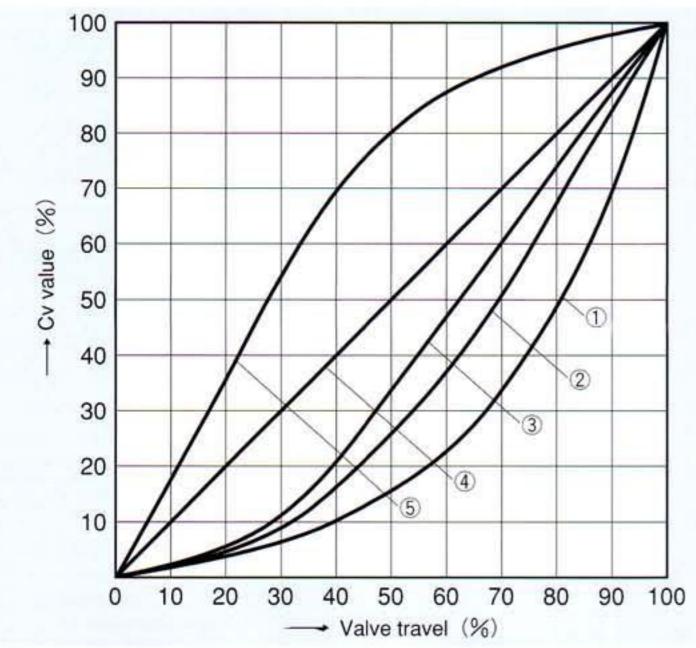


CONTROL **VALVES**


CAT.No.310-6E

INHERENT FLOW CHARACTERISTICS

Inherent flow characteristics of valves are determined by the valve plug configurations or cage port configurations. In selecting a control valve, it is necessary to select a valve flow characteristic most suited to the controlled system. The basic inherent flow characteristics of valves are as shown in Fig. 3A. For valve plug configurations, see the next page.

Fig. 3A Inherent flow characteristics

- ①Equal percentage
- 2Parabolic
- 3 Modified parabolic
- **4**Linear
- ⑤Quick opening

Table 3. 1 Inherent flow characteristics and applications

	Characterstic	Application		
①Equal percentage	As shown in the figure above, when the travel increases by 10%, the theoretical flow rate will be increased by a fixed rate from the previous flow rate.	Valves of this characteristic are used when large pressure drop is feared in the piping system, or when large pressure fluctuation is expected to happen.		
②Parabolic	The flow rate changes in proportion to the square of the travel.	This type is used when the pressure drop of the piping system is to be born mostly by the control valve. Valves of this type are most frequently		
3 Modified parabolic (V -port linear)	This characteristic has a modified from of the parabolic characteristic, The curve becomes almost linear beyond 40% of the travel.	liquid level control.		
(4)Linear	The flow rate changes in proportion to the travel.	This type is used when a linear relationship is required.		
⑤Quick opening	With the increase of the travel from the closed position, the flow rate increases quickly.	This type is used when it is necessary to obtain a quick increase in flow rate from the closed position.		

(Remarks)

- The above-mentioned flow characteristics are theoretical inherent ones. Actual characteristics are slightly different from them.
- The inherent flow characteristics of control valves will be altered, under the actual conditions of use, by the flow rate changes according to the
 proportion of pressure drop due to the control valve and to other items (piping system: stop valve, etc.). The resulting characteristics are called
 effective flow characteristics. In selecting valve flow characteristic, due consideration should be given to this point.

VALVE PLUG AND CAGE CONFIGURATION

Valve plugs are manufactured in various kinds and configurations to meet any kind of specifications. Major samples are snown below.

Fig. 3B Kind and configuration of valve plug and cage

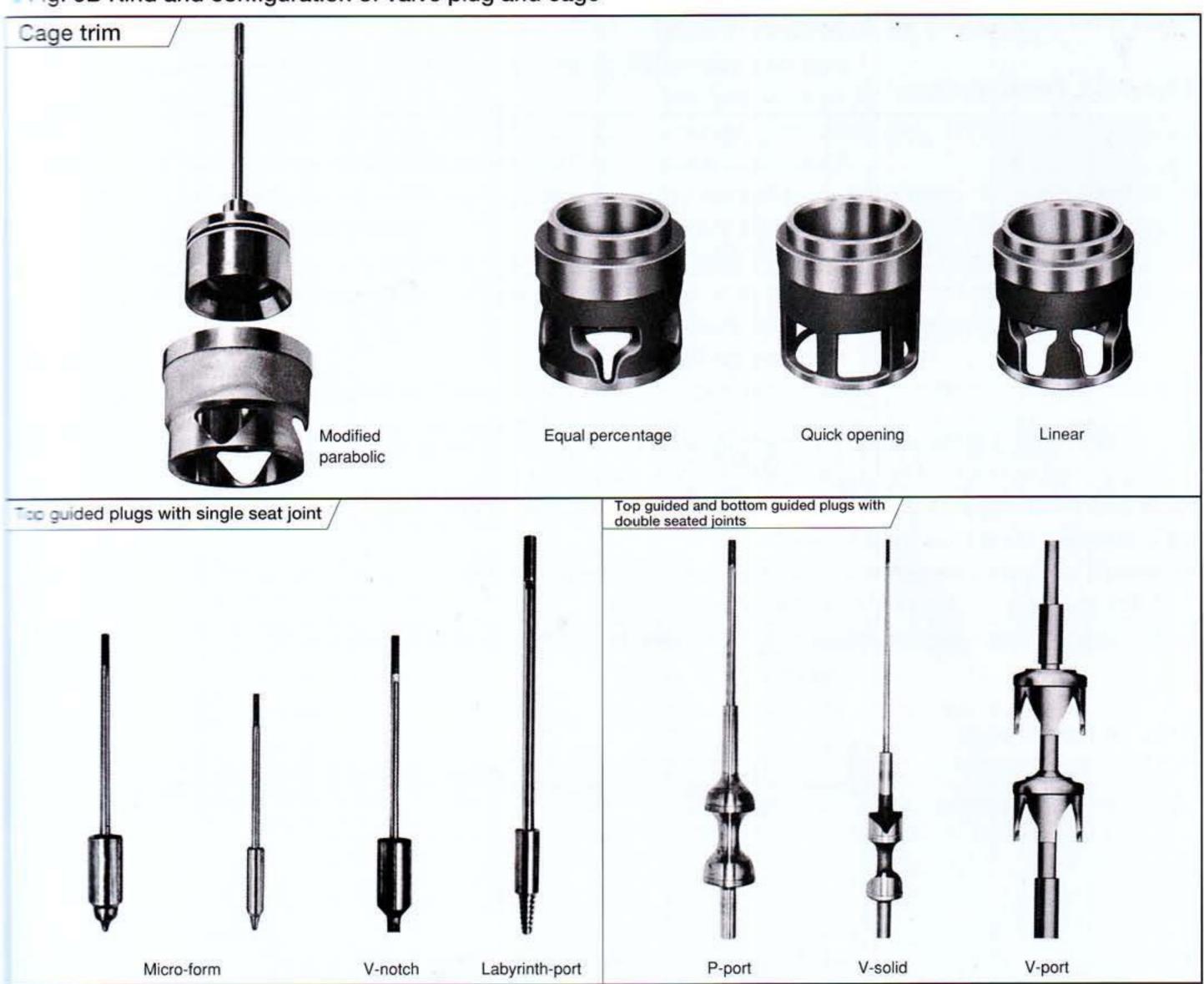


Table 3. 2 Configuration and application of valve plug and cage

Configuration	Application
Cage port	As the unbalanced force on the stem is stabilized through full travel, stable control can be expected even under high differential pressure conditions. This type is used for high-performance purpose in general.
V-solid	These types are used to reduce vibration, nise, wear on guide etc. of the valves under high differential pressure condition, irrespective of the property of fluid, non-compressible or compressible. The available
V-notch	standard valve flow characteristics are equal-percentage and parabolic.
P-port	This type is widely used for general applications. The available standard balve flow characteristics are parabolic and liner.
V-port	This type is used when scale collects and accumulates in the throttle of the plug to hinder proper control. For example, it is used in the drain contorol valve of the feedwater heater of a power plant.
Micro-form	This type is windely used as a general type for ordinary small size valves. The available standard valve flow characteristics are equal-percentage, parebolic and liner.
Labyrinth-port	This type is used in small size valves when the differential pressure of incompressible fluid is high. (For prevention of cavitation erosion.) For example, in water flow control valves of a desuper heater.

PRESSURE-TEMPERATURE RATING

The valve body and bonnet contact the controlled fluid, and varios fluid pressures are exerted on them. These valve body assemblies are generally determined by the pressure-temperature ratings shown in the table on page 63. The ratings of our control valves are as shown in Table 4.1.

Table 4.1 Pressure rating

JIS (K)	5 • 10	16 • 20	30 • 40	63		-
ANSI (Class)	125 • 150	250 • 300	400 · 600	900	1500	2500
IEC (PN-bar)	10 • 16	25 • 40	64 • 100			=

TYPE OF BODY

- The wall thickness of the valve body assembly is determined in accordance with ANSI B16.34.
- The standard connections are JIS and ANSI flanges and weding types.
- The face dimension is based on IEC Standard. For valves of JIS 63^K (ANSI 900) rating and over not specified in IEC standars, our standard is available.
- Materials to be used are generally selected according to the pressure-temperature rating as shown on pages 13 to 18. For special fluids, a variety of materials are available.
- For cryogenic temperature applications, the extension bonnet type is used.

Fig. 4A Type of body

	Cage type	Gereral purpose type	Butterfly type
Body construction			
	DY-CODO	DY-D	8-YG
Rating	JIS 5~63K ANSI 125~2500	JIS 5~63K ANSI 125~1500	JIS 5~20K ANSI 125~150
Nominal bore mm (inch)	32 ~ 300 (11/4~12)	25 ~ 400 (1~6)	80 ~ 1500 (3~60)
Features of body	 Easy replacement of trim components. Various valve pluge can be combined. Unbalance force on the valve stem is small. 	Varied and wide range of application to suit various conditions.	For lange size valves. Compact and economical in companison with glove valves. Simple construction allows easy disassembly and assembly.

THE OF BONNET

The following four types of bonnet configuration are used to suit the purpose of use according to fluid kind and its imperature

Standard type

This type is used when the fluid temperature is in the range from 0 to 220°C.

Fin type

- This type is used when the fluid temperature is 220°C and over. The temperature inside the stuffing box is lowered to protect the gland packing.
- When the fluid temperature is below 0 °C and not lower than -20°C, the fin type shown in Table 4.2 is used.

Extension type

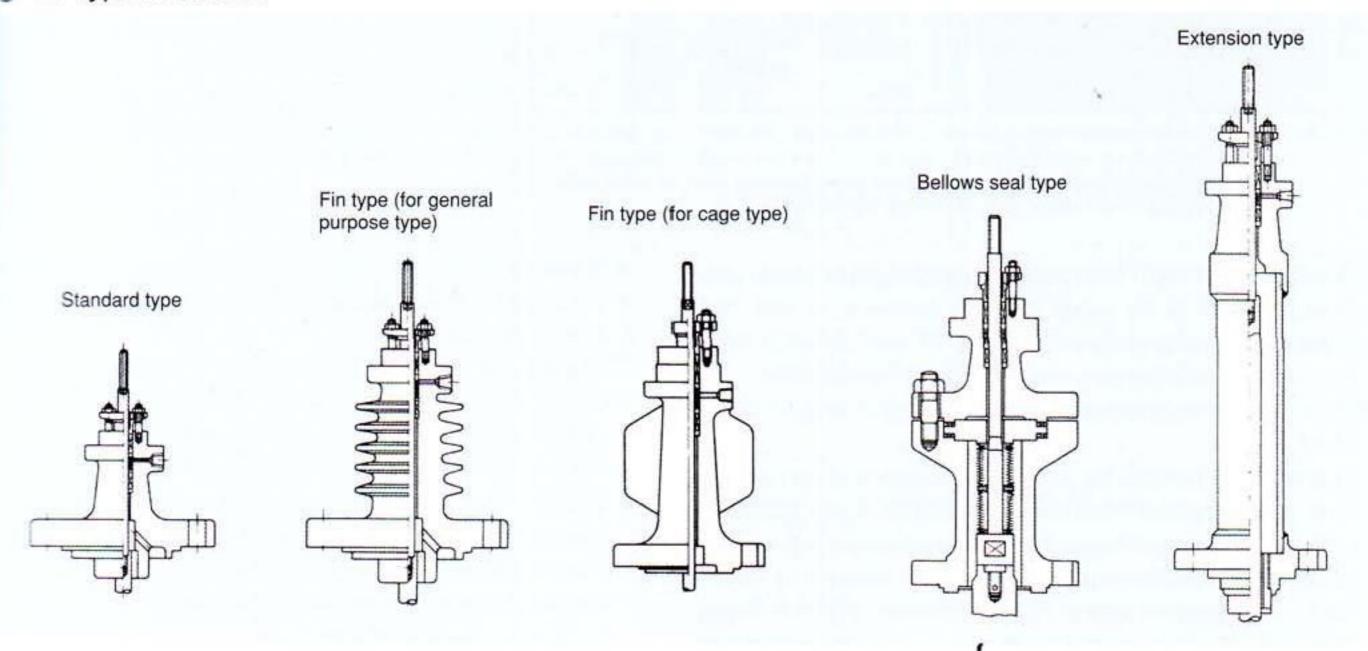
stype is used for low temperature fluids (−268°C superature < −20°C) such as liquid oxygen, LNG and liquid helium. The extension construction where gland paking is separated from the valve body is so as to keep the gland packing temperature at ambient temperature of 0°C and over. The arrangement

prevents the valve stem from freezing.

Bellows seal type

This type is used for fluids which may be ignited, generate explosive and toxic gases, or cause radioactive leakage.

The double construction using the gland packing and bellows prevents dangerous fluids from leaking out of the valve. Bellows are mainly made of austenitic stainless steel or inconel welded construction which guarantees pressure resistance, heat resistance and durability.


Stuffing box type

For both asbestos coil packing and V type PTFE packing, the dimensions of the stuffing boxes and the degree of finishing of the inner surfaces are the same; thus they are interchangeable. For the materials of gland packing, see paga 18.

4.2 Applicable temperature rang of bonnet

Name Standard material		Length of extension (mm)	Application	
Standard type	ard type Cast iron or cast steel − Over 0°C and below 220°C		Over 0°C and below 220°C	
Cast steel — 220°C and over, or −20°C and over and less		220°C and over, or −20°C and over and less than 0°C		
Taranian bas	I	Cast steel	150 and over	-100°C and over and less than -20°C
Extension type II		Stainless steel (sus pipe)	350 and over —268°C and over and less than —100°C	
Bellows seal type Stainless		Stainless steel		For non-leak or when contamination due to fluid (radioactive for example) must be avoided.

Fig. 4B Type of bonnet

MATERIALS OF PRESSURE CONTAINNING PART

The materials the pressure containing part such as valve body and bonnet are selected in conformity with the pressure-temperature ratings of JIS and ANSI (page 63) also with due consideration given to the following condition.

- Applicabe regulations and standards
- · Corrosion resistance against the fluid
- · Flashing fluid, high velocity, large pressure drop jet,

Table 5.1 Service temperature limits of materials

		Mate	erial mark	Servic	Service temperature range (℃)			A 11 11
Mater	ıaı	JIS	ASTM	JIS (B-8270)	High pressure gas contorol act	ANSI (B 16.34)	Main component	Application
Gray cast iron		FC 200	A126 GradeA	0~250 220 and under * 1	0~250	2-2		• 175 W 18 AND
Nodular graphite cast iron		FCD 450	A536 Gr.65-45-12	0~350	0~250	-	Lo	Low pressure
Bronze casting		CAC 403	B 584	-196~225	-196 and over	_		Sea water, cor-
		CAC 406	B 584	-196~225	-196 and over	_		rosion resistance low temperature
Cast		SCPH 2	A216-WCB	-5~450 425 and under * 1	-5 and over	-29~425		l de la constant de l
	Forged	S25C	-	-10~450 425 and under * 1	-10 and over	_		
	Cast	SCPH 11	A217-WC1	-5~550 475 and under * 1	-5 and over	-29~455		High temperature and high pressure
Cast or forged steel	Forged	_	A182-F1		===	-29~455	0.5Mo	
for high temperature	Cast	SCPH 21	A217-WC6	-5~575 510 and under * 1	-5 and over	-29~593*2		
and high pressure	Forged	-	A182-F11	_	-	-29~593*2	1.25Cr-0.5Mo	
service	Cast	SCPH 32	A217-WC9	-5~650	-5 and over	-29~593*2		
	Forged	_	A182-F22	_	-	-29~593*²	2.5Cr-1Mo	
	Cast	SCPH 61	A217-C5	-5~650	-5 and over	-29~650*2		
	Forged	-	A182-F5a	_	_	-29~650*2	5.25Cr-0.5Mo	
		SCS 13A	A351-CF8	-196~800	-196 and over	-29~800*²	400 015	
		SUS 304	_	-253~800	-253 and over		18Cr-8Ni	
		SCS 14A	A351-CF8M	-196~800	-196 and over	-29~800*²	18Cr-12Ni-	Corrosion resist-
Cast or forged	stainless	SUS 316	-	-253~800	-253 and over	_	2.5Mo	ance, high tem-
steel		SCS 16A	A351-CF3M	-196~450	-196 and over	-29~455		perature and high pressure, and
		SUS 316L	-	-268~450	_	-		low temperature
		SCS 19A	A351-CF3	-196~425	-196 and over	-29~425		
		SUS 304L		-268~425	-	_		
		SCPL 1	A352-LCB	−45~350	-45 and over	-		
Cast steel for le temperature ar	The second second	SCPL 11	A352-LC1	− 60~350	-60 and over	_	0.5Mo	Low tomperature
pressure service	AND DESCRIPTION OF THE PARTY OF	SCPL 21	A352-LC2	−70~350	-70 and over	_	2.5Ni	Low temperature
		SCPL 31	A352-LC3	-100~350	-100 and over		3.5Ni	

(Remarks) The service temperature values shown in the table above are those when pressure is not taken into consideration. Determine the service temperature limits corresponding to the service pressure range according to the pressure-temperature rating of the applicable standard.

*1. Indicates the value according to the pressure-temperature rating of JIS B 2238/9 flange type valve.
*2. The upper limit must be 540°C for flange type valves.

- Materials for high temperature and high pressre use
 The materials to be used for high temperature and high
 pressure applications contain Mo, Cr, Ni, or V. Each of these
 elements has excellent properties against high temperature.
- Mo is added so as to increase the creep resistance at high temperature.
- Cr is added to increase the oxidization resistance at high temperature and to impreve the corrosion resistance. It also stabilozes carbide and increases the graphitization resistance at high temperature. (Graphitization extremaly enbrittles materials.) As the corrosion resistance against high temperature steam is largely affected by the Cr content, it is desirable to use a material of high Cr content for high temperature applications.
- Ni strengthens ferrite and improves its impact resistnace value.
- V is added to Cr-Mo alloy steel to increase the creep resistnace at high temperature.
- Materials fow low temperature use

 Ordinary cast iron and carbon steel show sudden drop in toughness (impact valve) below 0°C or cold brettleness.
- When temperature is lowered, ferritic steel shows increased tensile strength. However, its toughness drops suddenly beyond a certain temperature valve. Austenitic stainless steel shows somewhat lower impact valve at low temperature, however, it can be adequately useable even at every low temperature range by stabilizing its structure by means of heat treatment.
- Materials generally used for low temperature applications are cast

ior low temperature and high pressure service, copper and austenitic stainless steel, as shown in Table 5.1.

Miscellaneous

coating to the interior of walve body so as to prevent corrosion due to corrosive sea water, etc.

_____and flashing- resistant materials

incompressible fluid id suddenly depressurized, bubbles be locally generated by the pressure drop just past the throttle walve plug. When these bubbles disappear with the pressure, the impact generated by the disappearing

bubbles will damage nearby material. On theother hand, when the downstream side pressure of the inner throttle is lower than the saturated vapor pressure of the fluid temperature, some portion of the fluid will be evaporeted and vapor and fluid will be present together. Namely, flashing

will happen. This phenomenon may give damages to the valve materials and attack the inner wall of the valve body. NAKAKITA there-fore uses high chrome steel for some low temperature applications. We have technical data obtained by demonstrations on these pointd.

