: 0794-27-1818 Fax: 0794-25-7033 E-mail: tlv-japan@tlv.co.jp

(D)

Internet World Wide Web URL http://www.tlv.com Pamphlet M2000-5 Rev. 9/2003 Specifications subject to change without notice.

TLV. STEAM PRESSURE REDUCING VALVES COSR-3 COSR-16 COSR-21

Features

- The shock absorbing spherical (SAS) piston maintains the secondary pressure with high accuracy.
- Stable secondary pressure can be maintained, even with fluctuations in primary pressure or flow rate.
- Self-aligning feature allows the piston to move smoothly, resulting in accurate responsive control.
- Internal primary and secondary pressure sensing channels make external sensing line attachments to the valve unnecessary for most applications.
- All key internal parts are made of stainless steel.
- Motorized type (M-COSR) and computerized (MC-COSR) valves are also available.

How It Works

Until upper coil spring (1) is compressed, main valve (2) and pilot valve (3) are closed. Steam enters through passage (A), passes through screen (5) and enters pilot chamber (B).

When secondary pressure is set by tightening adjusting screw (6), upper coil spring (1) is compressed and diaphragm (7) flexes, forcing pilot quide (8) to open pilot valve (3). Steam enters chamber above piston (9), forcing it down. Main valve (2) opens the orifice, providing steam to the secondary side.

Some steam, entering the outlet side, flows through outlet pressure passage (C) into a chamber below the diaphragm (7), and lifts it. The position of pilot valve (3) is then determined by the balance of the upward force on the diaphragm with the downward force of upper coil spring (1). Thus the preset secondary steam pressure itself adjusts the force applied to the piston (9) and the opening of the main valve (2). Secondary pressure remains stable at all times.

Standard Specifications

Model		COS	R-3		COS	SR-16	COSR-21		
Body Material*	Cast Ir	ron	Ductile Cast Iron	Cast	Iron	Ductile Cast Iron	Ductile Cast Iron		
Connection	Scrowood		Flanged	Scrowod		Flanged	Flan	ged	
Connection	Scieweu	ASME	DIN	Scieweu	ASME	DIN	ASME	DIN	
Sizo (mm)	20.25	20		15, 20, 25,	15, 20), 25, 32, 40, 50,	15, 20, 2	5, 32, 40,	
5120 (11111)	20, 25	20,	20, 25, 32, 40, 50		65, 80	, 100, 125**, 150	50, 65,	80, 100	
Max. Operating Pressure (MPaG) PMO	0.3			1.6			2.1		
Max. Operating Temperature (°C) TMO		22	20	220			220		
Primary Pressure Range (MPaG)		0.1 -	- 0.3	0.2 – 1.6			1.35 – 2.1		
Adjustable Pressure Range	0.01 – 0.05 MPaG			Within 10 - 84% of primary pressure but with minimum pressure of 0.03 MPaG			From 0.55 MPaG to 84% of primary pressure		
(all conditions must be met)		-			Differential pressure between 0.07 – 0.85 MPa			Maximum differential pressure 0.85 MPa	
Minimum Adjustable Flow Rate	5% o	f rated	flow rate***	** 5% of rated flow rate*** (65 mm and larger: 10			arger: 10% of rat	ed flow rate***)	
* COSR-3 flanged: cast stainless steel sizes	20, 25, 40,	50 avai	lable on request				1 MPa = 10.19	$7 \text{ kg/cm}^2 = 10 \text{ bar}$	

* COSR-3 flanged: cast stainless steel sizes 20, 25, 40, 50 available on request COSR-16 flanged: cast stainless steel sizes 15 20, 25, 40, 50 (ASME and DIN) and cast steel sizes 65 & 80 (DIN) available on request ** Not available with DIN *** See SDS (Specification Data Sheet) for rated flow rate

PRESSURE SHELL DESIGN CONDITIONS (NOT OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG): PMA: 1.6 (Cast Iron), 2.1 (Ductile Cast Iron) Maximum Allowable Temperature (°C) TMA: 220

CAUTION To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted.

mensions

	_	cosr	R-3/COS	R-16	Screwec	l, Flang	ed				(mm)	cosi	R-21	Flan	ged					(mm)
		Size (DN)	Screwed		ASM	L E Class		DIN2501	н	Hı	Weight** (ka)	Size (DN)	ASME	L Class	- DIN2501	н	Hı	Н	Hı	Weight* (ka)
÷		. ,	RC(PT)	125FF	(150RF)	250RF	(300RF)	PN25/40			1	(= /	150RF	300RF	PN25/40	ASI	ME	D	IN	1
		(15)	175	-	170	—	170	130		205	9.5[8.8]	(15)	161	167	130	105	205		205	11[9]
-		(20)	175	-	182	—	182	150	357	285	11[9.5]	(20)	172	178	150	1405	305	377	305	13[9.7]
		25	190	176	188	180	192	160		282	13[11]	25	181	187	160	422	302		302	15[11]
	Ι	32	220	206	220	220	220	180	205	295*	17[16]	32	212	219	180	457	222	405		19[17]
		40	220	209	220	222	2 224	200	202	302	19[17]	40	215	222	200	457	322	405	522	21[17]
		50	260	247	255	260	261	230	412	315	26[24]	50	254	260	230	490	335	432	335	36[24]
+	-	65	—	362	372	377	378	290			55[50]	65	371	377	290	455	120	E74	422	59[51]
		80	-	365	374	383	384	310	554	411	59[52]	80	374	384	310	1055	450	576	43Z	62[52]
		100	-	124	424	450	450	350	633	449	95[80]	100	434	450	350	768	468	655	470	95[81]
	-	125	—	434	434	456	456	—	055	7-10	119[-]	() No .	ASME	standa	ard exists fo	r duct	ile ca	st iro	n; ma	chined
		150	_	600	600	622	622	480	810	530	205[176]	to fit st	eel fla	nges	vailable but	long	th an	d woi	aht n	221/1/28/

Sizes 15 - 25 mm shown. Configuration of larger sizes differs slightly.