5.2 Demarcasion of the use of valve materials for low temperature service (Extracted from the Ministry of International Trade and Industry Notice No. 350)

JIS No.	Designation	Designation Mark		Lowest service temp. (*C
B 3201	Carbon Steel Forgings	SF	SF440A, SF490	
B 5101	Carbon Steel Castings	SC	All	-5
B 5102	Steel Castings for Welded Structure	SCW	SCW410, SCW480, SCW550, SCW620	
G 5151	Steel Castings for High Temperature and High Pressure Service	SCPH	Confined to SCPH1, SCPH2, SCPH11, SCPH21, SCPH32, SCPH61	
S 4051	Carbon Steel for Machine Structural use	S-C	S10C, S12C, S15C, S17C, S20C, S22C, S28C, S30C	-10
B 3454	Carbon Steel Pipe for Pressure Service	STPG	All	
B 3459	Stainless Steel Pipes	SUS TP	Confined to SUS304HTP, SUS316HTP, SUS321HTP, SUS347HTP	
B 4105	Chromium Molybdenum Steels	SCM	Confined to SCM430, SCM432, SCM435, SCM440, SCM445	-30
B 5121	Stainless Steel Castings	SCS	SCS1	
B 5152	Steel Castings for Low Temperature and High Pressure Service	SCPL	SCPL1	-45
5 5152	Steel Castings for Low Temperature and High Pressure Service	SCPL	SCPL11	-60
B 5152	Steel Castings for Low Temperature and High Pressure Service	SCPL	SCPL21	-80
B 5152	Steel Castings for Low Temperature and High Pressure Servic	SCPL	SCPL31	-100
3460	Steel Pipes for Low Temperature Service	STPL	STPL450	-100
B 3459	Stainless Steel Pipes	SUS TP	Confined to SUS309TP, SUS309STP, SUS310TP, SUS310STP, SUS317TP, SUS321TP, SUS347TB	
G 5121	StainlessSteel Castings	scs	SCS13, SCS13A, SCS14, SCS14A, SCS16, SCS16A, SCS17, SCS18, SCS19, SCS19A, SCS21	- 196
4600	Titanium Sheets, Plates and Strip	TP TR)	130
4630	Titanium Pipes and Tubes for	TTP	All	
4650	Ordinary Piping Titanium Rods and Bars	ТВ		
H 5120	Bronze Castings	CAC	Confined to CAC102, CAC103, CAC106, CAC107	
5202	Aluminium Alloy Casting	AC	AC4C, AC7A	
G 3214	Forged Stainless Steel Flanges, Fittings, Valves and Ports of Pressure Vessel for High-Temperature Service	SUS F	Confined to SUSF304, SUSF316	-253
G 3459	Stainless Steel Pipes	SUS TP	Confined to SUS304TP, SUS316TP	200
G 4303	Stainless Steel Bars	SUS	Confined to SUS304, SUS316	
G 4304	Hot Rolled Stainless Steel Sheet and Plate	SUS	Confined to SUS304, SUS316	
G 3214	Forged Stainless Steel Flanges, Fittings, Valves and Parts of Pressure Vessel for High-Temperature Service	SUS F	Confined to SUSF304L, SUSF316L	
G 3459	Stainless Steel Pipes	SUS TP	Confined to SUS304LTP, SUS316LTP Confined to SUS304L, SUS316L,	-269
G 4303	Stainless Steel Bars	SUS	SUS316J1L, SUS317L	203
3250	Brass Rods and Bars	CXXXB	C1020, C100, C1201, C1220	

TRIM OF CAGE TYPE CONTROL VALVE

The materials of the valve trim should be selected with due consideration given to erosion resistance and corrosion resistance to the controlled fluid, wear resistance, durability, etc. The standard trim materials for cage type control valves (DY-C) are shown in Table 5.3

Table 5.3 Standard trim materials for cage type control valves (nom of materials: JIS)

Body material	Cage split type Cage integrated type			*3	Packing seat	Lantern ring	Gland
				Valve stem			
	Plug *1	Cage *1	Seat ring *2				
SCPH 2, etc. Carbon steel: Castings or forgings Low alloy steel: Castings or forgings	SUS 403 SCS 1 SUS 431 16Cr. 2Ni S.S.Casting SUS 440C SUS 304 SUS 316 SCS 13 SCS 14	SUS 403 SCS 1 SUS 431 16Cr. 2Ni S.S.Casting SUS 630 SCS 24 SUS 304 SUS 316 SCS 13 SCS 14	SUS 304 SUS 316	SUS 316 SUS 630	SUS 316	SUS 316	SUS 316
SCS 13, etc. Stainless steel: Castings or forgings		SUS 304 SUS 316 SCS 13 SCS 14			SUS 304 SUS 316	SUS 304 SUS 316	SUS 304 SUS 316

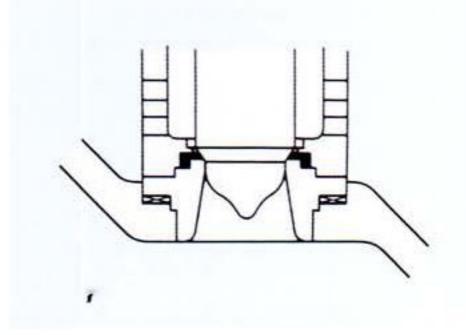
- *1. When body material is [SCPH2, etc.], the standard material is heat-treated by hardening and annealing. Austenitic stainless steel is available as option.
- *2. The standard seat ring material is austenitic stainless steel.
- *3. The standard valve stem material is SUS 316 stem plated with hard chrome.
 - SUS 630 is used when the valve cutoff force is large and sufficient strength of the stem is required.

Cage and valve plugs of materials other than surface hardened materials and precipitation hardened materials are plated with hard chrome or treated
with special surface ultra-hardening, according to the conditions of use, so as to prevent sticking and wear due to sliding.

 As for austenitic steel valve plugs and seat rings, the contacting faces of plug and ring or inner surface of ring is strengthened by building stellite, according to the size of valve pressure drop.

Seal ring

The type and material of the seal ring of the cage type control valve (DY-COB) is selected according to the kind of fluid and its temperature. The seal ring is used for fluids of 392F and under. The teflon based cap seal is installed on the "sliding surface" of the O ring to increase its durability and to seal with low friction.


Fig. 5A Cap seal O ring Structure "O" ring Cap Standard materials Teflon (only) NBR (nitrile rubber) Teflon **EPDM** Glass fiber (ethylenepropylene rubber) Lubricants **FPM** grease (fluorine rubber) For low-leakage

Soft seal

Soft elastic materials such as synthetic rubber, teflon and nylon are used as the seal materials of the seat ring face. Bubble-tight searing of the seat ring can be achieved by a small actuator output.

The selection of the seal material, shape and mounting method is made to suit the actual service condition, by considering physical properties and durability of the seal on the past results.

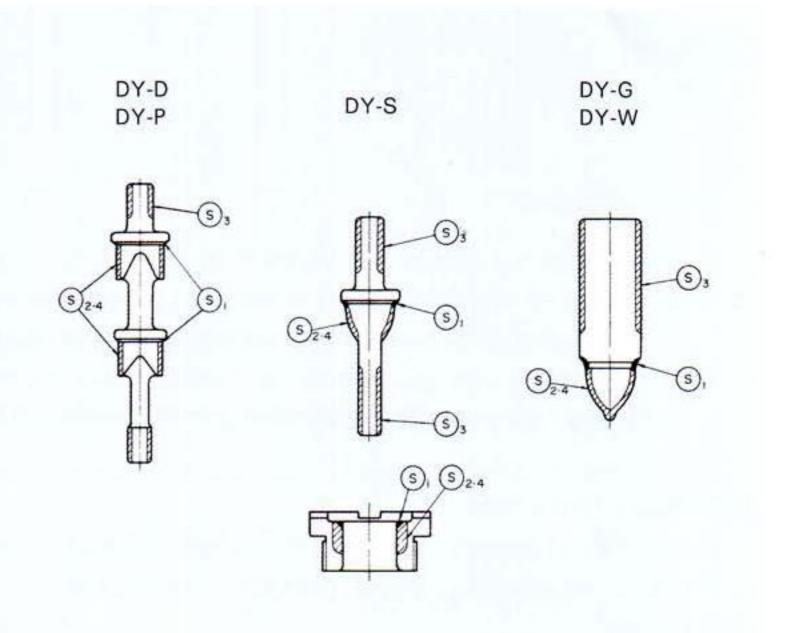
Fig. 5B

TRIM OF GENERAL PURPOSE TYPE CONTROL VALVE

The trim materials of the general purpose type control valves are as shown in Table 5.4°

Table 5.4 Standard trim materials for general purpose type control valve (nom of materials: JIS)

*aplicable control valve type	Trim No.	Valve plug	Seat ring	Valve stem	Guide bushing	Packing seat	Lantern ring	Gland	Service temperature of fluids such as water, oil, steam, air and gas (°C)	
	11	SUS 403 or SCS 13	SUS 304	S 304 or SUS 316 S 13 © SUS 630 © S 316 or S 14				6 SUS 316	220 and under	
	12	SUS 304 or SCS 13 \$1 \$2 C	SUS 304 or		SUS 440C	SUS 316	SUS 316		Over 220 up to 300	
DY-D DY-P DY-S DY-G	13	SUS 316 or SCS 14 \$\sigma\$_3	SCS 13		H				Over 300 up to 400	
D1-G	14	SUS 316 or SCS 14 S ₄	SUS 316 or		©					Over 400 up to 475
	16	SUS 316 or SCS 14 S ₄	SCS 14 (\$) ₂		Stellite (casting)				Over 475	


In addition to the above-mentioned trim numbers, trim materials for mainly high pressure drop of incompressible fluids, cavitation and erosion resistance are available. They are SUS440A, 440C, etc. heat-treated by hardening and annealing, SUS630, etc. precipitation-hardened, and SUS304, SCS13, SCA14, etc. not quenched but surface-hardened.

= Explanation of marks of Table 5.4 =

Indicates building of stellite. The number indicates the position.

Stellite-built part	(S)1	(S)2	(S) ₃	(S)4
Contacting surfaces of valve plug and seat ring	0	0	0	0
Valve plug port		0		0
Inner surface of seat ring		0		0
Valve plug guide			0	0

- Valve plug guide and valve stem are completely plated with hard chrome.
- E : Heat treatment by hardening and annealing.
 - Wet vapor is locally generated at the throttle during depressurization due to large pressure drop and the conditions of use such as pressure and temperature.

GASKET

As for gaskets, when the rating is Class 300 and under, asbestos joint seat (standard prodect of JIS B2404) is used. When the rating is Class 600 and over, spiral gasket (standard product of JIS B2404) is used.

For low temperature fluids such as LPG and LNG. PTFE type gaskets are used.

For valves of nuclear power use, gasket with restricted content of chlorine ion is used.

Table 5.5 Standard selection of gaskets

O: Applicable item

			Spiral	gasket
		Joint seat	PTFE	Flezible graphite
	Cage type		0	0
General	General purpose type		0	0
For high tempera				0
For low temperature			0	0
For stric	t sealing			0

BOLTS AND NUTS

The standard materials of the bolts and nuts of the pressure containing part are as shown in Table 5.6.

Table 5.6 Standard materials of bolts and nuts

Valve body material	temper- ature °C	Bolt	Nut	
FC·FCD Meehanite		SS40	00	
CAC 403, 406		SUS 304	C 3771	
SCPH2 (WCB) S25C·S45C		S45C or SNB 7	S45C	
SCPH11 (WC1)·F1 SCPH21 (WC6)·F11 SCPH32 (WC9)·F22 SCPH61 (C5)·F5a	Within specified	SNB 16	ASTM A194 Gr 4	
SCS13 (CF8)·13A SCS14 (CF8M)·14A USCS13 USCS14 L materials of the above, SCS16 etc.	valves	SUS 304-D	SUS 304	
SCPL1 (LCB) SCPL11 (LC1)·LF1 SCPL21 (LC2)·LF2 SCPL31 (LC3)·LF3 BC		SUS 304-D	SUS 304	

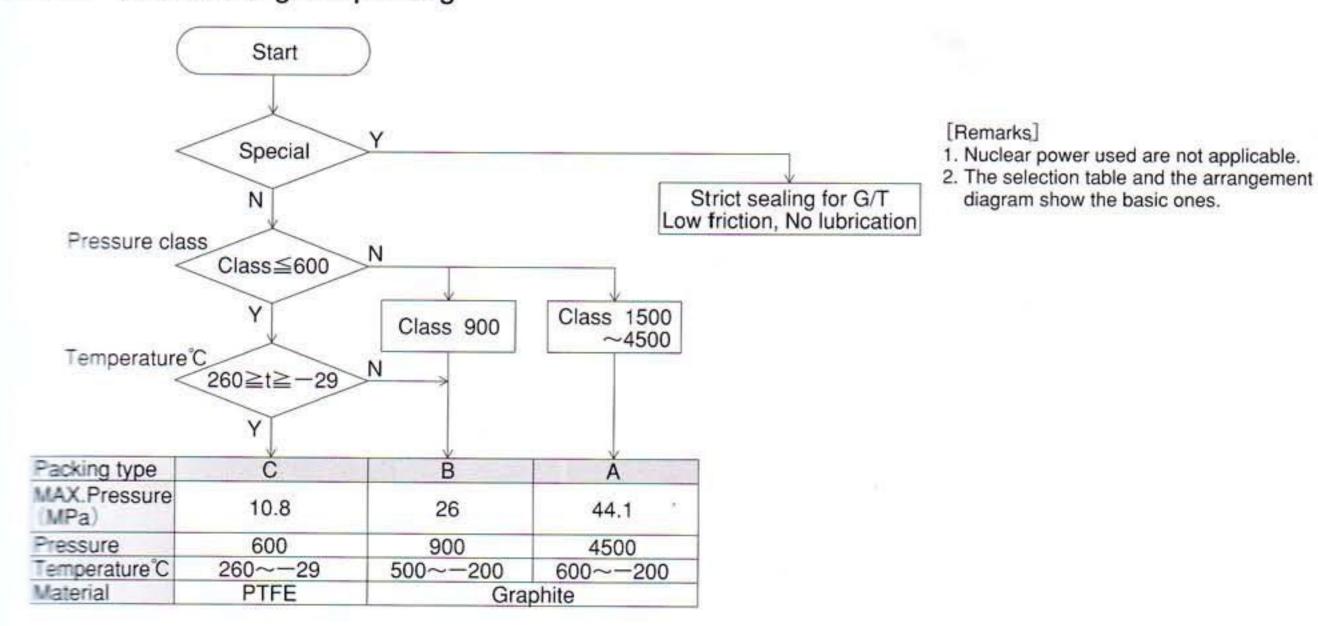
* 1. Cold drawn pieces are treated with strain hardening so as to prevent seizure.

As for bolts and nuts which are specially specified such as those for nuclear power plant, the applicable requirements are followed.

GLAND PACKING

Gland packing should be resistant to secular distorsion and heat cycle so as to possess stable properties of low friction and sealing for a long period. Otherwise, the contorol performance of the contorol valve itself can not be maintained. The properties of low friction and sealing of this important gland packing are guaranteed by selecting the most stable one on the basis of our past results extending over many years, according to the controlled fluid (properties, temperature and pressure).

Criteria of selection


An optimum gland packing is selected to suit the individual specifications required, according to Table 5.7 "Selection of gland packing".

As for packings, four types have been carefully chosen out of packing said to be universal to ordinary gases, liquids and vapors except special chemicals. The properties of these selected packings (in terms of heat resistance, pressure

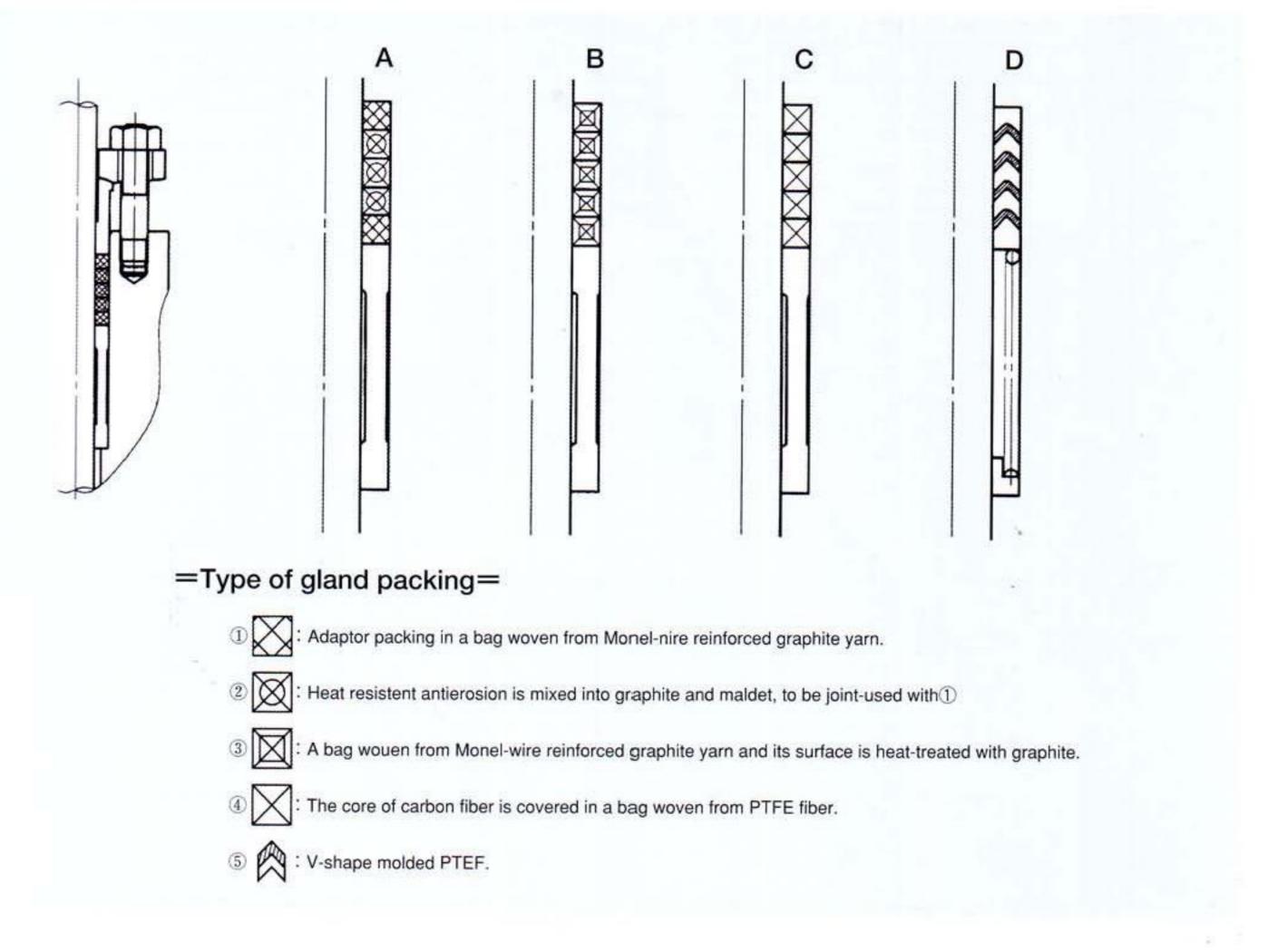

resistance, low friction, and sealing effect) have been clarefied by experimental studies conducted over many years. In the actual application, their functional combinations have been classified and standardized into four basic types which fully utilize the properties of each packing. For special service conditions, the requirements can be fully met by partially altering the combination of packings.

Table 5.7 Selection of gland packing

5D Gland packing type and installation

PREFACE

In the pursuit of further economics, safety and reliability, technical innovations are now endlessly appearing in industrial plants. Automatic control systems which determine the economics and safety of plants have been increasingly sophisticated and integrated by the use of computers. In the midst of these changes, the importance of the role of [control valves] which directly control fluids as the final process control elements can not be overemphasized. More reliability and safety are required of [control valves] as well as their accessories.
☐We, NAKAKITA, producing valves and their systems as a pioneer automatic valve manufacturer in Japan, are constantly striving to develop new techniques and improve the quality of our products. We also do our bests, in our total quality control system, to maintain highly stabilized design and manufacture procedures in accordance with various applicable regulations and standards.
□Plant surveys and inspections conducted by our customers including the utility power industry and plant manufacturers have been appreciating our technology and quality control system highly, and our plant has designated as their certified plant. On the other hand, the high quality and reliability of our products are quaranteed by our acquisition of type certification for very strict environmental tests of each classification society.
[NAKAKITA control valves], one of our main products, are systematized and many standard models are produced in series, on the basis of our resouceful experiences and past performances in various plants such as nuclear power, thermal power, iron making, ships, low temperature and pollution control. we are also prepared to meet any requirements of special specifications to your satisfaction.
☐We believe this catalogue is much help in your making an instrumental engineering plan. We hope your selection will be made from the abundant types of [NAKAKITA control valves]. Please remember that our engineers are ready to assist you in your planning, on the basis of our living data produced from our numerous past performances.

DETAILED SPECIFICATIONS

DY-CODO

CAGE TYPE DOUBLE SEATED CONTROL VALVE

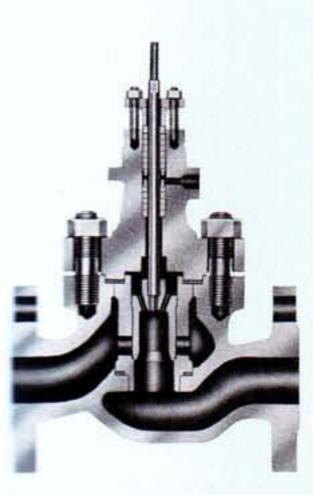
The feature of this control valve is the simple construction which allows easy trim exchange in a short time without disconnecting the body from the piping during maintenance.

The cage has flow characteristic ports in its circumference. The plug quided by the cage has balance holes. With this arrangement, unbalanced forces are offset and the dynamic unbalanced force on the stem is stable over the whole range of the valve travel. This in turn reduces the load on the actuator to secure stable controllability.

As this control valve is a balancing type double seated one, it is possible to limit the leakage at full closure within 0.3%, from low temperature range up to high temperature range, by adopting materials of small thermal expansion difference for cage and valve plug.

Bodies are avaiable in two types for most of the sizes and pressure ratings; S-series body (S: standard), and E-series body (E: enlarget).