150	_	600	600	622	622	480	810	530	205	
() No ASME standard exists for cast iron; machined to fit steel flanges										
Class 125 FF can connect to 150 RF, 250 RF can connect to 300 RF										
Other standards available, but length and weight may vary										
* Screv	ved ** W	'eight is	for Class	s 300 RF	, [] DĬN I	PN 25/40				

* Weight is for Class 300 RF, [] DIN PN 25/40

881 Nagasuna, Noguchi, Kakogawa, Hyogo 675-8511, JAPAN Tel: [81]-(0)79-427-1818 Fax: [81]-(0)79-425-1167 E-mail: tlv-japan@tlv.co.jp https://www.tlv.com

TLV®

DIRECT-ACTING DR20 PRESSURE REDUCING VALVE A-DR20

Stainless steel construction Pressure reduction ratio of 30:1 Compact (total height 185 mm) Light-weight (1.8 kg*) *25 mm model For steam & air

DR20

A-DR20

More stable secondary pressure than with conventional direct-acting reducing valves!

Features

Stainless Steel Construction

The body is constructed of stainless steel to prevent the problems caused by rust and the resultant build-up of scale.

Pressure Reduction Ratio of 30:1

A single DR20 is capable of reduction to minute pressures normally requiring two-stage pressure reduction.

Superior Flow Characteristics

A more stable secondary pressure than with conventional direct-acting reducing valves is maintained through the use of a flat valve.

Fine Pressures Adjustment

The easy to grip handle, which fits comfortably in the hand, and a small-pitch adjusting screw make it possible to make extremely small adjustments in the secondary pressure. The locknut prevents accidental adjustment.

Easy Maintenance

No special tools are required for maintenance. Disassembly is easily performed with readily available tools.

Reusable Gaskets

All gaskets are made of PTFE.

A-DR20: Improved shut-off sealing for use with air

The main valve is equipped with a soft seat (fluorine rubber) to obtain better sealing with dead-end shut-off capability.

Specifications

DR20

No.	Description	Material	No.	Description	Material	
•	Pody	Cast Stainless	7	Valve Seat	Stainless Steel	
	воцу	Steel	8	Valve Stem	Stainless Steel	
9	Cover	Cast Stainless	9	Bellows	Stainless Steel	
	Cover	Steel	10	Coil Spring	Stainless Steel	
3	Screen	Stainless Steel	1	Locknut	Stainless Steel	
4	Coil Spring	Stainless Steel		Adjustment		
6	Main Valve	Stainless Steel	12	Handle DR20 ⁻ Black	Plastic	
6	Soft Seat	Fluorine Rubber		A-DR20: White		

Model	DR20-2	DR20-6	DR20-10	A-DR20-2	A-DR20-6	A-DR20-10	
Applicable Fluids*		Steam, Air		Air			
Connection			Scre	wed			
Size (mm)			15, 2	0, 25			
Maximum Operating Pressure (MPaG) PMO	1.6			1.0			
Maximum Operating Temperature (°C) TMO	220			100			
Primary Pressure Range (MPaG)	0.2 – 1.6		0.6 – 1.6	0.2 -	- 1.0	0.6 – 1.0	
Adjustable Prossure Paper (MPaG)	0.014** - 0.2 0.18 - 0.6 0.54 - 1.0 0.014** - 0.2 0.18 - 0.6 0.54 - 0.5					0.54 – 0.9	
	Secondary pressure must not exceed 90% of primary pressure						

* Do not use for toxic, flammable, or otherwise hazardous fluids. ** However, not less than 1/30 of primary pressure 1 MPa = 10.197 kg/cm² PRESSURE SHELL DESIGN CONDITIONS (**NOT** OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG) PMA: 2.0

Maximum Allowable Temperature (°C) TMA: 220

For installation in horizontal piping (with adjustment handle facing up)

To avoid abnormal operation, accidents of serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted.

TLV. INTERNATIONAL, INC.

881 Nagasuna, Noguchi, Kakogawa, Hyogo 675-8511, JAPAN Tel: [81]-(0)79-427-1818 Fax: [81]-(0)79-425-1167 E-mail: tlv-japan@tlv.co.jp https://www.tlv.com

Copyright © TLV (O)

Pamphlet M0000-2 Rev. 9/2019 Specifications subject to change without notice.

Construction

Manufacturer

ISO 9001

SF1

SEPARATOR FILTER

TLV®

Cleaner filter for longer... ...utilize the cyclone effect

0' .'e

In regular piping, steam carries large quantities of entrained material. With TLV's Separator Filter, improve heating efficiency and product quality by removing condensate, dirt and scale. Ideal for bio-related industries and other applications requiring high-quality dry steam.

SF1, when fitted with a 0.5 micron filter element, conforms to the recommendations for the production of culinary steam to 3-A Accepted Practice No. 609-03.

Clamp Construction

Ferrule clamp joint facilitates assembly and disassembly.

Cyclone Separator

Sintered Wire Mesh Filter

All Stainless Steel

Body is made of rust-proof CF8 stainless steel.

Washing/Pressure Detection Port Improved steam dryness

No moisture droplets

Condensate, dirt & scale are removed by centrifugal force

Condensate, Dirt & Scale Outlet

Parts with L	JSP/FDA/EN	Standard				
Compliant Materials		USP	FDA	EN		
Filter Gasket	High-performance	Class VI	21 CED 177 1660	1025		
Body Gasket	Fluorine Resin	CIG22 A1	21 CFK 177.1550	1755		
Seal Tape for Plug	Fluorine Resin		21 CFR 177.1615	-		

Time between cleaning & replacement is increased, maintenance cost is reduced

Typical Applications

Sterilizers, steam washers, etc.
 Bio-related steam equipment

Live steam use - food, pharmaceutical Non-hazardous gas applications

Cyclone Separator

Centrifugal Force and Gravity Remove:

■ 98%^{*} of Condensate

Eliminating condensate produces the highest quality steam. * for steam velocity up to 30m/s

Large dirt particles & scale

Preventing major sources of filter blockage from reaching the filter results in a longer service life.

Maintenance cycle is nearly 3 times longer!

Compared to a filter with no separator, the time between required maintenance is improved by nearly 3 times.

5-layer Sintered Wire Mesh Filter

Effective cleaning allows repeated use

The 5-layer sintered wire mesh filter catches small dirt and scale particles on the outside surface of the filtration layer. Compared to sintered metal powder the wire mesh filter is easier to clean resulting in longer durability, and reusability.

Filter Construction

Low Pressure Loss

TLV's sintered wire mesh filters provide a longer maintenance cycle than powder filters of the same rating. Therefore, the decision to use a finer filter rating or a more compact filter becomes easier.

Specifications

Connection	Screwed	Socket Welded	Flanged		
Size (mm)	15, 20, 25, 40, 50				
Maximum Operating Pressure (MPaG) PMO	1.0				
Maximum Operating Temperature (°C) TMO	0 185				
Nominal Filter Rating* (µm)	0.5, 2, 5				
Internal & External Finishing**	Internal & External Finishing** Acid Cleaning (lost-wax cast)				
Ferrule Clamp	Two-piece two-bolt clamp				
Applicable Fluids***	Steam, Air				
* Consult TLV for other available filter ratings			1 MPa = 10.197 kg/cm ²		

* Consult TLV for other available filter ratings

** Optional electro-polishing (lost-wax cast) available on request *** Do not use for toxic, flammable or otherwise hazardous fluids.

PRESSURE SHELL DESIGN CONDITIONS (NOT OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG) PMA: 1.0 Maximum Allowable Temperature (°C) TMA: 185

To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside the specification range. Local regulations may restrict this product to below the conditions quoted.

For explanation purposes only, not intended as installation designs.

TLV: INTERNATIONAL, INC.

Tel: [81]-(0)79-427-1818 E-mail: tlv-japan@tlv.co.jp

881 Nagasuna, Noguchi, Kakogawa, Hyogo 675-8511, JAPAN Fax: [81]-(0)79-425-1167 http://www.tlv.com

Pamphlet M3000 Rev. 2/2018 Specifications subject to change without notice. TLV. PNEUMATIC CONTROL VALVE FOR STEAM PN-COS/PN-COSR

M0408-2

Improve Process Steam Control and Steam Quality* NEW *PN-COS only is per BATOR 24 AN TRAP 51 1 SK-25A

PN-COS **5** Functions in 1

Superior Stability

Employing the self adjusting pressure reducing valve COSPECT enables PN-COS to respond instantaneously to any fluctuations in primary pressure and flow rate by automatically absorbing them. So it is capable of maintaining a constant supply of steam at a stable secondary pressure.

Use as a **Control Valve**

Combining with a controller and an electropneumatic transducer enables automatic PID operation. While primarily for pressure control, temperature control, etc. is possible depending on conditions. Because control operation is pneumatic, and the electro-pneumatic transducer can be installed in a separate location, PN-COS can be used in high temperature / humidity environments or hazardous areas.

Use as a Pressure Reducing Valve

With the structure of a pilot operated pressure reducing valve, PN-COS can be combined with an air regulator* to set secondary pressure remotely. Also, two point pressure setting is possible using motive air and the internal Adjustment Screw. Steam supply will be maintained even with motive air cut off. * with relief

Control

Valve

PN-COSR

Automatic PID Control System (as Control Valve) 2 Point Pressure Switching (As PRV) Air Regulatoi Air Regulator Pressure Transmitter 3-way solenoid valve (with relief) Controlle a Electro-Pneumatic Transducer PN-COS-16 ON/OFF Switch PN-COS-16 (For explanation purposes only, not intended as installation designs.)

Pressure

Reducing

Valve

Dual

Functions

3 Features Improving Steam Quality

Separator

Pressure

Reducing

Valve

Steam

Trap

Strainer

Control

Valve

Strainer

Motive Air

A 100 mesh screen captures large rust and scale particles. Trouble-causing foreign matter is not allowed to penetrate into the interior of the control valve or the steam using equipment.

Cyclone Separator

An SCE* Separator with 98% separation efficiency removes entrained condensate and small particles of scale, to deliver dry steam. * Super Cyclonical Effects

%		(Accura	acy: ±2%	; Cond	ensatior	n: 40 - 50) kg/h)
ate	100						
atio R	98						
ior	96						
at de	07						
5 Cor	90						
s s			1	0	2	0	30
			Steam I	-low Ve	locity (m	n/sec)	

 $\frac{\text{Separation}}{\text{Rate}(\%)} = \frac{\text{quantity of condensate discharged}}{\text{quantity of incoming condensate}} \times 100$

Steam Trap

A built-in free float steam trap continuously discharges the separated condensate and small particles of scale.

Like the PN-COS, the PN-COSR* has the dual functions of a con valve and a pressure reducing valve with a great price to performance value, ideal for applications where dry steam is alrea being supplied through use of a separator, etc.

* Does not include strainer, separator or steam trap functions

trol	
dy	

cations	Model	Size	Body Material*	Connection	Max. Operating Pressure	Max. Operating Temp.	Primary Pressure Range	Adjustable Pressure Range	Differential Pressure	Minimum Adjustable Flow Rate	Required Motive Air Pressure**
Specifi	PN-COS-16 PN-COSR-16	15,20,25, 40,50	Cast Iron	Flanged	1.6 MPaG	220 °C	0.2 to 1.6 MPaG	Within 10 to 84% of primary pressure but with a minimum pressure of 0.03 MPaG Max. pressure : [Motive air pressure - 0.1] MPaG	0.07 to 0.85 MPa	5% of rated flow rate	[Desired secondary pressure + 0.1] MPaG to 1.6 MPaG
* M	Major internal parts are Stainless Steel. Full product details (capacities, etc.) are included in the specification data sheet (SDS). ** Use only oil free air filtered to 5 µm for motive air supply.										

To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted.

TLV: INTERNATIONAL, INC.

881 Nagasuna, Noguchi, Kakogawa, Hyogo 675-8511, JAPAN Phone: [81]-(0)79-427-1818 Fax: [81]-(0)79-425-1167 E-mail: tlv-japan@tlv.co.jp

ISO 9001/ISO 14001

Pamphlet M0408-2 Rev. 5/2014 Specifications subject to change without notice. **Compact Check Valve**

Why people choose the CK3

Hidden Bestseller \sim The CK3 Series \sim

Spring-Disc Type Fluid flow pressure pushes the disc and opens the valve, but when backflow occurs backflow pressure closes the valve while spring force ensures a tight seal.

Compact with Flexible Installation Orientation

Featuring an attractive slim body, with no protrusions, the CK3 performs well in any installation orientation, facilitating neat piping arrangements.

Superior Sealing and Durability

Employing a spring loaded disc enables valve operation in response to minute differences in pressure while also maintaining a high quality seal.

And all stainless steel construction translates to high durability.

Applications Wa

Fluid backflow prevention Water hammer countermeasures Vacuum break, Pressure release, etc

Suitable for Steam, Water and Air

Three different types of seal (metal, rubber, or PTFE) allow for use with various types of fluids*.

* Do not use for toxic, flammable, or otherwise hazardous fluids.