DY-CODO cage type double seated control valve


NOMINA	L BO	ORE mm (i	nch)			32	A (11/	(B)			40	A (1½	,B)			5	50 ^A (2 ^E	3)				5 ^A (2½	2 ^D)	
	JIS	3		(K)	5 10	16 20	30 40	63		5 10	16 20	30 40	63	(100)	10	16 20	30 40	63	(100)	5 10	16 20	30 40	63	(100
RATING	AN	ISI		(Class)	125 150	300	600	900		125 150	300	600	900	1500	125 150	300	600	900	1500	100	300	600	900	150
	IEC	C (※1)	(F	N-bar)	10 16	25 40	64 100			10 16	25 40	64 100			10 16	25 40	64 100			10 16	25 40	100		
RATED (#2) CV VALUE	Flor	w charac- stics Eq %	Ss	eries ody	(9.5)				(※2)	(9.5	18)	26		(※2)	[18	26)	36		(*2)	[36	48	56)	72	(×
Value by reduced) valve plug	/ Li	iner ※2 ck opening	Es	eries	21			(%	(2)		36		(※2)			55		(3)	(2)	100		(※2)		
	-0	Face to Fa	ce L (*3)	200	213	229	275	-	222	235	251	295	320	254	267	286	310	380	276	292	311	365	
			G			5	0		-		55		60	65		7	70		75		70		75	8
DIMENSIONS	pt		н (ж	4)		7	80		-		715			800		7	96		818		8	12		90
(mm)	Height	Addi-	With	fin		1	00		- i			100					100		255		772	100		
		tional valve	With	Тор		1	85		-		185			215		-	15		276		-	15		27
10 M 15 M		to H	wheel	Side			0		-		0	i-ton noo	1000	0		- 3	0	- Resp	0			0		C
	Km	/XT	V.	(※7)		0.	82/0).69				82/0	.69			0,	79/0	1.66			0.	81/0	.68	
				20		1	.4				1	.2												
		275		40	2.0		2.8			2.0		2.4	_	-										
			-	60			4.9			0.0		4.0	302			,	2.0					1.4		
		- 222	-	20	2.0	100000	3.0	CH.A32 - 12		2.0	-		2.4	_		-	2.0 4.0		-	2.0		2.8		+
		355	1 +	40	-	4.9		5.9			4.9	1	8.7			4.9	185	6.9		2.0	4.9	1	5.3	
			1 -	20			1	0.6			4.5		0.7	2.8	2.0	1.0		2.4				1.8		
	шш	410	kPa)	40	-									5.5				4.8	-	2.0	T		3.5	
(※5)	(C) a	410		60	+									10.2	1	4.9		8.3		8.0000	4.9		6.3	
PRESSURE	or size		Balance	20										21524921				1000	2.8					2
DROP	Actuator	465	Off B	40															5.5					4
(MPa)	Ac	3.3.3.		60	-														10.2					7
				20																				1000
		520		40																				
				60																				
				20																				
(in case of single action		645		40																				
diaphragm actuator)				60										tion -		V			_					-
	М	ass (kg)	(%6)		50	55	60	80	-	50	55	60	90	130	65	70	80	115	185	80	90	100	14	5 2

^(%1) IEC in the column of rating indicates the ratings of valve groups formed in terms of face-to face dimension.

^(*2) Linear Cv value is larger than that of equal percent type by 10 to 20%. Quick open Cv value is larger than that of equal percent type by 10 to 30%. The Cv values of ANSI Class 1500 S body, and of ANSI Class 900 and 1500 E body are 65 to 85% of Cv values of ANSI Class 150~600.

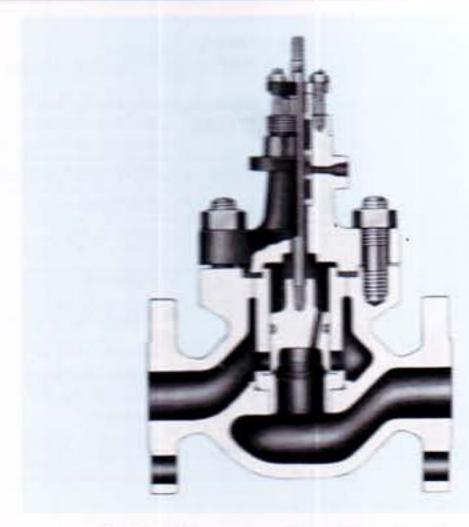
⁽³⁾ As for face-to-face dimension, new face-to-face dimensions according to IEC are given up to PN 100. However, for individual items, please refer to dimension indicated on the drawing for approval for the time being. When the same face-to-face dimension as that of a valve already delivered is required, piease inform us the relevant serial number of the valve.

SPECIFICATIONS

Type of valve body assembly	Double seated globe type valve of casting, with cage guided plug.
Pressuere rating	JIS 5~63K or ANSI 125~1500
Normal bore	32~300 ^A
Service temperature range	-196~550°C (-321~1022°F)
Standard materials	 Valve body assembly FC200、FCD400、CAC403、CAC406 SCPH2、11、21、32、61、SCS13、14
	 Trim See Table 5.3 "Standard trim materials for cage type control valves"
	 Packing · Gasket (Asbestos Free) PTFE, graphite etc.

Cv valve	See the table below. Smaller rated Cv values not listed in the table can be manufactured with reduced size valve plug trim.
Flow characteristics	Equal percentage. Modified Parabolic, and Linear.
Performance	Rangeability50: 1
	 Leakage at full closure Not more than 0.3% of the rated Cv.
Maximum allowable pressure drop	Diaphragm type or cylinder type actuator can be mounted. Single action diaphragm pressure drop is used. Maximum pressure drop is shown in the table below.
Dimensions and mass	See the table below and the drawing in it.

Company of the	100000		-
nv	r	\Box	-
DY	-00		v.


	8	30 ^A (3 ^B	в)		ш	1	00 ^A (4	8)			1	25^ (5	B)			1504	(6 ^B)	15	2	8) ⁴ 00	8)	25	50 ⁴ (10) ^B)	30	004 (12	2 ⁸)
.5	16 20	30 40	63	(100)	5 10	16 20	30 40	63	(100)	5 10	16 20	30 40	63	(100)	5	16 20	30 40	s=2	5 10	16 20	-	5 10	16 20	2502	5 10	16 20	100
25 50	300	600	900	1500	105	300	600	900	1500	105	300	600	900	1500	125 150	300	600	-	125 150	300	_	125 150	300	-	125 150	300	-
76	25 40	64 100			10 16	25 40	64 100			10 16	25 40	64 100			10 16	25 40	64 100	_	10 16	25 40	=	10 16	25 40	_	10	25	-
56	72)	96		(※2)	22		125)	155	(%2)	37	155	190)	250	(%2)	(190			90	(276	-	500		800			950	
	130		(%	(2)		230		(%	(2)		275		(%	2)		-				730			950			1200	31
298	317	337	375	470	352	368	394	445	550	403	425	457	510	690	451	473	508	-	543	568	200	673	708	=	737	775	-
	80		85	90		10	00		105		110		115	120		125		_	17	0	_	21	5	-23	26	50	-
	83	30		920		96	65		1090		10	90		1270		1120		-	13	25	-	15	90	-	164	40	-
		100					100					140				140		-	15	50	-	16	60	_	17	70	-
	21	5		276		27	76		330		33	30		522		330		-	52	22		52	28	-	52	28	-
	0)		0		C)		200		C)		250		200		_	25	60	1	25	50	_	25	0	-
	0.8	80/0.	.67			0.8	31/0.	68			0.7	78/0.	66			0.78/	0.66		0.7	7/0.	65	0.8	31/0.6	68	0.8	2/0.	69
	1.2																				ø J-	-	· (A A		T	
2.0	1.2	2.4 4.4	5				*													-	*,-		· (H	
	1.2	2.4 4.4 1.	SOLD .			1.2	20													· •			•			F	
		2.4 4.4	.8		2.0	1.2	2.4													# " " " " " " " " " " " " " " " " " " "						F	
	4.9	2.4 4.4 1.	SOLD .	1.0	2.0	1.2	2.4 4.2					0				1.0							•			H	
		2.4 4.4 1.	.8	1.8		1.2	2.4 4.2 1.4	8		2.0	1.	2				1.0										H	
		2.4 4.4 1.	.8	3.6	2.0		2.4 4.2 1.4 2.			2.0	1,	2.4				2.0	5								vheel\	H	
		2.4 4.4 1.	.8			4.9	2.4 4.2 1.4 2.	8	1.7	2.0		2.4 4.2				2.0	5		0.	W The second			(†	landw op ty	vheel\	H	
		2.4 4.4 1.	.8	3.6			2.4 4.2 1.4 2.		1.7	2.0	1,	2.4 4.2			2.0	2.0			0.	9			(†	landy	vheel\	H	
		2.4 4.4 1.	.8	3.6			2.4 4.2 1.4 2.		2000			2.4 4.2 4			2.0	2.0 3.	4		0. 1. 2.0	9			(†	landw op ty	vheel\	H	
		2.4 4.4 1.	.8	3.6			2.4 4.2 1.4 2.		3.4			2.4 4.2 4 2.8		2.4	2.0	2.0 3. 1.2 2.	4		1.	9 8 3.2				landw op ty	vheel\	Ģ	
2.0		2.4 4.4 1.	.8	3.6			2.4 4.2 1.4 2.		3.4			2.4 4.2 4 2.8		2.4	2.0	2.0 3. 1.2 2.	4		2.0	9 8 3.2		heel)		landw op ty	vheel)	G G	
		2.4 4.4 1.	.8	3.6			2.4 4.2 1.4 2.		3.4			2.4 4.2 4 2.8		2.50	2.0	2.0 3. 1.2 2.	4		1. 2.0	9 8 3.2 5		heel)		landw op ty	vheel)	G G	

- H dimension gives the longest dimension of the valve with standard type bonnet. However, in cases of fin type bonnet or handwheel installation, add the respective (additional H valve) of the table above to H.
- Allowable pressure drop and actuator shown in the table are for S series. Those for E series may differ slightly. Mass indicated is that of a valve with fin type bonnet, handwheel and positioner (=maximum mass). FL valve has a relationship with $FL^2 = Km = X_T/0.84$.

DY-COBS

CAGE TYPE SINGLE SEATED CONTROL VALVE

DY-COBSO

This control valve is a cage guided single seat valve of cage type balancing construction. Leakage at full closure is minimum, and it is far more suited than ordinary single seated valves to handle fluids of large pressure drop.

SPECIFICATIONS

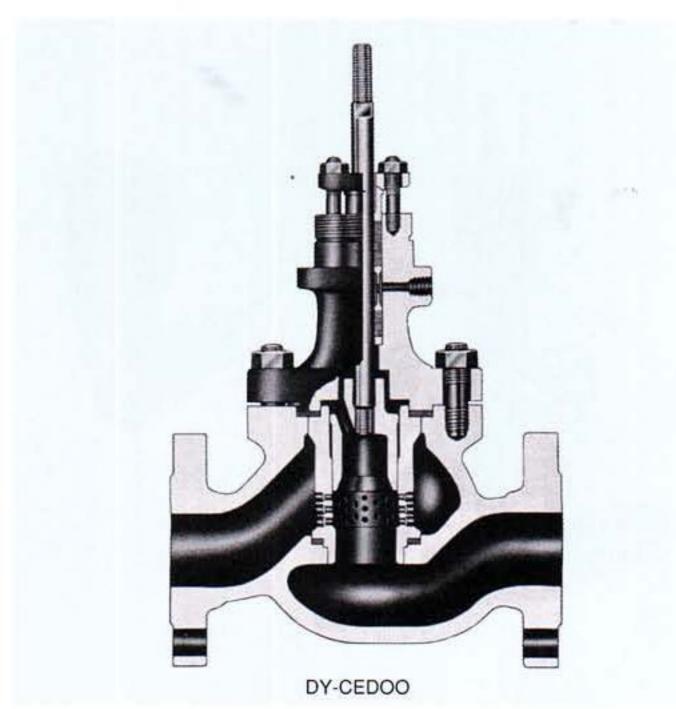
Type of valve body assembly	Balancing type, single seated globe valve of casting with cage guided plug.
Pressure rating	JIS 5~63K, or ANSI 125~900
Nominal bore	32~300 ^A
Service temperature range	-30~200°C
Standard materials (JIS)	 Valve body assembly FC200、FCD400、CAC403、CAC406 SCPH2、11、21、32、61、SCS13、14
	Trim See Table 5.3 "Standard trim materials".
	Packing • Gasket (Asbestos Free) PTFE, graphite etc

Cv value	See the table below
Flow characteristics	Equal percentage, modified Parabolic, and linear.
D. frances	Rangeability 50: 1
Performance	Leakage at full closure Not more than 0.01% of the rated Cv value.
Maximum allowable pressure drop	Diaphragm type or cylinder type actuator can be mounted. Single action diaphragm type is normally used maximum shown in the table below.
Dimensions and mass	See the table below and the dimensional drawing (page 20

MOM	NA m(i	L BC	RE		32	4(11/	(8)	40^	(11/	(B)	5	0 ^A (2 ^B	3)	65	A (21/	2B)	80	A (3B)		100	(4 ⁸)	12	54(58)	13	50*(6	5 ⁸)	20		250 ^A (10 ^B)	300 ^A (12
	JIS			(K)	5 10	16 20	30 40	5	16 20	30 40	5 10	16 20	30 40	5 10	16 20	30 40	5	16 20	30 40	5 10	16 30 20 40	5 10	16 3 20 4	5 10	16	30 40	10	16 30 20 40	5 16	5 1
RATING	AN	ISI (Cla	ass)													125 150					405	300 60	475		600	105	300 600	105	105
	IEC) (P	N-b		10 16	25 40				64	10 16	25 40							64 00		25 64 40 100		25 6 40 10		25	64	10 16	25 64 40 100		10 2
RATED Cv VALUE Value by reduced valve plug	risti	v Cha	racte	e s	(9.5	(20)	18	(9.5	mark	200	1000000	7.00 Mg 1	36	[36 56		72			96	-	6 155	SAME.	155 250	540		390	[27:	- 1	800	950
value by reduced valve plug	(Lin	ear ick op	ening	E		21			36			55			100		1	30			30	_	275		-			730	950	1200
THE REAL PROPERTY.	Fac	e to F	ace	L※1	200	213	229	222	235	251	254	267	286	276	292	311	298	317 3	337	352 3	68 394	4 403 4	425 45	7 451	473	508	543	568 610	673 708	737 77
NS C			3			50			55			70			70			80		1	00		110		125			70	215	260
SIONS (mm)	Height	H	Н	% 2		708			715			830		_ 8	796		8	312		9	65	1	090		1120)	1	325	1590	1640
200	. 17	Addition	nal v	value;		185			185		ý	215		- 5	215		2	215		2	76		330		330			522	528	528
- 1		/XT		-		0.	.82	0.69	9		0.7	9/0.	66	0.8	1/0	.68	0.80	/0.	67	0.81/	0.68	0.78	/0.66	0.7	8/0	1.66	0.77	/0.65	0.81/0.68	0.82/0.
				20		1.0			0.9																					
	- 4	275		40		2.0			1.8																					
				60		4.0	0	2.0	3.	2																				
E 9				20	2.0	2.5	2		1.8			1.5			1.2			1.0												
(MPa) actuator)		355		40		4.	4	2.0	3.	6	2.0	3.0)	2.0	2.	4		2.0												
अं अ				60		4.9	8.1		4.9	6.7		4.9	5.3		4.	0		3.8	3											
DROP	3		кРа	20								1.8			1.4			1.2		-	.9									
Phr.	ize		~	40							2.0	3.6	6	2.0	2.		2.0	2.4	_	_	.8									
J.R.E.	or S		nce	60								4.9	6.4		4.	8		4.2	2	2.0	3.4									
SS	late		ala	20																	.2	_	1.0		0.8					
PRESSURE gle action diag	Actuator si	465	Off Balance	40																2.0	2.4		2.0		1.6					
Sing	4		0	60															7		4.2		3.5	2.0	-	.0		. 7	_	
AB of		*LOUIS YO		20																		0.0	1.2	-	1.0			0.7	-	
ALLOWABLE PRESSURE DROP (MPa) (in case of single action diaphragm actuator)		520		40																		2.0	2.4		2.0		0.0	1.5	80	
ALL G	1			60																			4.2		3	.5	2.0	2.8		0.0
C. ST. Control				20																							20	1.2	1.0	0.8
		645		40																							2.0	2.5	2.0	1.6
		-		60					55					80															0 710 730	

^(%1) As for face-to-face dimension, new face-to-face dimensions according to ICE are indicated. However, for individual items, please reter to the dimension indicated on the drawing for approval for the time being. When the same face-to-face dimension as that of a valve already delivered is required, please infrom us the relevant serial number of the valve.

^(※2) H dimension gives the longest dimension of the valve with standard type bonnet. However, when a handwheel is mounted, add the respective value shown above to H.


^(※3) Mass indicated is that of a valve with handwheel and positioner(= the maximum mass),

^{*} ICE in the column of rating indicates the ratings of valve groups formed in terms of face-to-face dimension.

DY-CEDO CONTROL VALVE WITH CAVI-CAGE

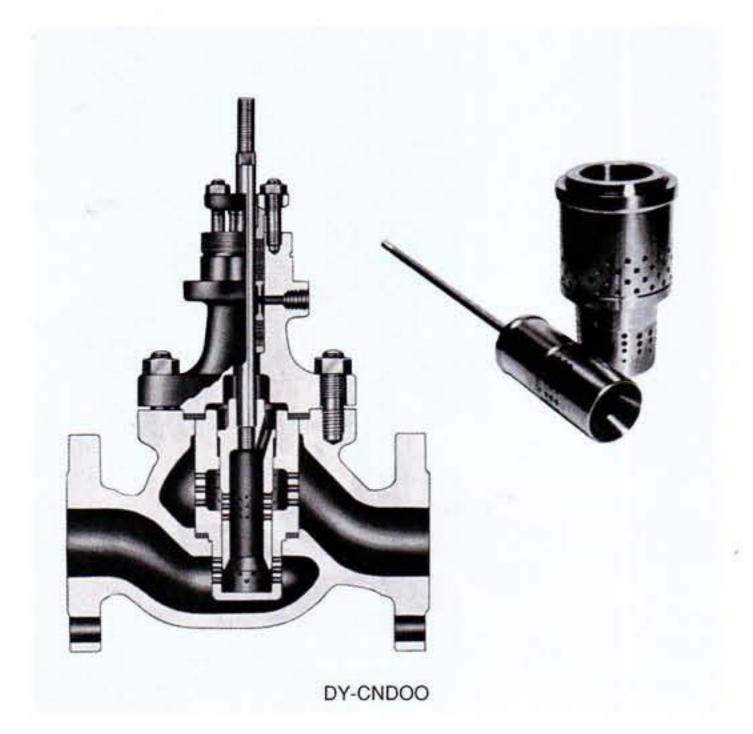
In boiler feedwater contorol valves, etc., the pressure drop at start-up or during low load running may become excessive and come into the range of caviation generation. It reduces the service life of the body and trim and causes maintenance problems.

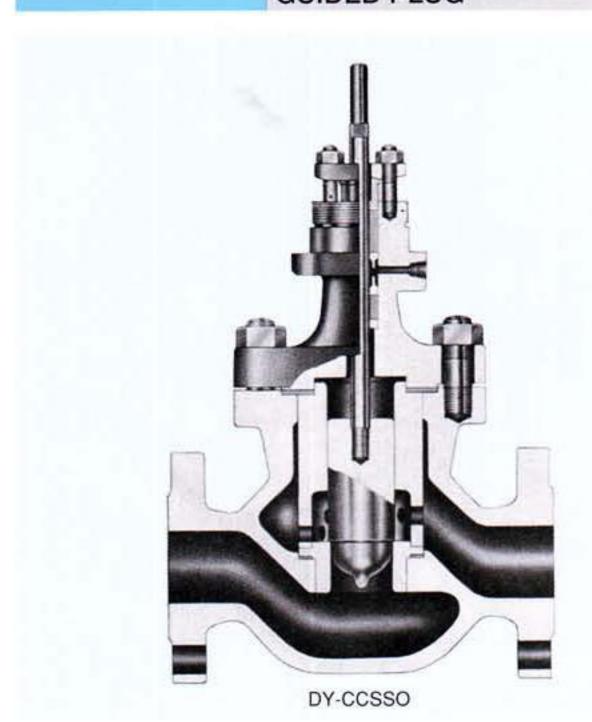
The cavi-cage has such construction that the fluid jets into the cage towards its center through small holes in the circumference of the cage. At the throttle of each small hole, the static pressure decreases due to high velocity of the fluid, and the esuating choked flow generates bubbles which cause cavitation. These jets are arranged to collide with each other directly in the center of the channel to dissipate cativation energy.

Endoor of the body and trim is thus prevented by arranging small holes opposing with each other in the circumference of the cage to suit the flow characteristic.

SPECIFICATINS

Type of valve body assembly	Double seated globe valve of casting, with multi-hole port cage.
Pressure rating	JIS 5~63K or ANSI 125~2500
Naminal bore	32~300 ^A
Service temperatur	-196~550°C
Standard materias (JIS)	Valve body assembly SCPH2 • 11 • 21 • 32 • 61, SCS13 • 14
	 Trim See Table 5.3 "Stndard trim materials for cage type control valves"
	Packing • Gasket (Asbestos Free) PTFE, graphite etc.