СКЗМ	Metal Seal (~220°C)
СКЗТ	PTFE Seal (~185°C)
CK3R	Rubber Seal (~90°C)

Supports Diverse Specifications

In addition to standard products, special check valves with body materials: SUS 304, 316L etc, seat materials: FPM/EPR etc, or with a special spring for minimum opening differential pressures from 0.001 to 0.03 MPa, are available on request. Feel free to contact us.

* FPM = Fluorine-Containing Rubber, EPR = Ethylene-Propylene Rubber.

In addition to the CK3 series, we offer an extensive range of products from flange (wafer) types to large size (DN100) types.

Rev. 1/2016 (T)

TLV. Bypass Blow Valve BD800

47%* of customers who perform bypass blowdown have experienced internal leakage of valves.

* Research by TLV CO., LTD.

Periodic maintenance of steam system is followed by blowdown on bypass lines by supplying high pressure steam at start-up. However, globe valves often installed on bypass lines are commonly susceptible to internal leakage as the build-up of dirt and scale and the erosion of valve trim prevent the valve from closing completely. The BD800 was developed to eliminate these problems.

API 598 valve with self-cleaning valve trim, clears scale build-up during operation

Valve construction enables effective scale removal for tight shut-off

When the valve cannot be fully closed due to rust and scale build-up on the valve head or seat, simple and effective in-line scale removal restores steam tight sealing performance.

Scale is scraped off and flushed with steam by valve operation

Spanner

Highly durable materials prevent erosion

Valve stem and seat are constructed from durable materials to prevent erosion.

Valve stem, valve seat and other key parts are replaceable

Parts worn by years of use can be replaced, extending product service life.

Spanner cap is used in place of the valve handle

- Protects valve stem from weather and foreign matter, preventing the valve stem from sticking
- For applications with infrequent valve operation, the spanner cap can be fixed to the body to prevent erroneous operation Fixed to body

as a valve handle

• Maximum Cv Value: 3.5 (US)

Tightening the gland retainer

Applications Bypass or other lines: for blowdown or elimination of steam locking

- Applicable fluids: Steam, water, air
- Material: Stainless steel ASTM A182 F304 • Maximum Operating Pressure PMO: 6.5 MPaG
- Connections: Screwed, socket welded, flanged
- Size: 15, 20, 25 mm
 - Maximum Operating Temperature TMO: 425 °C
 - To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. CAUTION Local regulations may restrict the use of this product to below the conditions quoted.

TLY. INTERNATIONAL, INC.

881 Nagasuna, Noguchi, Kakogawa, Hyogo 675-8511, JAPAN Tel: [81]-(0)79-427-1818 Fax: [81]-(0)79-425-1167 E-mail: tlv-japan@tlv.co.jp https://www.tlv.com

Applicable standards: API 598, ASME B16.34

Copyright C TLV (M)

Pamphlet M4011 Rev. 8/2019 Specifications subject to change without notice.

AR VENTS Rapid Initial Air Vent Automatic Air Vent

TLV®

Free Float for Venting Air

No failure-prone levers or hinges. Only one moving part, the free float, eliminates concentrated wear and provides long, maintenance-free service life.

Rapid Initial Air Vent VAS

VA1/VA3/VA4/VA5 Automatic Air Vent VC2/VC3/VC4

Precision-ground float with three-point seating provides the tightest seal at high water level. **Rapid Initial Air Vent**

- VS1A • Automatic Air Vent
- VS1C

VAS

X-element for Venting Air & Gas from Steam Systems

VA Series

What is the X-element?

VS1A

A multi-diaphragm valve mechanism filled with a thermoliquid which opens and closes the vent at a temperature approximately 22 °C less than saturated steam temperature, allowing the discharge of any air or gas.

/C Series

VS1C

Gas from Liquid Piping

* Do not use for toxic, flammable or otherwise hazardous fluids

Air Vent Class	Medium	Piping Direction	Operating Pressure Range (MPaG)	Maximum Operating Temperature (°C)	Maximum Venting Capacity (ℓ /min)*	Body Material	Model
					180		VAS (20mm)
					500		VAS (40mm)
	Water,		0.01 1.0	100	1400		VA1
Rapid Initial Air Vent	Hot Water	Vertical Piping	0.01 - 1.0	100	3200	Cast Iron	VA3
					5600		VA4
					11000		VA5
	Special Fluids (Non-toxic and Non-flammable)		0.01 – 2.1	150	270	Cast Stainless Steel	VS1A
			0.01 – 0.3	100	5.4	Pros	SA3-3
			0.1 – 1.0	100	9.2	DI G22	SA3-10
0 to to .	Water, Hot Water		0.05 – 0.5		25	Bronze	VC2
Automatic Air Vent		Vertical Piping	0.1 – 0.6	90	90	Carthe	VC3
			0.1 – 1.0		380	Cast Iron	VC4
	Special Fluids		0.01 – 1.0	150	170	Cast Stainless	VS1C-10
	(Non-toxic and Non-flammable)		0.01 – 2.1	150	130	Steel	VS1C-21

* For air at 20 °C under atmospheric pressure. Pressure differential is 0.1 MPa for rapid initial air vents, maximum operating pressure for automatic air vents.

Air Vent Class	Medium	Piping Direction	Operating Pressure Range (MPaG)	Maximum Operating Temperature (°C)	Maximum Venting Capacity (ℓ /min)*	Body Material	Model
Automatic Air Vent	Steam	Angle	0.01 – 1.3	200	1900	Brass	LA13L
		Vertical Piping	0.01 – 2.1	235	2000	Cast Stainless Steel	LA21

* For air at 20 °C under atmospheric pressure.

TLV Air Vents

For Liquid

Rapid Initial Air Vent

VAS / VA Series / VS1A

Used for venting large amounts of initial air or gas at system start-up. Once the valve closes after discharging initial air, it will not open again, even if air accumulates inside the product, until the internal pressure drops to near atmospheric pressure.

If air is expected to accumulate in the piping during operation, use together with an automatic air vent.

Automatic Air Vent

SA3 / VC Series / VS1C

Discharge air or gas automatically as it enters the vent at start-up and during operation. Facilitates drainage of the system by introducing air at system shutdown.

If a large volume of air needs to be discharged at start-up, use together with a rapid initial air vent.

Air Vent Class Selection

System for	Air Vent Class Required				
Air Venting	Rapid Initial Air Vent	Automatic Air Vent			
Water pumps	۲				
Air conditioners, solar water heating systems		1			
Supply water pipe, storage tank	-	-			

For Steam

LA Series

Remove air or gas from steam systems and shorten start-up time. Facilitates drainage of the system by introducing air at system shutdown.

For Liquid

Rapid Initial Air Vent

Water • Hot Water

Features

- Small and compact with simple construction
- Only one moving part, the free float, eliminates concentrate wear and provides long service life
- Precision-ground float and valve seat rubber contact assures seal tightness when vent is closed
- Also functions as a vacuum breaker

Application

- Processes requiring the rapid supply of water
 Water supply pipe, water pump, water tank, etc.
- Note: Once the valve closes it will not open again, even if air accumulates. If air is expected to accumulate, use together with an automatic air vent.

Specifications

Model		VAS			
Connection		Screwed	l (Rc(PT))		
Size (mm)	Inlet	20	40		
5120 (11111)	Outlet	15	25		
Body Mater	ial	Cast Iron	(FC250)		
Maximum Operating Pressure (MPaG) PMO		1.0			
Minimum C Pressure (M	perating PaG)	0.01			
Maximum Operating Temperature (°C) TMO		100			
Maximum Venting Capacity (ខ /min)*		180	500		

PRESSURE SHELL DESIGN CONDITIONS (**NOT** OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG) PMA: 1.6 Maximum Allowable Temperature (°C) TMA: 100

Construction

No.	Part Name	No.	Part Name
1	Body	7	Float Guide
2	Union	8	Snap Ring
3	Cap Nut	9	Union Gasket
4	Valve Seat	10	Valve Seat Gasket
5	Valve Seat Holder	(11)	Nameplate
6	Float		

CAUTION To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range.

VA Series

Features

- Simple construction and trouble free operation
- Only one moving part, the free float, eliminates concentrate wear and provides long service life
- Precision-ground float and valve seat rubber contact assures seal tightness when vent is closed
- Also functions as a vacuum breaker

Application

- Processes requiring the rapid supply of water
 Water supply pipe, water pump, water tank, etc.
- Note: Once the valve closes it will not open again, even if air accumulates. If air is expected to accumulate, use together with an automatic air vent.

Specifications

Model		VA1	VA3	VA4	VA5		
Connection	Inlet	Flanged (ASME 150RF)					
Connection	Outlet	Screwed	Screwed (Rc(PT))		Screwed (Rc(PT)) Flanged (ASME 15		SME 150RF)
Sizo (mm)	Inlet	50	80	100	150		
5120 (11111)	Outlet	20	32	65	100		
Body Materia	ıl		Cast Iron	(FC250)			
Maximum Operating Pressure (MPaG) PMO		1.0					
Minimum Operating Pressure (MPaG)		0.01					
Maximum Operating Temperature (°C) TMO		100					
Maximum Venting Capacity (g /min)*		1 400	3 200	5 600	11 000		

PRESSURE SHELL DESIGN CONDITIONS (**NOT** OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG) PMA: 1.0 Maximum Allowable Temperature (°C) TMA: 150

No.	Part Name	No.	Part Name
1	Body	7	Valve Seat Holder
2	Cover	8	Set Screw
3	Float	9	Float Guide
4	Cover Gasket	10	Snap Ring
5	Cover Bolt	(11)	Nameplate
6	Valve Seat		

Special Fluids (Non-toxic, Non-flammable)

Features

- Achieves the tightest seal with three-point seating
- Works in liquids with low specific gravity ($\rho \ge 0.8$)
- High corrosion resistance due to stainless steel body and fluorine rubber (FPM) valve seat
- Useable with high pressures and temperatures
- Also functions as a vacuum breaker

Application

- Processes requiring rapid supply of special fluids
 Supply pipe, pump, liquid storage tank, etc.
- Note: Once the valve closes it will not open again, even if air accumulates. If air is expected to accumulate, use together with an automatic air vent.

Specifications

Model	VS1A
Connection	Screwed (Rc(PT))
Size (mm)	15, 20, 25
Body Material	Cast Stainless Steel (CF8)
Maximum Operating Pressure (MPaG) PMO	2.1
Minimum Operating Pressure (MPaG)	0.01
Maximum Operating Temperature (°C) TMO	150
Maximum Venting Capacity (ខ /min)*	270

PRESSURE SHELL DESIGN CONDITIONS (NOT OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG) PMA: 2.1 Maximum Allowable Temperature (°C) TMA: 220

No.	Part Name	No.	Part Name
1	Body	7	Cover Bolt
2	Cover	8	Nameplate
3	Float	9	Connector
4	(4) Valve Seat		Screw
5	Valve Seat Gasket	(11)	Spring Washer
6	Cover Gasket	(12)	Plate

For Liquid

Automatic Air Vent

Water • Hot Water

SA3

Features

- Extremely compact size
- Auxiliary valve seat enables maintenance during operation
- Provides a tight seal, even at extremely low pressure (0.01 MPa for SA3 with no.3 orifice)

Application

- Suitable for small and narrow installation spaces
- Suitable for small air conditioning equipment
 - Fan coil, radiator, etc.

Specifications

Model	SA3		
Connection	Screwed (Rc(PT))		
Size (mm)	10, 1	5, 20	
Body Material	Brass (C3771)	
Orifice Number	3	10	
Maximum Operating Pressure (MPaG) PMO	0.3	1.0	
Minimum Operating Pressure (MPaG)	0.01 0.1		
Maximum Operating Temperature (°C) TMO	1(00	
Maximum Venting Capacity (ខ /min)*	5.4	9.2	

PRESSURE SHELL DESIGN CONDITIONS (**NOT** OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG) PMA: 1.0 Maximum Allowable Temperature (°C) TMA: 100

(14)

(15)

(16)

Construction

Features

- Simple construction and trouble free operation
- Only one moving part, the free float, eliminates concentrate wear and provides long service life
- Free float and valve seat with rubber contact assures seal tightness when vent is closed
- Also functions as a vacuum breaker

Application

General use air vent
 Water supply pipe, cooling/heating equipment, etc.