Cv value	40~60% of those shown on page 19, 20. (Km value: 0.88)
Flow characteristics	Equal percentage, Parabolic, and Linear.
Performance	Rangeability 20: 1
	 Leakage at full closure Not more than 0.5% of the rated Cv value.
Maximum allowable pressure drop	Diaphragm type or cylinder type actuator can be mounted. Single action diaphragm type is normally used. Maximum allowable pressure drop is shown on page 19 and 20.
Dimensions and Mass	See the table (page 19 and 20) and the dimensiosal drawing (page 20).


DY-CNDO

LOW NOISE CONTROL VALVE

UNBALANCED SINGLE SEATED CONTROL VALVE WITH CAGE **GUIDED PLUG**

This contorol valve exhibits effective noise reduction by means of multi-stage pressure reduction and dispersion of the flow and frictional resistance into many small hole throttles. It has a unique construction developed by NAKAKITA.

The flow of the liquid enters the plug, from the lower side of the body, through the control port consisting of many small holes in the lower portion of the cage. The flow then goes through the control port consisting of small holes in the central portion of the plug and enters the recess at the center of the cage, and the flow velocity is reduced. This flow then runs out to the downstream side of the body, through the small holes of fixed resistance in the outer circumference of the cage, in dispersed small streams.

In this way, pressure reduction and flow dispersion are repeated through three stages consisting of two-tier control

ports and fixed orifice, so as to reduce the noise. For noise countermeasures, see page 60.

SPECIFICATION

This low noise control valve is DY-C control valve equipped with low noise trim. For the detailed specification, see those of DY-CODO double seated control valve (pages 19 and 20).

Cv value	25~40% of those shown in the table (page 19). (Km value; 0.9 X⊤ Value; 0.76)
Flow characteristics	Equal percentage, Parabolic, and Linear.
Performance	Rangeability 20: 1
	Leakage at full closure Not more than 0.5% of the rated Cv value

For other specifications, see the specifications on page 20.

DY-CNDO CV TABLE

Nominal bore mm	50 ^A	65 ^A	80 ^A	100 ^A	125 ^A	150 ^A	200 ^A	250 ^A	300 ^A
	15	24	34	60	96	140	250	360	500
Max.Cv value	12.5	18	26	48	72	105	190	275	390
74.40	9.5	14	20	36	56	76	135	190	275

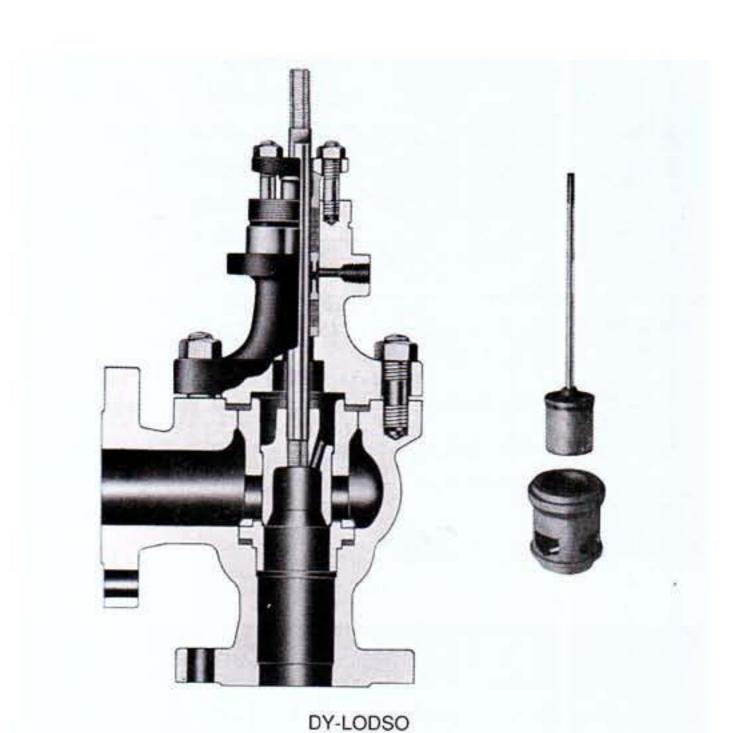
This control valve is an unbalanced single seated valve with rigid trim construction where P-port heavy guide plug is guided by the cage. As for its actuator, a powerful high output diaphragm type or cylinder type is used.

The stored cage receives the jet out of the throttle and releases the flow through small holes in the circumference of the cage to the body side. It thus protects the inner wall of the body from erosion due to the jet of the flud.

This valve is used for large pressure drop service which generates flashing, cavitation, etc. One of the main application is the emergency drain escape valve of high pressure feedwater heater.

SPECIFICATIONS

Type of valve body assembly	Single seated valve, with P-port heavy guided plug, and cage							
Pressure rating	JIS 5~63K, ANSE 150~900.							
Nominal bore	50~200 ^A							
Service temperature range	-196~550°C (-321~1022°F)							
Standard materials	See the specifications on page 20.							
Cv value	Maximum Cv value is indicated in the table below. However, reduced valve plug is normally used. (Km value: 0.8 XT value: 0.67)							

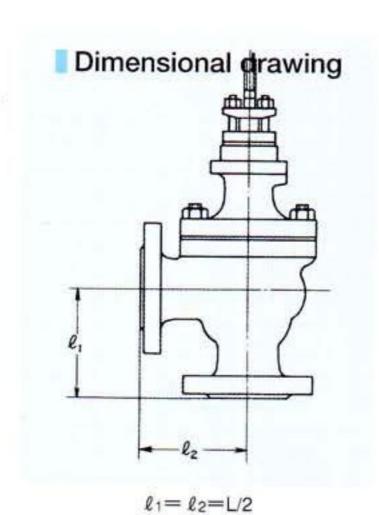

DY-CCSS Cv TABLE

Nominal bore mm	50 ^A	65 ^A	80 ^A	100 ^A	125 ^A	150 ^A	200 ^A	250 ^A	300 ^A
Max.Cv value	15	24	34	60	96	140	250	360	500
	12.5	18	26	48	72	105	190	275	390
	9.5	14	20	36	56	76	135	190	275

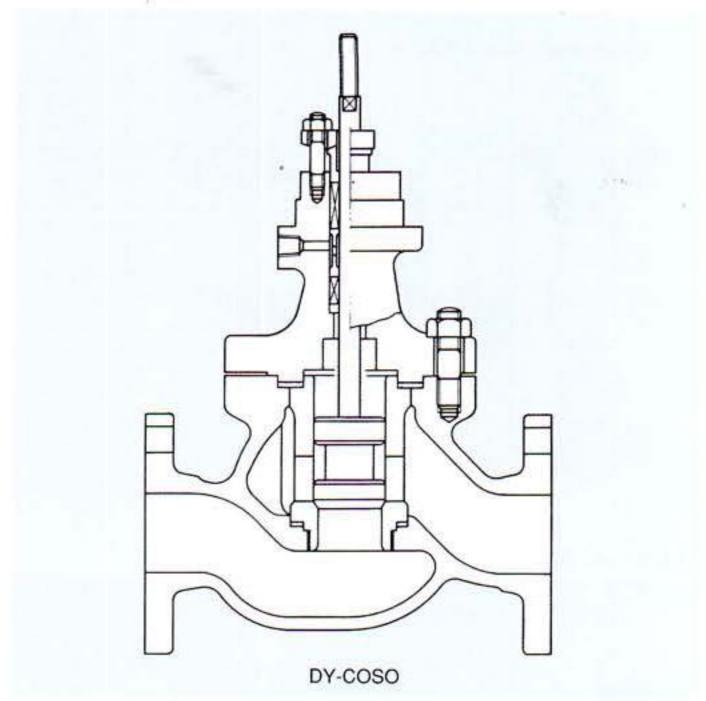
DY-LODS

CAGE TYPE DOUBLE SEATED ANGLE CONTROL VALVE

This control valve is DY-C control valve of which body type (globe type) is replaced with the angle type. Cage trim and actuator are common to the DY-C type, and this control valve allows winder application of the excellent features of DY-C type such as maintenance and controllability.


It is possible to fit cavi-cage (page 22) or low noise trim (page 23) on this valve.

Advantage of this control valve


The installation of the protective liner which is a seat ring elongated to the downstream side prevents erosion of the inner wall of the body due to cavitation and flashing.

SPECIFICATIONS

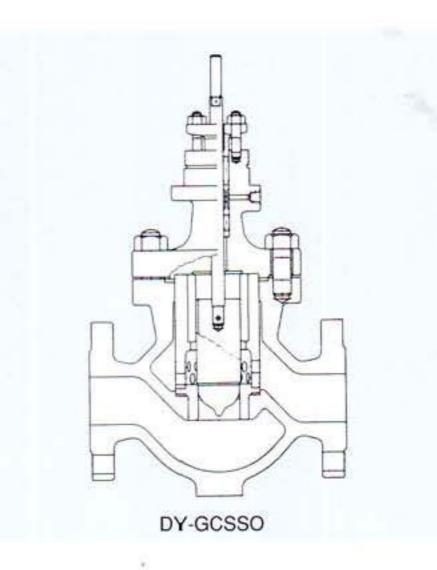
For the detailed specifications, see those of DY-C double seated control valve (pages 19 to 20). Note that the face-to-face dimension is L/2.

This control valve is a single seated valve using cage port. It is used when low leakage is required.

As it is a single seated valve, a large force is required to close the valve. Accordingly, its use is normally confined to small pressure drop services. However, when pressure drop is large, a high output diaphragm type or cylinder type actuator is used. It is possible to meet non-leakage requirement by using soft sealing material on the seat of this valve.

SPECIFICATIONS

Type of valve body assembly	Single seated globe valve of casting, with cage port.
Pressure rating	JIS 5~63K or ANSI 125~900
Nominal bore	32 ^A and over.
Service temperature range	-196~550℃
Standard materials	See page 20.
Cv value	Shown on the table below Km value: 0.8 XT value: 0.67
Flow	Equal percentage, Parabolic, and linear.
characteristcs	Rangeability 50: 1
Perfomance	 Leakage at full closure Not more than 0.01% of the rated Cv value.
	Refer to the technical data or apply to us for relevant information.
Dimensions and mass	See pages 19 and 20


DY-COSO CV TABLE

Nominal bore mm	32 ^A	40 ^A	50 ^A	65 ^A	80 ^A	100 ^A	125 ^A	150 ^A	200 ^A	250 ^A	300 ^A
Cv value	9.5	9.5 9.5		36	56	72	125	190	275	500	800
		18	26	48	72	96	155	275	390		
				56		125	190				
	17	29	44	80	104	184	220	-	584	760	960

DY-GCSS

SINGLE SEATED CONTROL VALVE

This control valve is a single seated valve of which construction allows easy and quick replacement of trim without disconnecting the body from the piping. Special consideration is given to its durability and maintenance. As this valve allows numerous combinations of pressure rating, Cv value, valve flow characteristic, actuator, etc., a wide range of service conditions can be met by this valve.

DY-GC single seated control valve

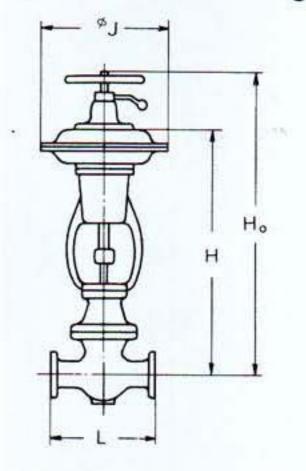
NOMINAL E	BORE r	nm (inch)					20	A (3/4	в)						25 ^A (1	(B)	
	J	IS (Kgf/d	emi)		5	, 10	,	16,20		30, 4	0	63	3	5, 10	5, 10 16,20 3		30, 40	63
RATING	А	NSI (CI	ass)		125	125, 150		300		600		90	0	125,150	300		600	900
	IE	EC * (I	10), 16	2	25,40		64, 10	0			10, 16	25,4	0	64,100			
		Eq%																
RATED Cv VALUE	C	Flow Charac- teristics			(*1)													
TALOL		Linear		0.23 0.44 0.8 1.1 1.		1.7	2.3	3.2	2 4.2 5.4		7.2		9.5		11			
	Fa	ice to Fa	ce L		187 194				206	256		6	184	197		210	235	
DIMENSIONS	-		Н (*3)	678					705		808		678		705		808
(mm)	Height	Addi tional	With	fin	105					100		115		10)5		100	115
		value to H		With handwheel				185				21	5		185			215
	Wie e	К	m										0.9	9				
				20	8.4 14.9			9.5		3.0	1.8	1.5	1.2	0.9		0.7		0.6
		275		40						5.9	3.5	3.0	2.4	1.8		1.5		1.2
ALLOWABLE	E			60				14.9	1	0.8	6.4	5.5	4.4	3.4		2.8		2.4
PRESSURE DROP (MPa)	(J) mm		(kPa)	20		14.9		9.7	(6.1	3.8	3.2 2.4		2.0		1.6	i	1.4
(IVIF a)	size	355	Off Balance	40				14.9	1	2.3	7.5	6.3	4.8	4.0		3.2	2	2.6
(in case of	Actuator		Off Ba	60					1	4.9	13.3	11.6	8.9	6.9		5.7		4.8
single action diaphragm actuator)	A			20				11.3		7.4	4.4	3.8	3.0	2.4		2.0)	1.6
		410		40				14.9	1	4.7	8.7	7.5	5.9	4.6		3.8	3	3.2
				60			- 10 -			14.9		13.8	10.8	8.4	2	6.9)	5.7
Mass	ka) (*4)			1 3	38		40		55		7	0	42	45	5	60	75

^(※1) In this type, valves of bore marked (※1) can select rated Cv values of valves of bore smaller than the marked one. For example, for the valve of nominal bore 50 mm, rated Cv value can be selected from the range of Cv max. = 36 to Cv min = 0.23.

^(*2) As for face-to-face dimension, new face-to-face dimensions according to IEC are given up to JIS 40 kgf/cm² (PN 100). However, for individual orders, please refer to the dimension indicated on the drawing for approval for the time being. When the same face-to-face dimension as that of a valve already delivered is required, please infrom us the relevant serial number of the valve.

^(※3) H dimension gives the longest dimension of the valve with the standard type bonnet. In cases of fin type bonnet or handwheel installation, add the respective value shown above.

^(※4) Mass indicated is that of the valve with fin type bonnet, handwheel and positioner (= maximum mass).


^{*} IEC in the column of rating indicates the ratings of valve groups formed in terms of face-to-face dimension.

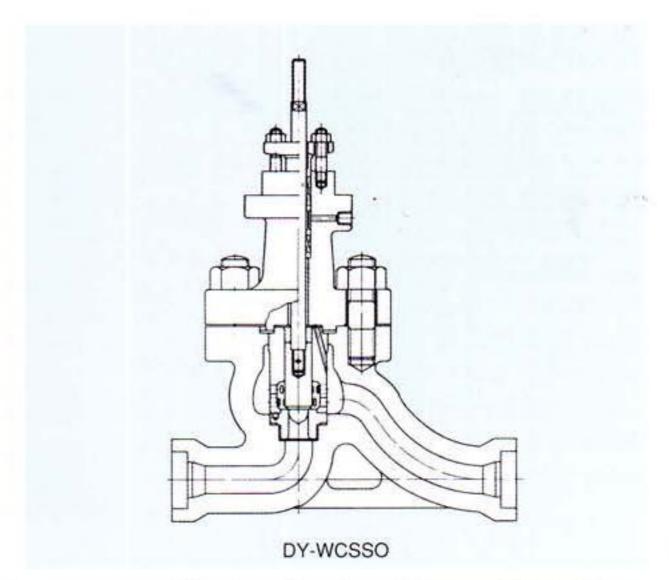
Tigge of valve body	Cage guided type single seated globe valve of casting.						
Pessure rating	JIS 5~63K or ANSI 125~900						
Naminal bore	20~50 ^A						
Senios temperature	-196~550°C (-321~1022°F)						
Sandard materials	 Valve body assembly FC200、FCD400、CAC403、CAC406 SCPH2、11、21、32、61、SCS13、14 						
	 Trim See Table5.3 "Standard trim materials" 						
	 Packing • Gasket (Asbestos Free) PTFE, graphite etc. 						

Cv value	See the table below. (Values down to the minimim Cv value 0.07 can be manufactured)						
Flow characteristics	Equal percentage, parabolic, and linear.						
	● Rangeability 20:1~30:1						
Perfomance	 Leakage at full closure Not more than 0.01% of the rated Cv value. 						
Maximum allowable	Diaphragm type or cylinder type actuator can be mounted. Single action diaphragm type is normally used. allowable pressure drop is shown in the table below.						
Dimensions and mass	See the table below and the drawing on the right.						

Dimensional drawing

Ho=H+(additional value in the table)

40 ^A (11/2 ^B)			1/4B)	32 ^A (1		
16,20 30, 40	3 5		30, 40	16,20	10	
300 600	00 12		600	300	5, 150	
25,40 64,100	10		64,100	25,40	1. 16	
		(
20		18	1		14	
235 251	75		229	213	200	
792 790	76	698 708 776				
100		100	1		98	
185	15	185 215				
			.9	0.		
0.4			.5	0.		
0.7			.0	1.		
1.2			.8	1.		
0.7			.0	1.		
1.4			.0	2.		
2.5			.6			
0.9		1.2				
1.7		2.4				
3.0			.4	4.		
60 70	0		60	50	45	


The table above, dimnsions correspond to the respective ratings in the column of rating.

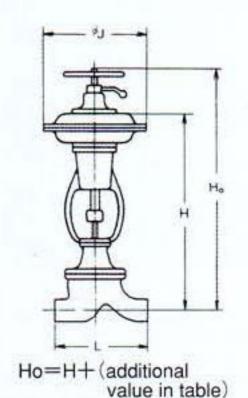
In the table above, maximum allowable pressure drops correspond to the respective Cv values of the column of rated Cv value. (For example, when Cv = 3.2, if the actuator size (J) is 275 and off-balance pressure is 40 kPa, the allowable pressure drop is 35 MPa.)

DY-WCSS[

SINGLE SEATED CONTROL VALVE FOR HIGH PRESSURE AND HIGH TEMPERATURE USE

This control valve is, so to speak, DY-GC control valve of which pressure raiting is raised to 1500 or 2500. It is a single seated valve with due consideration given to its durebility and maintenance. The body is shaped in a wave from most suited to high pressure and high velocity fluids so as to secure smooth flow.

SPECIFICATINS


Type of valve body assembly	Single seated globe valve of casting, with cage guided plug.										
Pressure rating	ANSI 1500, 2500										
Nominal bore	20~50 ^A										
Maximum service temperatur	550°C (1022°F)										
Standard materias (JIS)	Valve body assembly SCPH2 • 11 • 21 • 32, SCS13 • 14										
	Trim SUS304, SUS316, with hard facing stellite, etc.										
	Packing • Gasket (Asbestos Free) PTFE, graphite etc.										

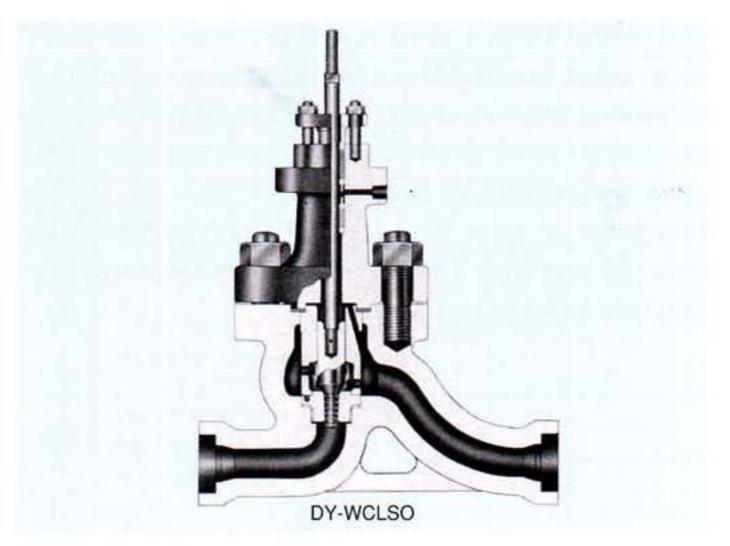
Cv value	See the table below. (Km value: 0.8)
Flow characteristics	Equal percentage, parabolic, and linear.
	 Rangeability 20: 1 ~ 30: 1
Performance	 Leakage at full closure Not more than 0.01% of the rated Cv value.
Maximum allowable pressure drop	Diaphragm type or cylinder type actuator can be mounted. Single action diaphragm type is mormally used. Maximum allowable pressure drop is shown in the table below.
Dimensions and mass	See the table and the drawing below.