Specifications

Model		VC2	VC3	VC4	
Connection		Screwed (Rc(PT))			
<i>c</i> : <i>i i i</i>	Inlet	15 25		5	
Size (mm)	Outlet		10		
Body Materi	al	Bronze (CAC406)	Cast Iror	n (FC250)	
Maximum Operating Pressure (MPaG) PMO		0.5	0.6	1.0	
Minimum Operating Pressure (MPaG)		0.05	0.1	0.1	
Maximum Operating Temperature (°C) TMO			90		
Maximum Venting Capacity (ខ្ /min)*		25	90	380	

PRESSURE SHELL DESIGN CONDITIONS (**NOT** OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG) PMA: 0.5 (VC2), 0.6 (VC3), 1.0 (VC4) Maximum Allowable Temperature (°C) TMA: 185 (VC2), 220 (VC3), 150 (VC4)

Construction

CAUTION To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range

Worm-drive Clamp

Nameplate

Clamp Screw

Special Fluids (Non-toxic, Non-flammable)

Features

- Achieves the tightest seal with three-point seating
- Works in liquids with low specific gravity ($\rho \ge 0.8$)
- High corrosion resistance due to stainless steel body and fluorine rubber (FPM) valve seat
- Useable with high pressures and temperatures
- Also functions as a vacuum breaker

Application

Maximum Venting

• Suitable for facilities and piping using special fluids • Supply pipe, pump, liquid storage tank, etc.

Specification	S			
Model	VS1C			
Connection	Screwe	d (Rc(PT))		
Size (mm)	15, 2	15, 20, 25		
Body Material	Cast Stainless Steel (CF8)			
Orifice Number	10 21			
Maximum Operating Pressure (MPaG) PMO 1.0		2.1		
Minimum Operating Pressure (MPaG)	0.01			
Maximum Operating Temperature (°C) TMO	150			

Capacity (2/min)* PRESSURE SHELL DESIGN CONDITIONS (NOT OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG) PMA: 2.1 Maximum Allowable Temperature (°C) TMA: 220

170

130

No.	Part Name	No.	Part Name
1	Body	7	Cover Bolt
2	Cover	8	Nameplate
3	Float	9	Connector
4	Valve Seat	10	Screw
5	Valve Seat Gasket	11	Spring Washer
6	Cover Gasket	12	Plate

Features

- Vents hot air up to just 22 °C below saturated steam temperature
- Fail-open mechanism
- High heat resistance
- Compact with large venting capacity

Application

- Batch processes requiring large volume air venting
- Where hot-air locking occurs during operation
 - Double-jacketed kettle, pressing machine, etc.

Specifications

Construction

Model	LA13L	LA21
Connection	Screwed	I (Rc(PT))
Size (mm)	15, 20	15
Body Material	Brass (C3771)	Cast Stainless Steel (CF8)
Maximum Operating Pressure (MPaG) PMO	1.3	2.1
Minimum Operating Pressure (MPaG)	0.01	0.01
Maximum Operating Temperature (°C) TMO	200	235
Maximum Venting Capacity (ខ /min)*	1 900	2 000

PRESSURE SHELL DESIGN CONDITIONS (NOT OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG) PMA: 1.6 (LA13L), 6.3 (LA21) Maximum Allowable Temperature (°C) TMA: 220 (LA13L), 425 (LA21)

LA21

LA13L

No.	Part Name	No.	Part Name
1	Body	5	Screen
2	Cover	6	Nameplate
3	X-element	7	Snap Ring
(4)	Valve Seat	8	Cover Gasket

Application Examples

Note: • Inlet piping with no horizontal portion is recommended for water/air displacement. If there is a horizontal portion, make the pipe diameter of the horizontal portion larger than the vertical portion or make the horizontal portion as short as possible.

• Make sure the inlet piping diameter is at least as large as the product's inlet diameter. For the inlet connection especially for products* with a nominal diameter of 15 mm, use a pipe/fitting, etc. with an inner diameter of at least 16 mm, such as a schedule 40 pipe nipple with a nominal diameter of 15 mm. A smaller pipe may prevent water/air displacement. (*Except SA3)

Operation

For Liquid

Rapid Initial Air Vent

VA Series

Initially, the X-element is open and gas from inside the piping is quickly vented, significantly shortening equipment start-up time.

When steam flows in, the increased temperature causes the X-element to close immediately. If ambient temperature is near steam saturation temperature, the vent will remain closed.

When the temperature of the X-element decreases due to inflowing gas, the X-element contracts opening the vent and allowing further gas discharge.

> ISO 9001 ISO 14001

TLV. INTERNATIONAL, INC.

 881 Nagasuna, Noguchi, Kakogawa, Hyogo 675-8511, JAPAN

 Tel:
 [81]-(0)79-427-1818

 Fax:
 [81]-(0)79-425-1167

 E-mail:
 tlv-japan@tlv.co.jp

 https://www.tlv.com

Manufacturer

Kakogawa, Japan

is approved by LRQA Ltd. to ISO 9001/14001

LV. CO., LTD.

JA·JAHR Series / G8 TATSU2 SS1VG / JAHRG Series

TLV. Free Float Technology

AIR TRAPS For Air

In today's world of automation, compressed air is used in many different industries including high-precision machinery and instrumentation. After air is compressed it is cooled by an after-cooler or in a receiver tank, where condensate is formed from the air as water droplets. This condensate also occurs in compressed air distribution piping, leading to rust and fluctuation in high-precision machinery, as well as causing a reduction in product quality. Air traps protect your equipment and products by discharging condensate automatically.

Long Service Life

The hinge-less lever-less free float has one moving part allowing for simple operation. With infinite sealing surfaces, the free float does not suffer from concentrated wear, maintaining initial performance quality over a long time period.

JA·JAHR Series/G8

Continuous Condensate Discharge

The float adjusts quickly to changes in condensate flow adjusting the valve seat opening, ensuring continuous rapid discharge without condensate backup.

JA·JAHR Series/G8

Rubber Valve Seat for Tight Sealing

The standardized rubber* valve seat allows for tight sealing with the precision ground float.

JA Series*/G8

* JA7.2, JA7.5, JA8 and JAHR Series equip fluorine resin valve seat.

Valve Seat Cleaning Mechanism

Equipped with an external plunger unit, blockage caused by oils and/or scale can be easily eliminated.

JA Series (JA3D/JA3/JA5/JA7)

Discharge High-Viscosity Condensate

With a large (16 mm) orifice, unique intermittent discharge and self-cleaning function, high-viscosity condensate as well as condensate containing dirt/scale can be discharged. Discharges large amounts of condensate (up to approx. 7.4 tons/hour).