DY-W Single seated control valve for high pressure and high temperature use

NOMINAL BORE mm (inch)				20 ^A (3/ ₄ B) 25 ^A (1B) 32 ^A (11/ ₄ B) 40 ^A (11/ ₂ B) 50 ^A (2B)											50 ^A (2 ^B	
	ANSI	(Class)							15	00	2	500			
	IEC (PN-bar)													
Fa	ice to	Face I	-:	380												
		H (%	2)	975												
leigh	to H	With fin		130												
T	Addi	With nandwh	eel	276												
Actuator J				Ref	er to f	ollow	ing (J)								
Flow E9 %				(*1)												
Charac- teristics		Para		Grant State of		code street	95.500			75500	90600	Sansa	gw.	erb	2000	200
		Linea	r	0.23	0.44	0.8	1.1	1.7	2.3	3.2	4.2	5.4	7.	2	9.5	11
Ε			20		20.6		11.3	7.4		4.4	3.8	3.0	2.	4	2.0	1.6
2 2 2 2 2	410	(kPa	40	1	41.2		23.1	14.7		8.9	7.7	5.9	4.	6	4.0	3.2
7 7 7			60				41.7	27	1.1	16.1	13.8	10.6	8.	4	6.9	5.7
		Balar	20	1	25.9		14.6	9	.4	5.5	4.8	3.6	3.	0	2.4	2.0
ctua	465	5 5	40		41.7		29.0	18	3.7	11.0	9.7	7.3	3 5.	9	4.8	4.0
A			60				41.7	34.2		20.2	17.5	13.4	10	.6	8.7	6.9
	Height es	Face to Height Actuator Flow Characteristics 410	Face to Face L H (% With fin With handwh Actuator J Flow Characteristics How Cha	Height With fin With handwheel Actuator J Flow Characteristics Para Linear 20 40 60 20 40 40 40 40 40 40 40 40 40 40 40 40 40	Flow Characteristics Flow Characteristics Flow Characteristics Actuator J Flow Characteristics Flow Chara	Face to Face L H (2)	Flow Characteristics H (Way With fin With handwheel	Face to Face L H (**2) With fin With handwheel Actuator J Refer to following (J Flow Characteristics Linear 20 20.6 11.3 410 60 41.7 29.0 465 0 40 41.7 29.0 40 41.7 29.0 40 41.7 29.0	Face to Face L	Face to Face L	Face to Face L H (**2) With fin With handwheel	Flow Characteristics Fara Linear	Face to Face L 380	Face to Face L 380	Face to Face L 380	Face to Face L 380

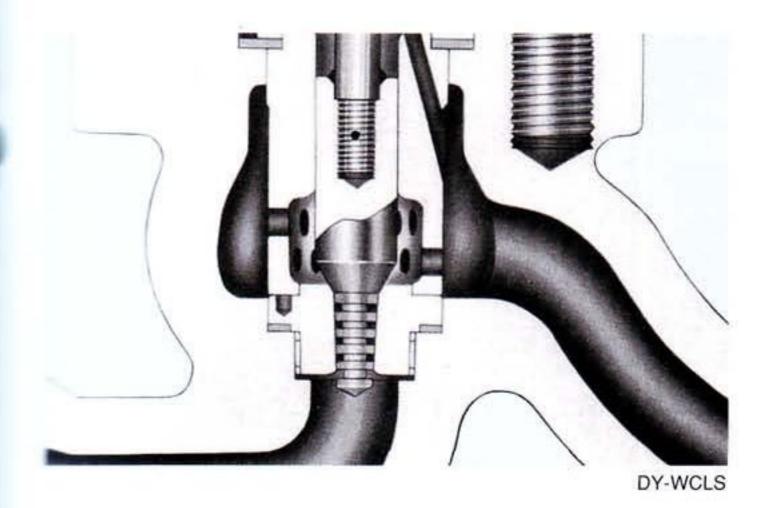
Dimensional drawing

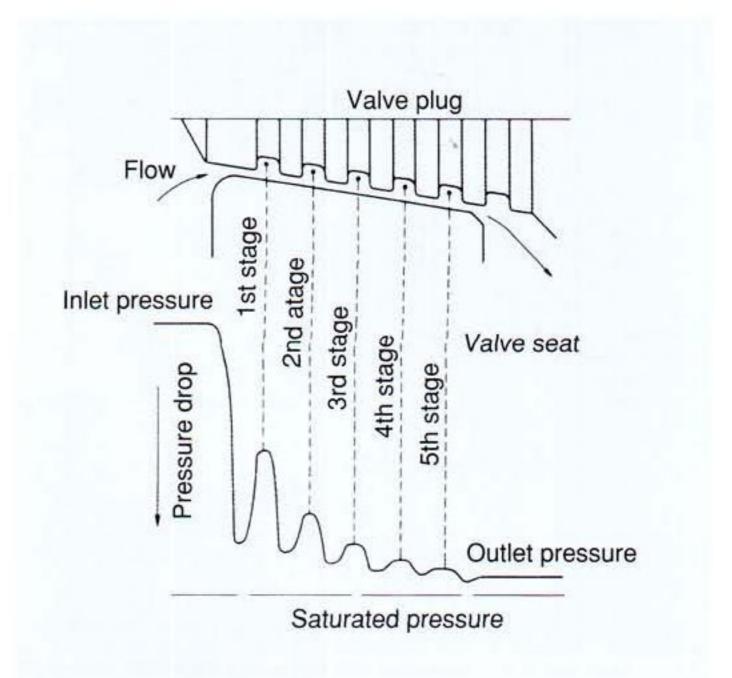
In this type, for valves of bore marked (*1), rated Cv values of valves of bore smaller than the marked one can be selected. For example, for the valve of (*1)nominal bore 50A rated Cv value can be selected in the range from Cv max. =11 to Cv min. =0.23o


H dimension gives the longest dimension of the valve with the standard bonnet. However, in cases of fin type bonnet or handwheel installation, add the respective (*2)value shown above. For individual orders, please refer to the dimensions indicated in the drawing for approval.

Mass indicated is that of the valve with fin type bonnet, handwheel and positioner (= maximum mass).

CONTROL VALVE WITH LABYRINTH TRIM

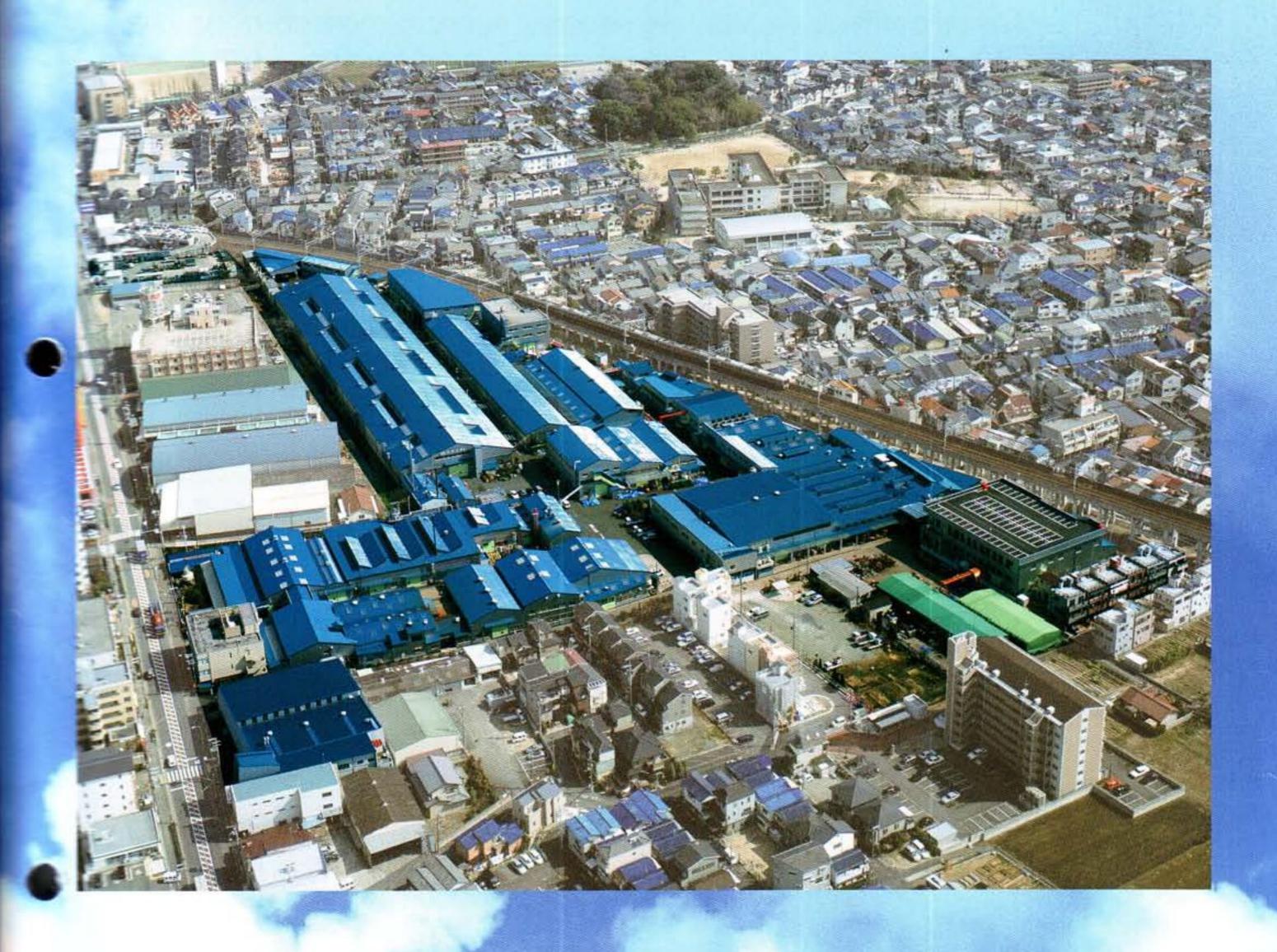



Inis control valve is trim-exchangeable DY-GC or DY-W control valve equipped with this labyrinth trim. It is normally used for prevention of erosion due to incompressibile fluids.

Senerally speaking, control valves used as feedwater control valve for boiler start-up, feedwater pump recirculation have, hot water control valve for desuperheater, etc. experience large pressur drop, and cavitation generated in the mottle will cause many problems such as erosion, vibration and noise.

This valve uses the labyrinth trim (tapered plug or valve seat) so as to divide a large a pressure drop into many stages by means of the groves made in the plug as shown in the figure below and prevent generation of cavitation.

As for the distribution of the pressure drop over the labyrinth trim, as shown in the figure below, the first stage is large and the final stage is vary small. The distribution is made effectively according to the effective characteristic of the process, and the static pressure in the throttle is carefully kept above the saturated pressure at which cavitation will be generated.

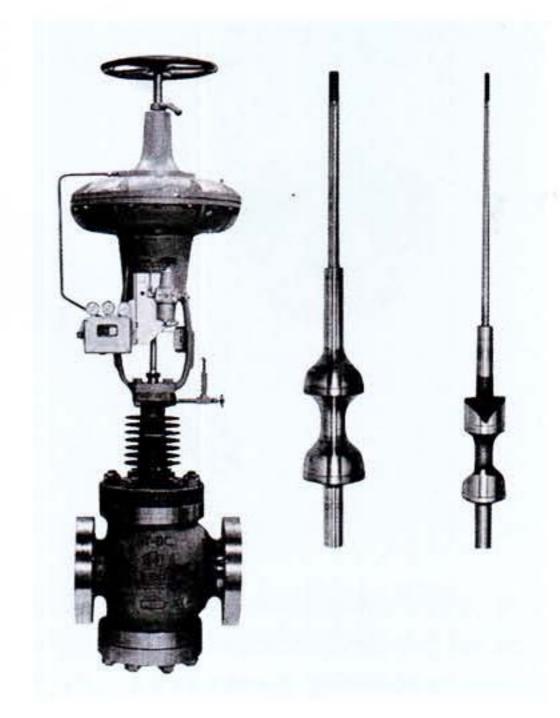


BPECOFICATIONS

For the detailed specifications, please see those of DY-GCSS.

and DY-WCSS. control valves (pages 25 to 27).

CONTENTS


W350 37.6	face
1.	Features 3
2.	Types 5 🗆
	Inherent Flow Characteristics (Valve Plug and Cage Configurations) ··· 9
	Body and Bonnet ······11□
	Materials ······13□
	Detailed Specification19~51□
7.	Actuators520
8.	Accessories ······56□
	Valve Flow Coefficient (Cv) Calculation and Sizing59□
	Noize and Counterature64□
1.	Pressure-Temperature Rating ······67□
2.	Special Applications69
3.	Outline of Facilities71
4.	When placing Orders72

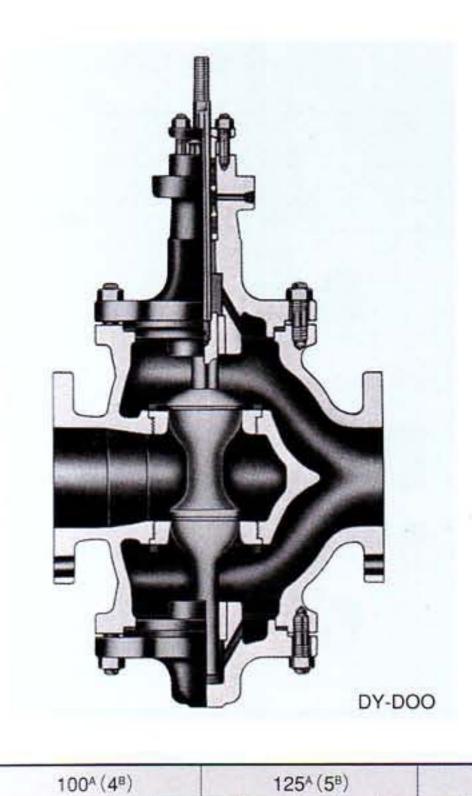
DETAILED SPECIFICATIONS GENERAL PURPOSE TYPE

DOUBLE SEATED CONTROL VALVE

This control valve is used in a wide range of services. The use of two ports, upper one and lower one (double seats) for the valve plug woks to balance and cancell the back pressure exerted on the valve. As the unbalanced force exerted on the valve stem is extremely small, the valve has an excellent controllability.

Two types of valve plug are available; the direct plug type and the reversed plug type. For easier maintenance, we recommend the direct plug type for large bore valves.

DY-D double seated control valve


NOMINAL B	ORE	mm (inch)		25^	(1B)		1	324 (11/48)			40	A (1)	(2B)			5	O ^A (2	B)	-		65	A (21/	(2B)			80	OA (3E	9)	
	JIS	(K)			5 10	16 20	30 40	63	5 10	16 20	30 40	63	5	16 20	30 40	63	(100)	5 10	16 20	30 40	63	(100)	5	16 20	30 40	63	(100)	5	16 20	30 40	63	(10
RATING	AN	SI (C	Class	;)	125 150	300	600	900	125 150	300	600 9	000	125 150	300	600	900	1500	125 150	300	600	900	1500	125 150	300	600	900	1500	125 150	300	600	900	15
	IEC	(PI	V-ba	r)	10 16	25 40	64		10 16	25 40	64 100		10 16	25 40	64 100			10 16	25 40	64 100			10 16	25 40	64 100			10 16	25 40	64 100		
RATED	Flow	Charac- c l % colic	Р-р	ort		1275	2.5		0.0	200 11120	8 24			20	1527.25	31			26	36	48			56	7-0-75	Transaction of the last			96		25	
C _V VALUE	Parat Linea	oolic r	V-s	olid		-	-			14	18			20		26			26		36			56	3	72			72	,	96	
	Face	to Fa	ce L	(※1)	184	197	210	235	200	213	229 2	275 2	222	235	251	295	320	254	267	286	310	380	276	292	311	365	430	298	317	337	375	47
		(3		10	80	1	15	12	20	125	5	13	0	158	162	186		170		174	215	19	4	204	200	236	21	12	222	218	24
DIMENSIONS	=		H ((※2)	69	92	7	05	70	05	715 7	18	72	0	748	755	832	81	2	832	838	968	83	8	858	862	978	85	58	868	870	98
(mm)	Height	Addi- tional	Wit	h fin	10	00	1	02	9	8	102	2	10	7	10	2	130	10	00	10	02	130	-	6	10	02	130	8	20-1	100-1-)2	13
		value to H	hand	dwheel		-	85			271	85			18	35		215		2	15		276		2	15		276	8	21	5		27
	Act	tuator	J		Townson.		O The Carlo	A CONTRACTOR	g (J	30.0	126	_		691	120								5									
		10000		20	2.0	100000	3.0	2001		2	.0		2.1	1.	.6																	
		275		40		4.9	-	.1			3.8	-	2.0		3.2																	
				60	2.0	4.0	10000	11.3		4.9	110000		2.0	4.9		9		20		20				2	.0				1.	0		
		355		40	2.0	4.9	-1000	1.50 - 50	2.0	4.9	4.0 7.9		2.0	4.9	3.	6.7		2.0	4.9	2.8	.5				4.2			2.0	1.	3.6		
		333		60			10.0	13.0	-	4.9	10.0 1			4.9	10.0		2.2		4.9	-	0.0		1	4.9		.7		2.0	4.9	6.	5	N.
ALLOWABLE	mm	-		20				14.5		-	10.0	7.7			10.0	12	4.2	2.0		700	.4		2.0	7.0	- 00	.6		2.0	4.0	2.	1000	10
PRESSURE	(J)	410	(kPa)	40													8.1	2.0	4.9		6.7		2.0	_	3.0	.9				4.	250	
(MPa)	size (,,,		60													14.7			10.0	1	2.2	3 3			9.3			4.9		7.9	
			Off Balance	20								1					10000		15	100000		4.2					3.2		2000		3113035	2.
(in case of single action	Actuator	465	O#E	40																		8.4					6.4					5.4
diaphragm	A	1000000	3550	60																		15.3					11.6					9.8
actuator)				20																						7						
		520		40																												
				60																												
				20																												
		645		40																												
4 1 1 1 1 1				60																												
Mass (kg	g) (§	×3)			60	65	70	80	65	70	75 1	00	70	75	90	115	175	100	105	115	145	120	105	115	135	180	270	120	135	150	195	5

As for face-to-face dimension, new face-to-face dimensions according to IEC are givev up to JIS 40 K (PN 100). However, for individual orders, please refer (**1)to the dimension indicated on the drawing for approval for the time being. When the same face-to-face dimension as that of a valve already delivered is required, please inform us the relevant serial namber of the valve.

H dimension gives the longest dimension of the valve with the standard type bonnet. However, in cases of fin type bonnet or handwheel installation, add the respective value shown in the table.

400^A (16^B)

100^A (4^B)

SPECIFICATIONS

200^A (8^B)

Type of valve body assembly	Double seated globe type valve of casting, with top and bottom guided plug.
Pressuere rating	JIS 5~63K or ANSI 125~1500
Normal bore	25~400 ^A
Service temperature range	-196~550°C (-321~1022°F)·
Standard materials (JIS)	 Valve body assembly FC200, FCD400, CAC403, CAC406, SCPH2, 11, 21, 32, 61, SCS13, 14
	 Trim See Table 5.4 "Standard trim materials valves".
	Packing • Gasket (Asbestos Free) PTFE, graphite etc.
Cv valve	See the table below (Km value: 0.75)
Flow characteristics	Equal percentage, Parabolic, and Linear.
Performance	• Rangeability 30: 1
8	Leakage at full closure Not more than 0.5% of the rated Cv value.
Maximum allowable pressure drop	Diaphragm type or cylinder type actuator can be mounted. Single action diaphragm type is normally used. Maximum allowable pressure drop is shown in the table below.
Dimensions and mass	See the table below

300^A (12^B)

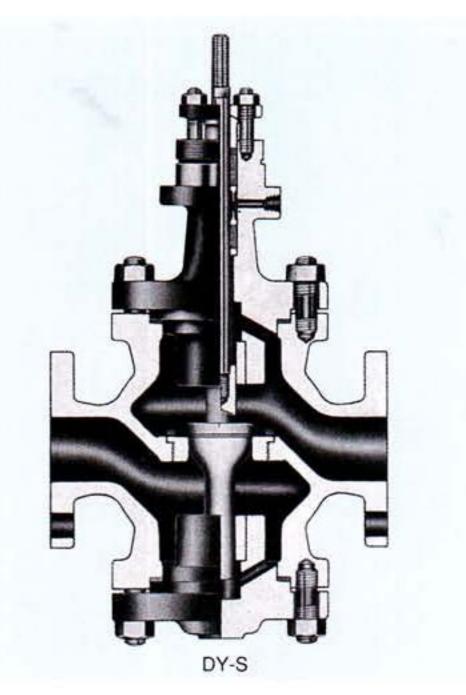
250^A (10^B)

350^A (14^B)

					-	20. (5				15					20		SUC A		2000	0 (10						1000	Service Control	-	0-354000	
5 16	30	63	(100)	5	16 20	30 40	63	(100)	5	16 20	30 40	63	(100)	5	16 20	30 40	63	(100)	5 10	16 20	30 40	5	16 20	30 40	5 10	16 20		5	16 20	-
25 30 50 30	of Taletic	900	1500	1000		A 15 a 1	900	1500	1000	I a constitution to		900	1500	105		600	900	1500	125 150	300	600	125 150	300	600	125 150		13-17	125 150	300	(6)
10 25	64			10	25 40	64			10 16	25 40	64 100			10 16	25 40	64 100			10 16	25 40	64 100	10 16	25 40	64 100	50000	25 40	_	10 16	25 40	_
155		190	_		250	100	310		10	390	100	470		10	500	100	720		95		00	120	3	600	10	2200		1	2800	
125	20	155			190		250			310		390		1	310		500		33	950	.00	120	1200	No.		2200			2000	
	4	1	10000	403	10000	457	2000	4	451		500			542		610			673		752	737		819	889	927	_	1016	1057	
352 36 230	S. P. Green, S.	242			90		05	345		34			400	43			42	402		10	605	-	88	605		96	-		35	
968	- CANADA	1000		12000	1150			1320	30	1190	Spice.	1200	in const	0014	00.0	2000	1444		300	60	1775	3-10	35	1860	2000	395	_		30	_
92		30	156		14	- 00	58	155	102	1130	158	1200	150	8		400000	175	Service .		5	182	-	00	185		16		10000	20	
	276	30	330			30	,,,	522	102	33	30		522	0.		522		100		528	102		528	100		28	-	922	28	_
																	2													
																							-	A		I				
-	1.8																										H	0		
20	3.6	AC 8																								H	-	0		
2.0	3.6	5.5				•					0															H	-	0		
2.0	3.6 9 6 2.2	5.5		2.0	1.	6			2.0	1.	0.0															H	-	0		
2.0 4.9 2.0	3.6 9 6 2.2 4.4	5.5		2.0		3.2	0		2.0	1.	2.5															H	-			
2.0	3.6 9 6 2.2 4.4	5.5	2.8	2.0	4.9	3.2	.9	22	2.0		2.5 4.6		1.8			2										H	-	0		
2.0 4.9 2.0	3.6 9 6 2.2 4.4	5.5	2.8	2.0		3.2 5.0	.9	2.2		1.	2.5 4.6 5		1.8	2.0	1.	2 2.5														
2.0 4.9 2.0	3.6 9 6 2.2 4.4	5.5	5.5	2.0	4.9	3.2 5.0 4.0		4.4	2.0	1.	2.5 4.6 5 3.0	5	3.6	2.0	1.	2.5						Но		(add	itiona	H				
2.0 4.9 2.0	3.6 9 6 2.2 4.4	5.5	200	2.0	4.9	3.2 5.0		4.4 7.9			2.5 4.6 5 3.0	.5	3.6 6.3		1.	2.5 4.6		3.0		1.8		Но	=H+ 1.5	(add				able)	.0	
2.0 4.9 2.0	3.6 9 6 2.2 4.4	5.5	5.5	2.0	4.9	3.2 5.0 4.0		4.4		1.	2.5 4.6 5 3.0	5	3.6	2.0	1	2.5		3.0	2.0		.6	Ho	1.5	(add		al value		able)	.0	
2.0	3.6 9 6 2.2 4.4	5.5	5.5	2.0	4.9	3.2 5.0 4.0		4.4 7.9 3.8		1.	2.5 4.6 5 3.0	.5	3.6 6.3 3.0		1.	2.5 4.6 2.2	.9		Nothern Co.		6 6.5		1.5	.0	1	al value		able)	1521	

150^A (6^B)

Mass indicated is that of a valve with fin type bonnet, handwheel and positioner (= maximum mass). IEC in the column of rating indicates the ratings of valve groups formed in terms of face-to-face dimension.