TATSU2

for the Highest Reliability

DRAIN TRAPS For Air and Inert Gases*

Like compressed air, after air or other inert gases are compressed they are cooled, and condensate is formed from air or the gas as water droplets. Condensate is the cause of many challenges resulting in rust and freezing in the pipes as well as a reduction in product quality. Drain traps for discharging condensate from both compressed air and inert gases protect your equipment and products by discharging condensate automatically as it forms while maintaining a tight seal. These traps are made with durable steel construction for a long service life.

* Do not use with toxic, flammable or otherwise hazardous gases.

Long Service Life

The hinge-less lever-less free float has one moving part allowing for simple operation. With infinite sealing surfaces, the free float does not suffer from concentrated wear, maintaining initial performance quality over a long time period.

SS1VG Series/JAHRG Series

Continuous Condensate Discharge

The float adjusts quickly to changes in condensate flow adjusting the valve seat opening, ensuring continuous rapid discharge without condensate backup.

SS1VG Series/JAHRG Series

Three Point Seating for Tight Sealing

The high-precision ground float fits securely on the threepoint seating creating a high-quality seal even for metal valve seats comparable to that of rubber.

SS1VG Series/JAHRG Series

Materials for High-Temperature/Pressure

For higher temperature and pressure applications, TLV Drain Traps offer choices in body and valve seat material to meet specific needs. The SS1VG has all-stainless steel construction with a metal valve seat available for high-temperature applications. The JAHRG Series features cast steel bodies for high-pressure applications with tight-sealing provided by a rubber valve seat, or higher temperatures with a metal valve seat.

ressure

SS1VG Series/JAHRG Series

JA·JAHR Series/G8

Pressure-balancing

Line

Sample Application:

Air Main Drip

Air Outlet 🕇

F

Air Inlet

⇒

Features:

- Free float type for continuous condensate discharge.
- Only one moving part, the free float, simplifies operation and provides reliable service.
- Usable for installation in both horizontal and vertical piping (JA3D).
- External valve seat cleaning mechanism easily eliminates blockage (JA3D/JA Series).
- Large orifice to reduce valve seat blockage (JA7/G8).
- Large capacity (Max. 2.5 t/h) and/or high pressure (PMO 4.0 MPaG).

Applications:

Ъ

0

TLV JA3 Air Trap

(with built-in screen)

- Discharge of condensate in air lines (end of piping after receiver tanks, after coolers, etc.).
- Small compressed air lines (JA3D/JA3).

Condensate

Outlet

-

 Lubricated air compressor systems where small amounts of oil get into the condensate (JA7/G8).

JAH8R

AIR TRAPS

JA3D

JA5

Valve-seat Cleaning

Valve-seat Cleaning

As condensate enters the trap, the float rises controlling the size of the valve seat opening. With the valve open, the condensate is continuously discharged.

If a large condensate load enters the trap at once, the float rises to open the valve seat fully, increasing the condensate discharge capacity.

If no condensate enters the trap, the float is fully lowered to close the valve seat. The water level remains above the valve seat, promoting tight sealing.

No.	Part Name
1	Body
2	Cover
3	Float
4	Valve Seat
5	Screen
6	Balancing Plug
7	Plunger

No).	Part Name
1		Body
2	_	Cover
3	_	Float
4	_	Valve Seat
5	-	Strainer
6		Balancing Plug

Model	JA3D	JA3	JAF3	JA5	JAF5	JA7	JA7.2	JA7.5	JA8	G8	JAH7.2R	JAH7.5R	JAH8R
Body Material 1)	ZA	DCI	CI	DCI	DCI	CI	CI	CI	CI	CI	CS	CS	CS
Valve Seat Material 2)	NBR	NBR	NBR	NBR	NBR	NBR	PTFE	PTFE	PTFE	NBR	PTFE	PTFE	PTFE
Connection ³⁾	S	S	F	S	F	F	F	F	F	S	SW, F	SW, F	SW, F
Max. Operating Press. (MPaG)	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.0	4.0	4.0	4.0
Max. Operating Temp. (°C)	100	100	100	100	100	100	150	150	150	100	150	150	150
Min. Condensate Load for Tight Sealing (kg/h)	—	—	_	—	—	—	10	10	20 ⁴⁾ , 15		10	10	20 ⁴⁾ , 15

¹⁾ ZA: Zinc Alloy, DCI: Ductile Cast Iron, CI: Cast Iron, CS: Cast Steel ²⁾ NBR: Nitrile Rubber, PTFE: Fluorine Resin ³⁾ S = Screwed, F = Flanged, SW = Socket Welded ⁴⁾ Orifice No. 2 & 5

3

TATSU2

Sample Application: Receiver Tank

Features:

- Large (16 mm diameter) valve seat for easy discharge of oil, rust and scale.
- Large condensate discharge capacity (approx. 7.4 tons/hour).
- Automatic self-cleaning function during operation keeps the valve seat free of any blockage.

Applications:

- Air piping containing oil, rust or scale.
- Air-using receiver tanks or other equipment with higher viscosity condensate.

TATSU2

Operation

Condensate and oil flow into the trap and accumulate. When the level in the trap body rises to a point where the floats (A) rise and lift the float holder (B), the pilot valve (C) opens with the help of the coil spring (D).

When pilot valve (C) opens, secondary pressure air enters the pressure chamber (E) lowering the piston (F) and opening the main valve (G) to discharge condensate.

While the condensate inside the float cover discharges, the floats (A) fall and cause the pilot valve (C) to close. The pressure in the pressure chamber (E) is released to the outlet and the piston (F) rises to close the main valve (G) after a slight delay to allow the main valve to self-clean during discharge.

0	3 4
	N.
	-0
	6
	8

TATSU2

No.	Part Name
1	Body
2	Cover
3	Float
4	Float Cover
5	Float Holder
6	Piston
7	Main Valve
8	Main Valve Seat
9	Pilot Valve
10	Pilot Valve Seat
1	Balancing Plug
12	Opening Spring

Note: Y Strainer with Blowdown Valve Included

Model	TATSU2
Body Material	Cast Iron
Connection	Screwed
Max. Operating Pressure (MPaG)	1.0
Min. Operating Pressure (MPaG)	0.2
Max. Operating Temperature (°C)	80

SS1VG

DRAIN TRAPS

SS1VG

inree-Point

Sample Application: Receiver Tank

Features:

- High-precision ground free float with three-point seating technology for tight sealing even during low-load conditions.
- Only one moving part, the free float, simplifies operation and provides reliable service.
- All-stainless steel body with long life for vertical installation.
- Small models allow installation even with limited space.