DETAILED SPECIFICATIONS

DY-S SINGLE SEATED CONTROL VAIVE

This control valve is our representative single seated valve with a top and bottom guided plug. This type is offered in a wide range of sizes, from small bore up to large bore, This valve is most suited to an application which requires to reduce the leakage at full closure to the minimum.

Valve plug types are direct one and reverse one. We recommend the use of the direct type for large bore valves for easier maintenance.

DY-S single seated control valve

NOMINAL	BORE	mm (inch)			25 ^A	(1B)			32^(11/48)			404 (11/28)			50 ^A	(2 ^B)			65 ^A (21/28)	
	JIS	3		(K)	5 10	16 20	30 40	63	5 10	16 20	30 40	63	5 10	16 20	30 40	63	5 10	16 20	30 40	63	5 10	16 20	30 40	6
RATING	AN	ISI	(0	Class)	125 150	300	600	900	125 150	300	600	900	125 150	300	600	900	125 150	300	600	900	125 150	300	600	90
	IEC	0	* (PI	N-bar)	10 16	25 40	64 100		10 16	25 40	64 100		10 16	25 40	64 100		10 16	25 40	64 100		10 16	25 40	64 100	
RATED Cv VALUE	Flo cha isti	aracte	100	% ra ear		12	2.5		1	8	2	4	2	6	3	1	3	6	4	8	7	2	9	96
	Fac	e to Fa	ice L	(*1)	184	197	210	235	200	213	229	275	222	235	251	295	254	267	286	310	276	292	311	36
			G		10	02	1	12	1	10	1	18	12	22	126	130	14	16	176	150	17	72	195	16
DIMENSIONS	th.		Н	(%2)	69	92	702	704	70	00	708	710	7	10	716	722	80)4	838	815	82	25	860	8
(mm)	Height	onal to H	With	fin	10	00	10	02	9	8	10	02	10	08	10	02	10	00	10	02	9	6	1	02
	1	Additional value to H	With	hand-		18	35			18	35			18	35			2	15			2	15	
		100	ator	1	Ref	er to	follow	ing (J)												-			
				20		0.	38			0.	24			0.	15									
		275		40		0.	75			0.	48			0	.3									
				60		1	.4			0	.9			0.	53									
				20		0	.8			0.	51			0.	32			0.	22			0.	14	
		355	E I	40		1	.6			1	.1			0.	63			0.	44	-		0.	26	
ALLOWABLE				60		2	.9			1	.9			0.	13			0.	77			0.	48	
PRESSURE	E		m m	20														0.	26	- 8		0.	15	
DROP	(J) mm	410	кРа	40														0.	51			0	.3	
(MPa)	size (JCe	60														0.	94			0.	55	
(in case of single action			Off Balance	20																				
diaphragm	Actuator	465	등	40																	7.8			
actuator)	A			60																				
				20																				
		520		40																				
				60																				
				20																				
		645		40																				
				60																				

^(*1) As for face-to-face dimension, new face-to-face dimensions according to IEC are given up to PN100. However, for individual orders, please refer to the dimension indicated on the drawing for approval for the time being. When the same face-to-face dimension as that of a valve already delivered is required, please inform us the relevant serial number of the valve.

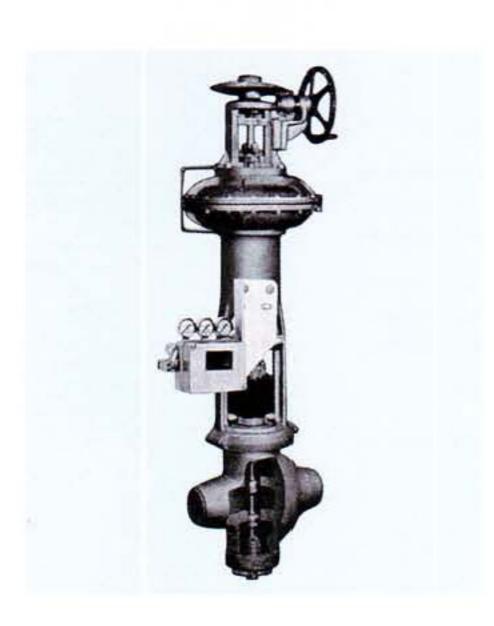
dimension as that of a valve already delivered is required, please inform us the relevant serial number of the valve.

H dimension gives the longest dimension of the valve with the standard type bonnet. However, in cases of fin type bonnet or handwheel installation, sdd the respective value shown in the table.

SPECIFICATIONS

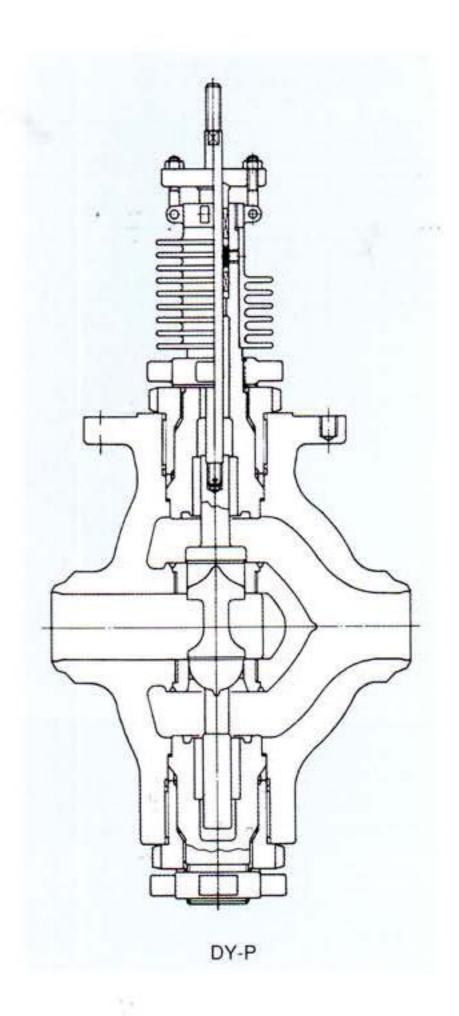
Tice of valve body	Single seated globe valve of casting, with top and bottom guided plug
Pressure rating	JIS 5~63k or ANSI 125~900.
Naminal bore	25~300mm(1~12inch)
Service temperature	-196~550° C (-321~1022° F)
Sendard materials (JIS)	 Valve body assembly FC200, FCD400, CAC403,406, SCPH32, SCPH11, SCPH11, SCPH21, SCPH32,61, SCS13, SCS14. Trim gasket See Table 5.4 "Standard trim materials"
	Packing • Gasket (Asbestos Free) PTFE, graphite etc.

Cv value	See the table below. (Km value: 0.7)
Flow characteristics	Equal percentage, Parabolic, Linear.
Performance	Rangeability 30:1
	Leakage at full closure Not more than 0.01% of the rated Cv value
Maximum allowable pressure drop	Diaphragm type or cylinder type actuator can be mounted. Single action diaphrsgm type is normally used. Max imum allowable pressure drop is shown in the table below
Dimensions and weight	See the table and the figure below.


	804	(3 ^B)		1	00 ^A (4	(B)	16	25 ^A (5 ⁸)	1	504 (6	(8)	2	2004 (8	3 ⁸)	250	(10 ^B)	300	(12 ^B
5	16 20	30 40	63	5 10	16 20	30 40	5 10	16 20	30 40	5 10	16 20	30 40	5 10	16 20	30 40	5 10	16 20	5	16 20
100	300	600	900	125 150	300	600	125 150	300	600	125 150	300	600	125 150	300	600	125 150	300	125 150	200
70	25 40	64 100		10 16	25 40	64 100	10 16	25 40	64 100	10 16	25 40	64 100	10 16	25 40	64 100	10 16	25 40	10 16	25 40
9	6	1	25	15	55 1	90	2	50 3	10	3	90 4	70	5	00 7	20	950	1200	1200	160
38	317	337	375	352	368	394	403	425	457	451	473	508	543	568	610	673	708	737	775
-	:6	204	218	24	40	245	2	92	310	3	12	342	3	78	425	4	20	5	00
100	:0	866	882	98	32	1000	11	50	1155	11	70	1182	14	00	1425	16	570	17	50
3	8	1	02	9	2	130	1	14	157	10	02	158	8	5	172	8	35	10	00
	2	15			276			330			330			522		5	28	5	28
	0.0 0.1 0.2	34 12 24			0.08 0.16														
	0.	4			0.28			0.00											
					0.1			0.06	_		0.04								
					0.35			0.12			0.14								
								0.08	_		0.05			0.03					
								0.15			0.1			0.06					
								0.24			0.16			0.1					
														0.05		0.0)3	0.0)2
														0.1		0.0)6	0.0)5
														0.18		0.1	2	0.0	8
36	108	120	156	142	152	184	240	256	308	290	308	376	510	532	672	715	736	940	960

Dimensional drawing Ho=H+(additional valu in table)

Mass indicated is that of a valve with fin type bonnet, handwheel and positioner (=maximum mass). IEC in the column of rating indicates the ratings of vakve groups formed in terms of face-to-face dimension.


DETAILED SPECIFICATIONS GENERAL PURPOSE TYPE

DOUBLE SEATED CONTROL VALVE FOR HIGH PRESSURE AND HIGH TEMPERATURE USE

This control valve is for high pressure, high temperature (ANSI 1500 \sim 2500) and large capacity applications. The sealing of the joint between the body and the bonnet is the so-called self pressure seal type which tightly seals the joint with a metallic seal ring using the fluid pressure. this allows a compact size inspite of its large pressure and large capacity application.

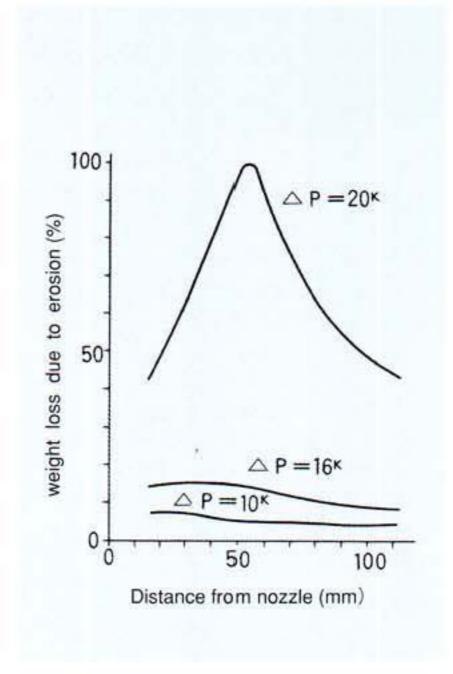
When high pressure steam is decompressed, excessive fluid velocity at the delivery side will generate noise. To avoid this nois generation, the delivery side bore is made to be the same size or twice of the inlet side bore.

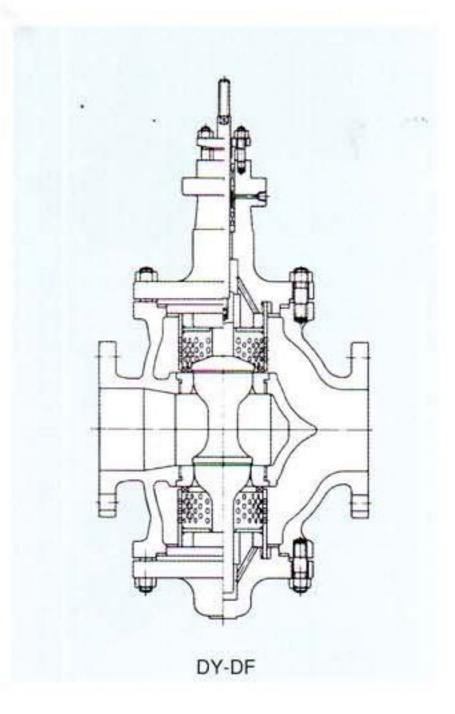
DY-P double seated control valve for high pressure and high temperature use

NOMINAL	BOR	E mm (inc	h)		50 ^A	(2 ^B)	65 ^A (21/28)	80 ^A	(3 _B)	100	A (4 ⁸)	125	(5 ^B)	150	(6 _B)	200	(8 _B)
DATED	Al	NSI	(C	lass)						15	500	25	500					
RATED	IE	С	(PN	l-bar)							-	-						
RATED Cv VALUE	Floe Characteristics Para Eg %		24	14	31	20	36	26	96	56	125	72	155	96	310	19		
WILL SERVICE OF STREET		Fsce to face L G			42	25	4:	25	42	25	4	50	6	00	65	50	7	4
				28	30	30	05	3.	15	38	80	4:	30	47	70	52	20	
DIMENNSIONS (mm)	Height	н		11	90	12	210	13	25	14	60	15	15	15	55	16	10	
(VIIII)	Hei		handw nalval				33	30						52	22			
		additional Actu		r J	Refer	to follw	oing											
				20	4.	.8	4	.4	3.6	4.4								
ALLOWABLE		465		40	9.	.5	8	.7	7.1	8.7								
PRESSURE	шш		Pa)	60	17	.2	15	5.3	12.8	15.3								
DROP (MPa)			×	20	5.	.5	4	.9	4.2	4.9	3.4	3.8	2.6	2.8	2.4	2.6	1.6	2.
	r size (J)	520	llance	40	11	.0	9	.8	8.3	9.8	6.7	7.5	5.3	5.5	4.8	5.3	3.2	4.
(in case of single action	Actuator		Off Balance	60	20).1	18	8.2	15.1	18.2	12.0	13.8	9.7	10.3	8.9	9.7	5.9	7.
diaphragm actuator)	Ac		- B 20							5.7	6.5	4.6	4.8	4.2	4.6	2.8	3.	
	645 40							11.4	13.0	9.1	9.5	8.3	9.1	5.5	6.			
				60							20.6	23.6	16.7	17.7	15.2	16.7	10.2	12
Mass	(kg)	(*1)			29	90	3	70	42	25	59	90	9	15	10	70	17	00

Msss indicated is that of the valve with fin type bonnet, handwheel and positioner (=maximum mass).

DY-DF DY-PF DY-SF


CONTROL VALVE WITH FLASHING GUARDS


SPECIFICATIONS

Tape of valve body	For hige temperature and high pressure use. Double seated globe valve of casting, with top and bottom guided plug
Pressure rating	ANSI 1500 and 2000
leme tore	50 ~ 200A (2~8inch)
Service temperature	Not exceding 700° C.(1292° F)
materials	Valve body assembly SCPH2, SCPH11, SCPH21, SCPH32, SCPH61, SCS13, SCS14. Trim see table 5.4 "Standard Trim materials"
	Paking gasket (Asbestos Free) PTFE grphite etc.
Di ratice	See the table in the left. (Km valve: 0.75)
- aracteristics	Equal percntage and parabolic
Percomance	Rangeability 30: 1
	 Leakage at full closure Not more than 0.5% of the rated Cv value.
Remmum allowable	Disphragm type or cylinder type actuator n be mounted. Single action diaphragm type is normally used. Maximum allowable pressure drop is shown in the table ontheleft
Dimensions and	See the table on the left and the figure below.

Dimensional drawing

Ho=H+(additional valve in table)

This contorol valve is the standard DY-D, DY-P or DY-S control valve equipped with flashing guards inside the valve body. The flashing guard is used to prevent erosion of the inner wall of the body due to flashing fluid.

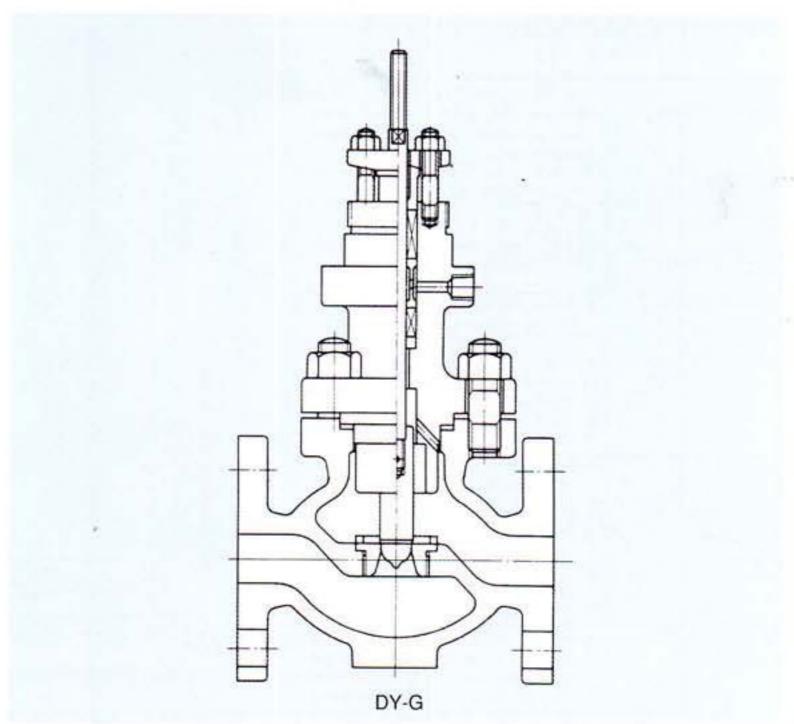
High temperature drain such as that of a drain valve of feedwater heater flows in and flashes out of the throttle at an extremely high velocity. Water droplets in the steam collide on the inner wall of the body and accelerate erosion of that portion. According to our erosion tests, the relationship of loss in weight due to erosion, distance between the throttle and the inner wall of the body, and pressure drop at the throttle is as shown in the figure above.

The flashing guard to be fitted in the body is a cylinder with many holes. The guards are fixed to the bonnet and the cover.

The jet of the flashing fluid coming out of the throttle is dispursed in these guards, and the energy of the jet is locally disipated by the friction due to small holes. As the fluid slowly flows out of the small holes in the circumference of the guard, the direct effect of high energy of the jet out of the throttle is minimized, and the inner wall of the body is thus protected from erosion.

SPECIFICATIONS

For the detailed specifications, see those of DY-D, DY-S, and DY-P control valves. (Page 29, 31, and 33) Cv values are as shown in the following table.


Cv value of control valve with flashing guards

Nominal bore		(2 ^B)	65 ^A (21/2B)	80 ^A	(3 ^B)	100 ^A	(4 ^B)	125 ^A	(5 ^B)	150 ^A	(6 ^B)	200 ^A	(8B)
Cv value	36	26	72	56	96	72	155	125	250	190	390	310	500	310

DETAILED SPECIFICATIONS GENERAL PURPOSE TYPE

SINGLE SEATED CONTROL VALVE

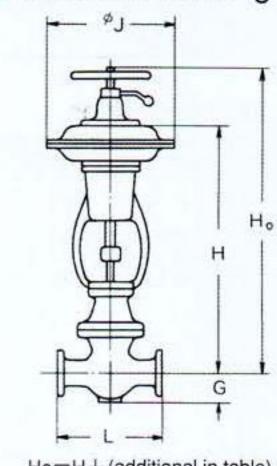
DY-G control valve is a small size single seated valve with top guided plug. In combination with a variety of reduced valve plugs and actuators, it can meet a wide range of services such as large pressure drop and very small flow rate.

SPECIFICATIONS

Type of valve body assembly	Single seated globe valve of casting, with top guided plug.
Pressure rating	JIS 5 ~ 63K or ANSI 125 ~ 1500
Nominal bore	20 ^A and 25 ^A
Service temperature range	-196~550°C(-321~1022°F)
Standard materials (JIS)	 Valve body assembly FC200、FCD400、CAC403、CAC406、 SCPH2、11、21、32、61、SCS13、14
	 Trim See Table 5.4 "Standard trim materials".
	 Packing · Gasket Asbestors free PTFE, graphite, etc.