Applications*:

- Discharge of condensate from compressed air or inert gas-using equipment (compressors, etc.)
- Discharge of condensate in compressed air or inert gas lines (end of piping after receiver tanks, aftercoolers, etc.).
- Small capacity compressed air or inert gas lines.
- * Do not use for toxic, flammable or otherwise hazardous gases.

Operation

As condensate enters the trap, the float rises controlling the size of the valve seat opening. With the valve open, the condensate is continuously discharged.

If a large condensate load enters the trap at once, the float rises to open the valve seat fully, increasing the condensate discharge capacity.

If no condensate enters the trap, the float is fully lowered to close the valve seat. The water level remains above the valve seat, promoting tight sealing.

	Part Name						
1	Body						
2	Cover						
3	Float						
4	Orifice (Valve Seat)						
5	Screen						

Model	SS1VG-R	SS1VG-M		
Body Material	Stainless Steel	Stainless Steel		
Valve Seat Material	Fluorine Rubber	Metal		
Connection	Screwed	Screwed		
Max. Operating Pressure (MPaG)	1.0	2.1		
Max. Operating Temperature (°C)	150	220		
Min. Condensate Load for Tight Sealing (kg/h)	0	0.5		

JAH RG Series

DRAIN TRAPS

Sample Application: Main Line with Separator

Features:

- High-precision ground free float with three-point seating technology for tight sealing even during low-load conditions.
- Only one moving part, the free float, simplifies operation and provides reliable service.
- Durable pressure-resistant design.
- Small model allows installation even with limited space (JAH5RG).

Applications*:

- Discharge of condensate from compressed air or inert gas-using equipment (compressors, etc.)
- Discharge of condensate in compressed air or inert gas lines (end of piping after receiver tanks, aftercoolers, etc.).
- Large capacity compressed air or inert gas lines.

* Do not use for toxic, flammable or otherwise hazardous gases.

JAH5RG

Operation

As condensate enters the trap, the float rises controlling the size of the valve seat opening. With the valve open, the condensate is continuously discharged.

If a large condensate load enters the trap at once, the float rises to open the valve seat fully, increasing the condensate discharge capacity.

If no condensate enters the trap, the float is fully lowered to close the valve seat. The water level remains above the valve seat, promoting tight sealing.

No.	Part Name
1	Body
2	Cover
3	Float
4	Orifice (Valve Seat)
5	Screen
6	Balancing Plug

Model	JAH5RG-R	JAH5RG-M	JAH7RG-R	JAH7RG-M	
Body Material	Cast Steel	Cast Steel	Cast Steel	Cast Steel	
Valve Seat Material	Fluorine Rubber	Metal	Fluorine Rubber	Metal	
Connection*	S, SW, F	S, SW, F	SW, F	SW, F	
Max. Operating Pressure (MPaG)	2.2	4.6	4.0	4.6	
Max. Operating Temperature (°C)	150	425	150	425	
Min. Condensate Load for Tight Sealing (kg/h)	0	1	0	5	

* S = Screwed, SW = Socket Welded, F = Flanged

Pressure-balancing Line

Without a pressure-balancing line connected between the trap cover and a dry portion of the piping/receiver tank, air or gas binding can occur. Air or gas binding occurs when vapor in the trap cavity cannot be displaced by the incoming condensate, which prevents condensate from being discharged.

Note: Since the SS1VG is installed vertically, a balancing line is not generally required. However, to prevent air binding, use as short as possible straight and vertical inlet piping with a minimum nominal diameter of 15 mm.

tion Guide

	Applicable Fluids	Model	Connection	Body Material	Piping Direction	Valve Seat Material	Operating Press. Range (MPaG)	Max. Operating Temperature (°C)	Max. Discharge Capacity (kg/h)	Min. Specific Gravity*	Special Feature
		JA3D		Zinc Alloy	Horiz./Vert.	Nitrile Rubber			230		
		JA3	Screwed	Ductile Cast Iron	Horizontal		0.01 - 1.6		275		Plunger
		JAF3	Flanged	Cast Iron							for manual
		JA5	Screwed	Ductile				100	455		valve seat
		JAF5	Flanged	Cast Iron				_			cleaning
		JA7							1620	1.0	
raps		G8	Screwed	Cast Iron	Vertical		0.01 - 1.0		1340		Simple direct passages
Air Tr	Air	JA7.2	- - Flanged	Cast Steel	- Horizontal	PTFE**	0.01 - 1.6	- 150	9410		
		JA7.5							8710		Increased capacity
		JA8							25770		Increased capacity and high
		JAH7.2R							9410		
		JAH7.5R							8710		
		JAH8R							25770		service
		TATSU2	Screwed	Cast Iron	Vertical	Nitrile Rubber	0.2 - 1.0	80	7400		Discharges High- Viscosity Condensate
		SS1VG-R		Cast Stainless	Vertical	Fluorine Rubber	0.01 - 1.0	150	130		All parts are stainless
sc		SS1VG-M	Screwed,	Steel		Metal**	0.01 - 2.1	220	385		steel
ר Trap	Air and	JAH5RG-R	Flanged Flanged Socket Welded,	Cast Steel	Horizontal	Fluorine Rubber	0.01 - 2.2	150	270	0.50	High
Drai	ment Gases	JAH5RG-M				Metal**	0.01 - 4.6	425	560	0.50	
		JAH7RG-R			Honzontai	Fluorine Rubber	0.01 - 4.0	150 1380		service	
		JAH7RG-M	Flaingeu			Metal**	0.01 - 4.6	425	2000		

* Maximum operating pressure, maximum differential pressure and condensate discharge capacity are affected by the specific gravity of the condensate. ** Metal and PTFE valve seats require a minimum condensate load for tight sealing. See individual product pages for details. Do not use for toxic, flammable or otherwise hazardous gases.

Full product details (sizes, connections, pressures, capacities and materials) are included in the individual specification data sheets (SDS).

To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted. CAUTION

TLV: INTERNATIONAL, INC.

881 Nagasuna, Noguchi, Kakogawa, Hyogo 675-8511, JAPAN Phone: [81]-(0)79-427-1818 Fax: [81]-(0)79-425-1167

E-mail: tlv-japan@tlv.co.jp

Internet World Wide Web URL http://www.tlv.com

Pamphlet M3200-2 Rev. 8/2016 Specifications subject to change without notice.