Cv value	See the table on the right page. (It is possible to produce down to the minimum Cv value of 0.07.) (Km value: 0.8)
Flow characteristics	Equal percentage, parabolic, and linear.
Performance	● Rangeability 20:1~30:1
	 Leakage at full closure Not more than 0.01% of the rated Cv value.
Maximum allowable pressure drop	Diaphragm type or cylinder type actuator can be mounted. Single action diaphragm type is normally used. Maximum allowable pressure drop is shown in the table (page 36).
Dimensions and Mass	See the table and the dimensional drawing on the right page.

DY-G single seated control valve

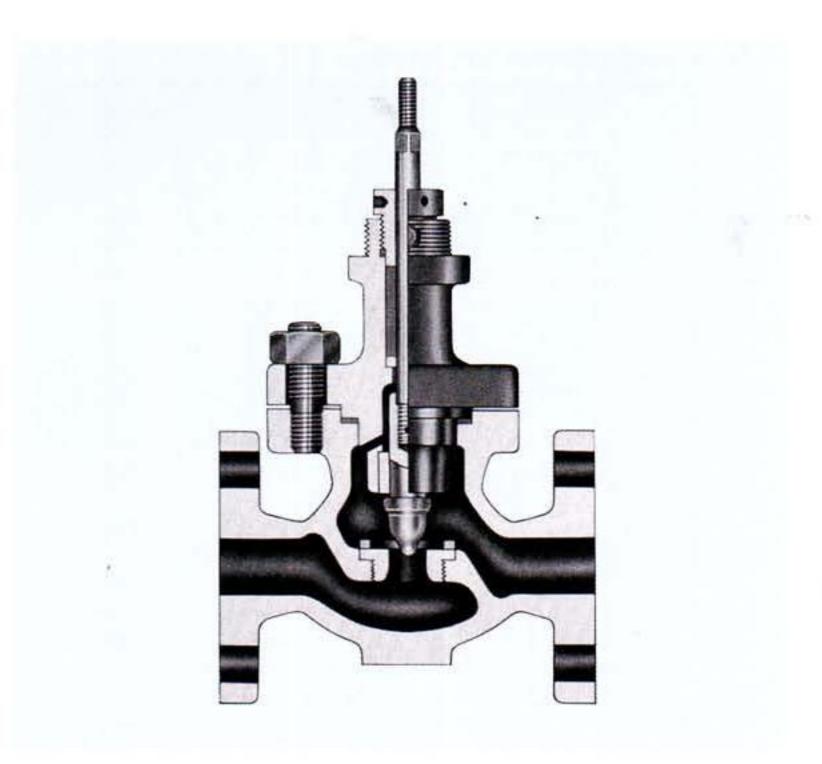

RATING									20 ^A (3/ ₄ E)						25 ^A (1 ^B)		
RATING	JIS	3		(K)	5,	10	16,2	0	30,40		63	(-	100)	5, 10	16,20	30,40	63	(100
	AN	ISI	(Class)	125,	150	300		600		900	1	500	125, 150	300	- 600	900	1500
	IE	C *	(PI	N-bar)	10, 16 25,4		64,100						10, 16	25,40	64,100			
RATED	Flo	w	Eq	%				1.0								-1.3		Managara
Cv	The state of	arac- istics	Pa	ra					Ť T		T						-	(※1)
VALUE			Lin	ear	0.23	0.44	0.8	1.1	1.7	2.3	3.2	4.2	5.4	7.2		9.5		11
	Face	to Fac	e L	(※2)	18	7	194		206		256	2	274	184	197	210	235	274
			н	(%3)		678	3		708		810	9	915	67	8	708	810	915
DIMENSIONS	Height	ional to H	W	ith fin		105	5		100	8	115	1	25	10	5	100	115	125
(mm)		Additional value to H	With	n hand eel		185	5		185		215	2	276	18	5	185	215	276
		Actua	ator	J	Refer	to follo	owing	(J)				- Page						
				20		8.4		4.8	3.	В	1.8	1.5	1.2	0.9		0.7		0.6
		275		40		16.7		9.5	5.	9	3.5	3.0	2.4	1.8		1.5		1.2
				60		25.0		16.7	10	8	6.4	5.5	4.4	3.4		2.8		2.4
ALLOWABLE PRESSURE	(J) mm		a)	20		16.7		9.7	6.	1	3.8	3.2	2.4	2.0		1.6	-	1.4
DROP		355	(кРа)	40		25.0		19.2	12.	3	7.5	6.3	4.8	4.0		3.2		2.6
	Size		Balance	60				25.0	22.	6	13.3	11.6	8.9	6.9		5.7		4.8
in case of single action	Actuator size			20		20.6		11.3	7.	4	4.4	3.8	3.0	2.4		2.0		1.6
diaphragm actuator)	Act	410	9	40		25.0		23.1	14.	7	8.7	7.5	5.9	4.6		3.8		3.2
25.50.10.7				60					25.0		15.7	13.8	10.8	8.4		6.9		5.7
				20		25.0		14.6	9.4	1	5.5	4.8	3.8	3.0		2.4		2.0
		465		40		25	.0		18.	7	11.0	9.7	7.3	5.9		4.7		4.0
				60					25.	0	20.2	17.5	13.4	10.6		8.7		7.1

- In this type, a valve of 25^A bore can adopt the rated Cv of a valve of 20^A bore as reduced valve plug.
- As for face-to-face dimension, new face-to-face dimensions according to IEC are given up to PN100. However, for individual orders, please refer to the dimension indicated on the drawing for approval for the time being. When the same face-to-face dimension as that of a valve already delivered is required, please inform us the relevant serial number of the valve.
- H dimension gives the longest dimension of the valve with the standard type bonnet. However, in cases of fin type bonnet or handwheel installation, add the relevant value shown above.
- Mass indicated is that of a valve with fin type bonnet, handwheel and positioner (=maximum mass).
- EC in the column of rating indicates the ratings of valve groups formed in terms of face-to-face dimension.

=amarks)

- 1. In the table above, the dimensions correspond to the ratings of the rating column.
- In the table above, the allowable pressure drop values correspond to Cv values of the rated Cv value column. (For example, when Cv =3.2, if the actuator size is (J) 275 and the off balance pressure is 40 kPa, the maximum allowable pressure drop is 3.5 MPa.

Dimensional drawing



DETAILED SPECIFICATIONS

DY-GOZ SINGLES

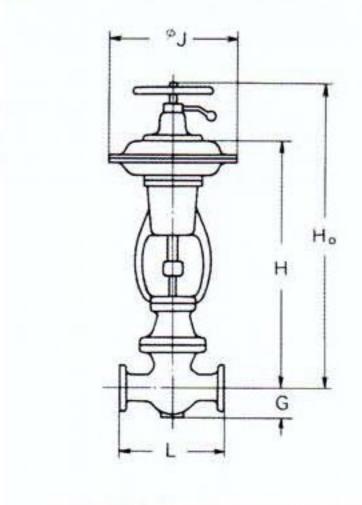
SINGLE SEATED CONTROL VALVE

DY-GOZ control valve is a sister type of DY-G control valve (page 35). It is a simple small-size single seated valve using a smallsize diaphragm type actuator. This type is popular for applications of JIS $5\sim20^K$ ratings.

SPECIFICATIONS

Type of valve body assembly (JIS)	Single seated globe valve of casting, with top guided plug.
Pressure rating	JIS 5~20K or ANSI 125~300.
Normal bore	20 and 25 mm (3/4, 1inch)
Service temperature range	0~200°C (32~392°F)
Standard materials (JIS)	 Valve body assembly FC200, FCD400, CAC403, CAC406, SCPH2, 11, 21, 32, 61, SCS13, 14
materials (010)	Trim See Table 5.4 " Standard trim materials".
	 Packing · Gasket (Asbestors Free) PTFE, graphite, etc.

Cv Value	See the table below. (Km value: 0.8)
Flow characteristics	Equal percentage, parabolic and linear.
Performance	● Rangeability 20:1~30:1
	 Leakage at full closure Not more than 0.01% of the rated Cv value.
Maximum allowable pressure drop	See the table below.
Dimensions and mass	See the table and the drawing below. Lubricator or positioner can not be fitted on this control valve.

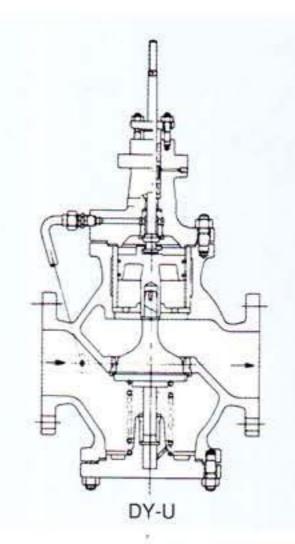

Cv value/Maximum allowable pressure drop

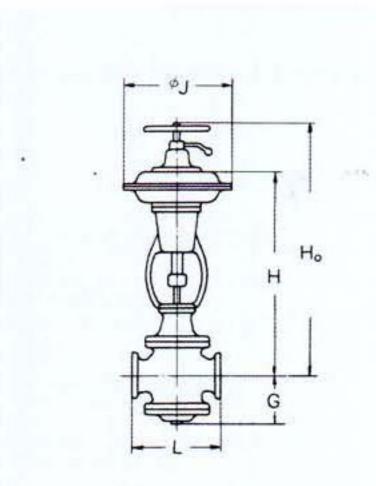
Nominal bore mm							- 25 ^A (1 ^B)
(inch)		-	20 ^A	(3/ ₄ B)	16		25 ^A (1 ^B)
Rated Cv value	0.23	0.44	0.8	1.7	3.2	5.4	9.5
Max. allowable pressure drop (Mpa)		5		2.5	1.5	1.0	0.64

Rating/Dimensions

Norminal	bore	mm (inch)		20 ^A (3/4B)			25 ^A	(1 ^B)	
	JI	S	(K)	5,	10	16,	20	5,	10	16,	20
Rating	AN	ISI	(Class)	125,	150	30	0	125,	150	30	0
	IEC) * (F	N-bar)	10,	16	25,	40	10,	16	25.	40
	L	(*	2)	18	7	19	4	18	4	19	7
Dimensions	ght	Н					40	00			
(mm)	Height		andwheel: nal value				13	35			
	Actuator J						20	00			
Mass (kg)					17	(20)	with I	nandw	heel)		

Dimensional drawing




Ho=H+(additional value in table)

DY-U BALANCE PISTON TYPE CONTROL VALVE

Ho=H+(additional value in table)

This control valve is a single seated valve with a top and bottom guided plug. As the valve is equipped with a piston type balancing mechanism, it has the merit of the single seated valve (low leakage) as well as the property of the souble seated valve (small thrusting force on the valve stem). The valveis more suitable to control of fluid of large pressure drop than DY-S single seated valve.

SPECIFICATIONS

	Balance piston type single seated globe valve of casting, with top and bottom guided plug.
Pessure rating	JIS 5~20K or ANSI 125~300.
Nominal bore	40~300mm(11/2~12inch)
	-196~550°C (-321~1022°F)
Standard materials (JIS)	 Valve body assembly FC200, FCD400, CAC403, CAC406, SCPH2, 11, 21, 32, 61, SCS13, 14
	 Trim SUS403·304·316, or SUS304·316 with stellite building.SCS13·14 or SUS13·14with stellite building.
	Packing • Gasket (Asbestos Free) PTFE, graphite, etc.

Cv value	See the table belpw. (Km value: 0.7)
Flow characteristics	Equal percentage, parabolic, and linear.
Performance	Rangeability 20: 1
	 Leakage at full closure Not more than 0.01% of the rated Cv value.
Maximum allowable pressure drop	Diaphragm type or cylinder type actuator can be mounted. Single action diaphragm type is nomally used. Maximum allowable pressure drop is within 6 times of that of DY-S single seated valve.

DY-U balance piston type control valve

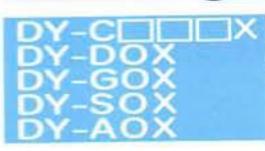
NOMINA	AL B	ORE mm	(inch)	40 ^A (11/2B)	50 ^A	(2^{8})	65 ^A (21/28)	80 ^A	(3_B)	100	A (4B)	125	(5 ^B)	150	(6B)	200	(8B)	250 ^A	(10^8)	300 ^A	(12 ⁸)	
	JIS		(K)	5 10	16 20	5 10	16 20	5 10	16 20	.5 10	16 20	5 10	16 20	5 10	16 20	5 10	16 20	5 10	16 20	5	-	5	-	
FIATING	AN	SI	(Class)	125 150	300	125 150	300	125 150	300	125 150	300	125 150	300	125 150	300	125 150	300	125 150	300	125 150	-	125 150	2 -	
	IEC	*	(PN-bar)	10 25 16 40		10 16	25 40	10 16	25 40	10 16	25 40	10 16	25 40	10 16	25 40	10 16	25 40	10 16	25 40	10 16	s-3	10 16	-	
RATED Cv VALUE	Flo cha istic	aracter- Para		26		40		7	2	1	10	1	70	25	50		90	100	50		50		1400	
	Fac	ce to Fac	ce L (※1)	222	235	254	267	276	292	298	317	352	368	403	425	451	473	543	568	673	17 <u>—</u> 5	737	_	
			G	155		160		18	30	19	90	22	20	24	10	28	30	340		455		465		
MENSIONS	Height		H (※2)	764		842		86	38	89	90	10	00	1156		1192		1420		1758		1820		
(mm)	He	Additional	With fin					1(00						12		20		30	146		138		
		value to H	With hand- wheel	18	35			2	215				276		33		Ů	522		5		28		
	Ac	tuator J	I.	275	355		35	55	4	10		410	465	46	65	52	20	520 645			64	45		
		URE DROP (MPa) diaphragm actuator)		With	in 6 tir	nes of	that o	f DY-S	single	e seate	ed val	/e.												
Mass (kg)		(※3)		62	66	90	95	100	105	115	120	160	165	265	275	310	330	560	580	780	800	1050	110	

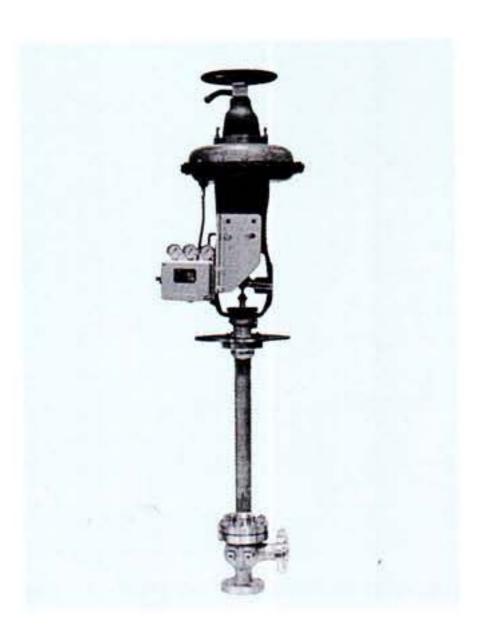
- As for face-to-face dimension, new face-to-face dimensions according to IEC are given. For individual orders, however, please refer to the dimension indicated in the drawing for approval. When the same face-to-face dimension as that of a valve already delivered is required, please inform us the relevant serial number of the valve.
- H dimension gives the longest dimension of the valve with the standard type bonnet. In cases of fin type bonnet or handwheel installation, add the respective value shown above.
- Mass indicated is that of the valve with fin type bonnet, handwheel and positioner (=maximum mass).
- EC in the column of rating indicates the ratings of valve groups formed in terms of face-to-face dimension.

FEATURES

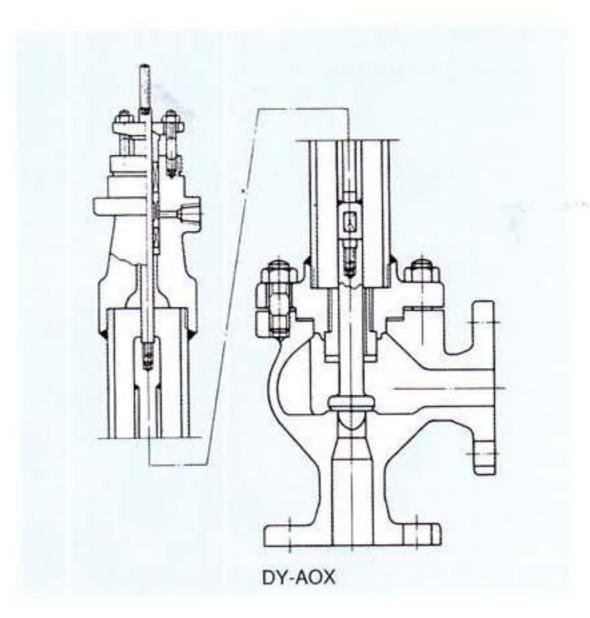
NAKAKITA'S CONTROL VALVES ARE WIDELY ADOPTED IN MANY PLANTS ALL OVER THE WORLD!

DY SERIES CONTROL VALVES


GENERAL PURPOSE TYPE CONTROL VALVES


BUTTERFLY TYPE CONTROL VALVES

FEATU	RES	BUTTERFLY TYPE CONTROL VALVES
	RICH SELECTIONS	 [NAKITA control valves] have been adopted as optimum products of high quality for services ranging from high temperature & high pressure to cryogenic temperature & vacuum in all types of industrial facilities such as nuclear power, thermal power, iron and steel making, chemical plants, and ships.
2	HIGH RELIABILITY	 [NAKITA control valves] are designed with high level technical standards. The production of valves in series has been established on the basis of high reliability of individual valves which has been confirmed by verification tests conducted by our highly competent technical staff using the latest facilities.
3	STABLE QUALITY	 Every production process is thoroughly controlled by competent NAKAKITA- men well trained for quality control. They are assisted by fully rationaliezed facilities including NC machines and by carefully maintained measuring instruments. From general purpose valves to special ones, NAKAKITA assures stable and reliable quality. (ISO9001)
4	ECONOMICAL MECHANISM	 [NAKITA's technical capability] nurtured by numerous past performances and persistent research and development efforts is utilized in every detail of individual products and systems. The economical mechanisms thus created contribute much to saving energy and lowering costs.
5	EASY MAINTENANCE	 Every type is designed with due consideration given to maintenace. [NAKAKITA cage type] pursuing further ease in maintenance is now in production in series. Our nationwide network of after-sale service promises quick and satisfactory services after delivery, including supply of parts and field service. [After-delivery management] of our products is exercised by each serial number.
6	COMPREHENSIVE	 Since NAKAKITA executes integrated production, from design to manufacture, of valves and their accessories for automatic control systems, including control valves, as the core, and various pneumatic indicating controllers, we provide you with the optimum planning for automation of various systems.
7	CERTIFICATION OF PUBLIC AGENCIES	 We are certified to produce high pressure gas valves for services of 500K and under, and of ranges from high temperature down to ultra-low temperature, by the Minister of International Trade and Industry in accrdance with the High Pressure Gas Control Act. We have many actual results in various high pressure gas facilities including LNG facilities. Our prorudcts have passed the environmental tests for unmanned machinery space system given by each classification society, and have lived up to the customers' expectation on the seas.
8	ADVANCES INTO NEW TECHNICAL FIELDS	 With our reliable engineering capability based on numerous past performances and competent engineers, we are actively challenging to meet the new and severe needs including nuclear power generation, gas turbine generator low temperature plant, coal & oil mixture fuel, and saline water conversion plant. We are fully prepared to meet the customers' requirements.



CONTROL VALVE FOR LOW TEMPERATURE USE

DETAILED SPECIFICATIONS

The demands for control valves for so-called low temperature range services like handling LNG (liquiefied natural gas), oxygen, nitrogen or helium are now increasing. And their service requirements are becoming severer.

The valves indicated here are control valves each of which consists of a standard valve body assembly and an extension type bonnet. Many types are provided to control fluids of low and very low temperature ranges and to meet the diversifying low temperature specifications.

- The length of the extension type bonnet is determined according to temperature as shown in the table on the right page.
- As to the gland packing, complete sealing is assured by our special combination developed and demonstrated by many low temperature experiments.

DY-AOX control valve for low temperature use

NOMINA	L BC	ORE mm	(inch)		15^((1/ ₂ 8)		20 ^A	(3/ ₄ B)	25^	(1 ⁸)	32 ^A (1½ ⁸)	40 ^A (1½B)	50 ^a	(2 _B)	65 ^A (21/ ₂ B)	80^	(3 _B)
RATED Cv \	/ALL	JE			1.1	1.7	2.3	3.2	4.2	5.4	7.2	9.5	18	24	26	31	36	48	72	96	96	125
		e to Fa	ce L ₁	X L2				100>	×110				120>	<110		120>	<130		140>	<140	170>	<170
DIM EN-	1000000		Н	(※1)						15	90								16	70		
SIONS	Height	Addition with ha	nal val							18	85								21	15		
(mm)		Actuator	(3.0)	561	Refe	er to fol	lowing	(J)														
		10,000.00	ŤТ	20	2.0	1	.5	1.0	0.9	0.74	0.61	0.51	0.26	0.24	0.2	0.15						
		275		40	20.00.00	12 20			1.8	1.5	1.23	1.02	0.51	0.46	0.4	0.3						
				60		2	2.0		2	.0	2.0	1.9	0.94	0.84	0.75	0.55						2000
	3		1	20					1.9	1.6	1.3	1.1	0.53	0.48	0.42	0.32	0.24	0.2	0.15	0.13	0.13	0.0
		355		40					-		32		1.06	0.95	0.83	0.63	0.48	0.4	0.3	0.26	0.26	0.1
		000		60					2	.0	2	2.0	2.0	1.8	1.6	1.2	0.87	0.75	0.55	0.47	0.47	0.3
ALLOWABLE	_			20													0.29	0.25	0.18	0.15	0.15	0.
PRESSURE	(J) mm	410	(кРа)	40													0.57	0.5	0.36	0.3	0.3	0.
DROP	e (C		400.00	60													1.04	0.9	0.64	0.55	0.55	0.3
(MPa)	r size		ance	20																		
(in case of single action	Actuator	465	Off Balan	40	1																	
diaphragm actuator)	Act		9	60																		
actuatory				20																		
		520		40																		
				60																		
				20					1													
		645		40																		
				60																		
Mass	/1\	1	*2)				60			62		65		68	1	75	9	95	1	15	1	40

H dimension gives the longest dimension of the valve with bonnet of 1000 mm in length. In case of the valve with a handwheel, add the respective value (*1)shown in the table.

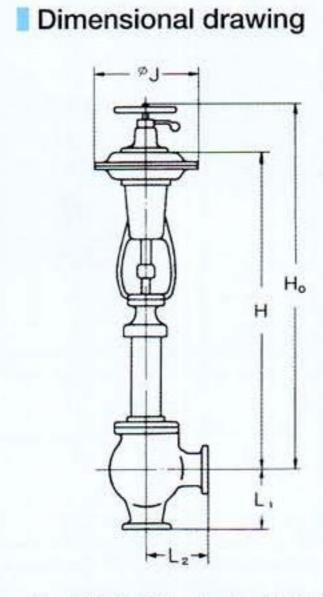
Mass indicated is that of the valve with a handwheel and a positioner (=maximum mass).

SPECIFICATIONS

the following specifications, those marked \(\frac{1}{2} \) describe DY-AOX. For other types, see the pages of the relevant type.

toe of valve body assembly

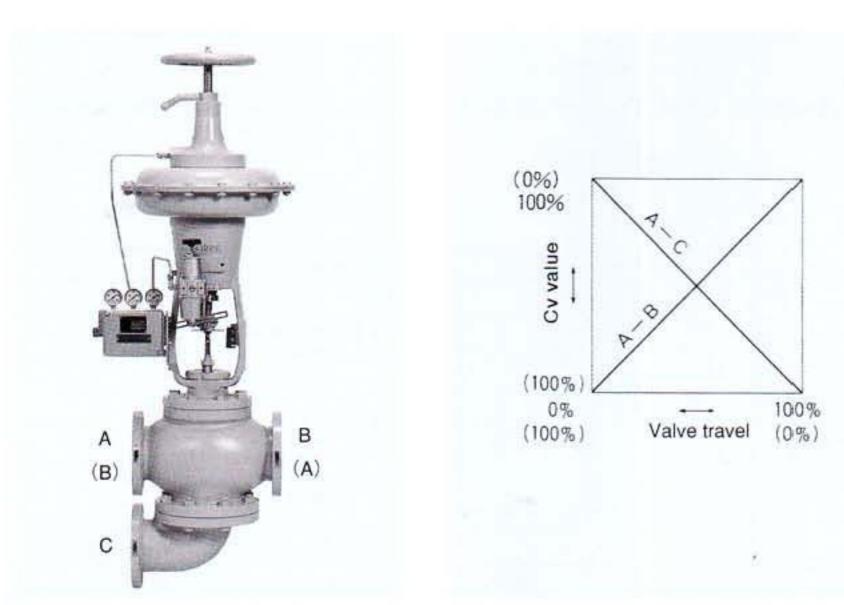
Type of valve body	Description
DY-C CX	DY-C valve (pagw 19 to 24) combined with an extension type bonnet.
DY-AOX	DY-A valve (single seated angle valve of casting, with top guided plug) combined with an extension type bonnet.
DY-DOX	DY-D valve (page 29) combined with an extension type bonnet.
DY-GOX	DY-G valve (page 35) combined with an extension type bonnet.
DY-SOX	DY-S valve (page31) combined with an extension type bonnet.


Pressure rating	JIS 5~40K, or ANSI 125~900.		
Nominal bore	15~300 ^A		
Standard materials (JIS)	 Valve body assembly CAC403, CAC406, SCPL1.11.21.31, SCS13.14 		
	• Trim (SUS304•316, or SUS304•316 SCS13•14, or SCS13•14		
	Packing • Gasket (Asbestos Free) PTFE, graphite, etc.		
Cv value	See the DY-AOX table below. (Km value: 0.7)		
Flow characteristics	Equal percentage, parabolic, and linear.		
Performance	Rangeability 30: 1		
	Leakage at full closure Not more than 0.01% of the rated Cv value.		
Maximum allowable pressure drop	Diaphragm type or cylinder type actuator can be mounted. Single action diaphragm type is normally used. Maximum allowable pressure drop is shown in the table below.		
Dimensions and mass	See the table and the drawing below.		

Length of extension type bonnet

Temperature range (℃)	Lenght (mm)
-100 and over, and less than -20.	150 and over.
-196and over, and less than -100.	350 and over.

100* (4 ⁸)		125 ^A (5 ^B)		150 ^A (6 ^B)		200 ^A (8 ^B)		250 ^A (10 ^B)		300 ^A (12 ^B)	
55	190	250	310	390	470	500	720	950	1200	1200	1600
180×180			200×200		250×250		280×280		320×320		
1750 18			350		2010		2230				
276			33	30		52	22	528			


					100000000000000000000000000000000000000	Contract Contract			1 2 2 2 2 2 2 2 2	
1750 1850 276 330			0	20	10	2230				
			522			528				
1.08	0.08									
16	0.15									
3.3	0.28									
3,1	0.09	0.07	0.06	0.05						
0.2	0.18	0.14	0.12	0.09						
38	0.35	0.26	0.22	0.16						
		0.08	0.07	0.05	0.04	0.03				
		0.17	0.14	0.1	0.07	0.06				
		0.31	0.26	0.2	0.12					
					0.06	0.05	0.04	0.04	0.03	0.03
					0.11	0.1	0.08	0.07	0.06	0.05
					0.2	0.19	0.15	0.14	0.1	0.09
190		33	335 425		640		730		850	

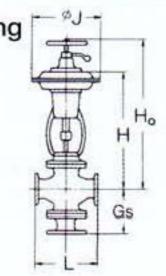
Ho=H+(additional value in table)

GENERAL PURPOSE TYPE

3-WAY CONTROL VALVE

This control valve is mainly used for temperature control of cooling water fed to large-size diesel engine or speed reducer, or of lubricating oil system.

Depending on the direction of the flow of the fluid, the valve can be used for mixing (from two ways to one way) as well as stream splitting (from one way to two ways). However, the valve is normally used for blending which gives better controllability.


The bottom side connection is available in two types, bend types.

The bottom side connection is available in two types, bend type and straight type, to suit the application.

SPECIFICATIONS

Type of valve body assembly	Single seated 3-way valve of casting, with top and bottom guided plug.					
Pressure rating	JIS 5K and 10K, or ANSI 125 and 150.					
Nominal bore	25~350mm (1~14 inch)					
Service temperatue range	0~220°C (32~428 F)					
Standard materials	Valve body assembly FC200, CAC403, SCPH2, SCS13+14					
(JIS)	• Trim SUS304·316 or SCS13·14					
	 Packing • Gasket (Asbestos Free) PTFE, graphite, etc. 					
Cv value	See the table below. (Km value: 0.72)					
Floe characterstic	Linear					
Performance	Rangeability 30: 1					
	 Leakage at full cloaure Not more than 0.1% of the rated Cv value 					
Maximum allowabe Pressure drop	Diaphragm type or cylinder type actuator can be mounted. Single action disphragm type is normally used. Maximum allowable pressure drop is shown in the table below.					
Dimensions and mass	See the table and the figure					

Dimensional drawing

2000 C

BUE!

DE SE

SWE

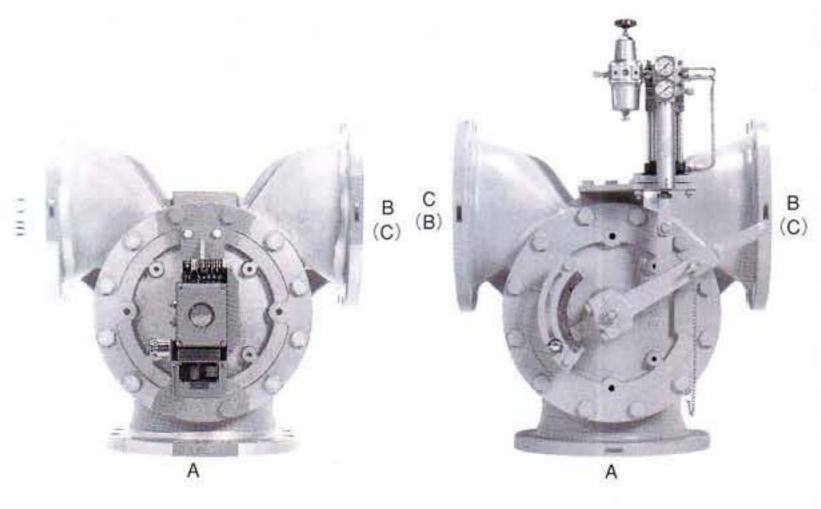
DHUNCH

Ho=H+(additional value in table)

DY-T 3-Way Control Valve

NOMINA	L BO	RE mm	(inch)		25 ^A	(18)	40 ^A (11/2B)	50 ^A	(2B)	65 ^A (21/28)	80 ^A	(3B)	100	(4 ^B)	125	(5B)	150	(6B)	200	(8B)	250 ^A	(10^{8})	3004	(128)	350 ^A	(148)	
	JIS	3		(K)	5	10	5	10	5	10	5	10	5	10	5	10	5	10	5	10	5	10	5	10	5	10	5	10	
RATING	AN	ISI	(C	lass)	125	150	125	150	125	150	125	150	125	150	125	150	125	150	125	150	125	150	125	150	125	150	125	15	
	IE	C *	(PN	l-bar)	10	16	10	16	10	16	10	16	10	16	10	16	10	16	10	16	10	16	10	16	10	16	10	16	
RATED Cv VALUE	Flo	w arac- stic	L	inear	9	.5	3	3	4	8	8	16	1	15	18	30	27	70	40	00	63	30	95	50	140	00	19	00	
		JIS		(FC20)	162		260					308	316	324	350		420		480	400	570	574	740	748	860	000	900	90	
	L	ANS	1	(FC20)	158	1770	258	268	260	268	300	introducement	318	And in case of	The second second	1.300	428	428	488	488	58	30	75	50	868	868		0	
DIMEN-	Gb Bend type			_	50	22	21	22	21	1	81	_	96	219		2	75	32	21	3	70	45	59	52	20	58	31		
SIONS	-	as Strai	-			19-12	200	10	100	15	100	25		10	7.77	35	100000	00	-	40	-	75	43	-	48		53	30	
(mm)	-	4	,	(※1)	67	78	-	32	-	50	-	45	-	52	_	55	-	42	98	85	11	58	13	95	14	40	14	92	
			th ha	ndwheel			85	-	12.5		-		15	-1			-	76		30		22			52	8		31000	
	value		ator .		Refe		follow	vina (J)			1000																	
				20	0.		0.:		1																				
		275	1	40		14	-	42				.16			0.00														
				60	-	71	1	62															-						
	220	355	355		20	1.		1	44	0.	24	0.	16	0.	12	0.0	08												
				355		40	2.		0.	87	0.	48	0.	32	1000	24	0.	16											
	3		(F)		3.	6	1.	1	0.		0.	.48	0.3	0.36		.16	į.												
) e:		(кРа)	20					0.	32	0.	19	0.	15	0.	1	0.	07											
ALLOWABLE	size	410	0)	40					0.	63	0.	38	0.3	3	0.:	2	0.	14											
PRESSURE	Actuator		Balano	60					0.	95	0.	56	0.4	45	0.3	3	0.	21											
DROP	cf.		Bal	20													0.	08	0.	06									
(MPa)	×	465	Off B	40													0.	16	0.	12									
				60													0.	24	0.	18				-					
(in case of single action	ΙÍ			20															0.	07	0.	05							
diaphragm		520		40															0.	14	0.	1							
actuator)				60															0.	21	0.	15							
				20																	0.	09	0.0	05	0.0)4	0.0	03	
		645		40																	0.	18	0.	1	0.0	08	0.0	06	
				60																	0.	27	0.	15	0.1	11	0.0	80	
Mass	(kg)		(%2)	6	0	1	10	13	35	1	45	15	55	2	15	2	75	34	40	53	30	80)5	88	30	98	30	

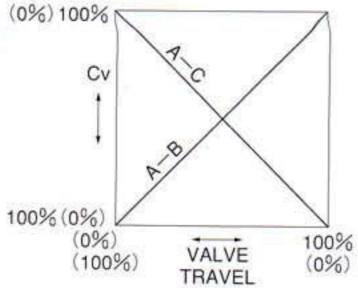
H dimension gives the longest dimension of the valve with the standard bonnet type. For the valve with a handwheel, add the value shown above. (* 1)


Mass indicated is that of the valve with handwheel and positioner (=maximum mass). (* 2)

Gb dimension in the table indicates those of ANSI flanged valves. $(\times 3)$

IEC in the column of rating indicates the ratings of valve groups formed in terms of face-to-face dimensions.

3-WAY MIXING CONTROL VALVE WITH ROTARY PLUG



SPECIFICATIONS


Type of valve body	Rotary plug type 3-way valve of casting
Pressure rating	JIS5K,10K、ANSI 125,150
Nominal bore	80~650A
Service temperature range	0~100°C
Standard material (JIS)	 Valve body FC、FCD、CAC403、SCPH2、SCS13 Trim CAC403、CAC406、SCS13、SCS14 Gasket Asbestos free
Cv value Flow characteristic	See the table below (Km:0.8) Linear
Flow direction	Mixind type (550A~650A Mixing type only) divideing type
Performance	Rangeability 30: 1
renormance	Maximum seat leakage 2% of rated Cv (Max.)
Actuator	Cylinder type, Diaphragm type or Motor type

Inherent flow characteristic

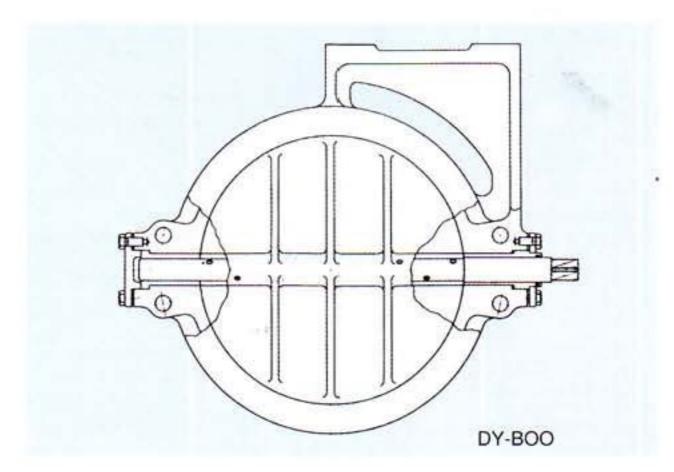
Dimensional drawing

Motor type

Diaphragm type

The applications and function of this control valve are the same those of DY-T 3-way control valve already mentioned, bowever this valve is more suited to larger capacity or lager core applications. The construction is simple with a small number of components. It's a rotary plug type 3-way valve where the flow channel is altered by turning the valve plug. For handling corrosive fluids such as sea water, it is possible to apply corrosion-resistant rubber lining or other coating onto the numer wall of the body. As the turning torque of the valve stem a small size actuator can be used, and the required space can be small. The valve can be mainpulated by mean of the level.

DY-M 3-way mixing control valve

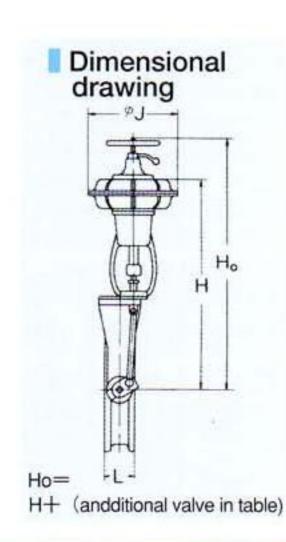

NOMINAL	BORE mm	ı (ir	nch)	804	(3_B)	100	(4B)	125 ^A	(5 ⁸)	1504	(6 ⁸)	2004	(8 _B)	250^	(10 ^B)	300 ^A	(128)	350^	(148)	400 ^A	(168)	450 ^A	(18 ⁸)	5004	(20 ⁸)	550 ^A (22 ^B)	600 ^a (24 ^B)	650ª (26 ¹		
	JIS		(K)	5	10	5	10	5	10	5	10	5	10	5	10	5	10	5	10	5	10	5	10	5	10	5	5	5		
RATING	ANSI		(Class)	125	150	125	150	125	150	125	150	125	150	125	150	125	150	125	150	125	150	125	150	125	150	125	125	125		
	ISO	* (PN-bar)	10	16	10	16	10	16	10	16	10	16	10	16	10	16	10	16	10	16	10	16	10	16	10	10	10		
RATED CV	200000000000000000000000000000000000000	acte	rristics ar	13	25	15	90	3	10	47	70	72	20	12	00	16	00	22	00	28	00	39	00	48	300	5400	6600	7800		
		,n(-	JIS	286	294	290		320	328	360		450	454	550	558	660		730	738	820	832	960	976	1024	1040	1090	1200	1300		
L-manage even	Face t	L	ANSI	288	298	298	298	328	328	368	368	460	460	560	560	668	668	740	742	834	834	980	980	1048	1048	_	_	=		
DIMENSION	100000		ISO	294	294	298		332	332	368		454	462	564	582	660		730	742	824	836	964	980	1028	1044	_	-	_		
mm)	1.1968/4/50		JIS	215	219	215		250	254	285		365	367	435	439	510		565	569	625	631	725	733	781	789	882	996	1052		
	Hight	ht G ANSI	216	221	219	219	254	254	289	289	370	370	440	440	514	514	570	571	632	632	735	735	792	792	_		-			
			ISO	219	219	219		256	256	289		367	371	437	441	510		565	571	627	633	727	735	783	791		_			
	Size (mn	n)								63								7		80				10	00		125			
NOR TYPE	Hight H	(m	m)		55	56		54	2	52	27	49	2	46	3	46	55	47	77	47	6	47	5	50	00	360	385	413		
	Mass (kg	g)		5	0	5	0	6	0	8	5	11	0	18	80	25	50	31	0	44	10	60	603				50	1080	1300	1600
	Size J ((mm	1)					355	410					410	465	46	55	52	20	520	645		64	15		122	_	-		
TYPE A	Hight H	(m	m) (※1)			60	10		58		58	84		630		7		714		840		10		1055		-	_			
	Additional value	ue:wit	h handwheel		270			0					33	2	,	38	35				54	0			-	-	_			
	Mass (kg	Mass (kg) (※2)		8	7	9:	2	10	0	12	5	15	0	24	0	37	5	43	5	63	10	76	5	91	0	-	_	_		

- H dimension indicates the longest dimension. However when the valve is fitted with the handwheel, add the respective value shown in the table abobe.

 Weight indicated is that of the valve with a handwheel and positioner. (=maximum mass)
- Motor type of hight add to a half of flange diameter.
- ISO in the column of rating indicates the ratings of valve groups formed in terms of face to face dimension.

DY-B BUTTERFLY VALVE

This control valve has a simple construction, and in comparison with the globe type control valve, is suitable to relatively low pressure drop services of large capacity or large bore. Many control valves of this type have been used in a wide rang of services from low temperature to high temperature.


This wafer type (binding type) valve has a very small face-to-face dimension and can be easily connected to the piping system by means of through bolts.

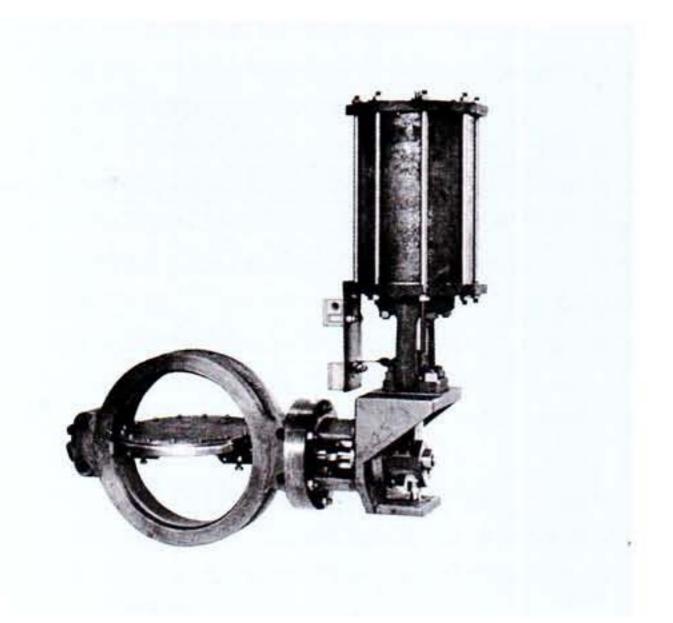
For handling corrosive fluids such as sea water, it is possible to apply rubber lining of coating onto the inner surface of the body.

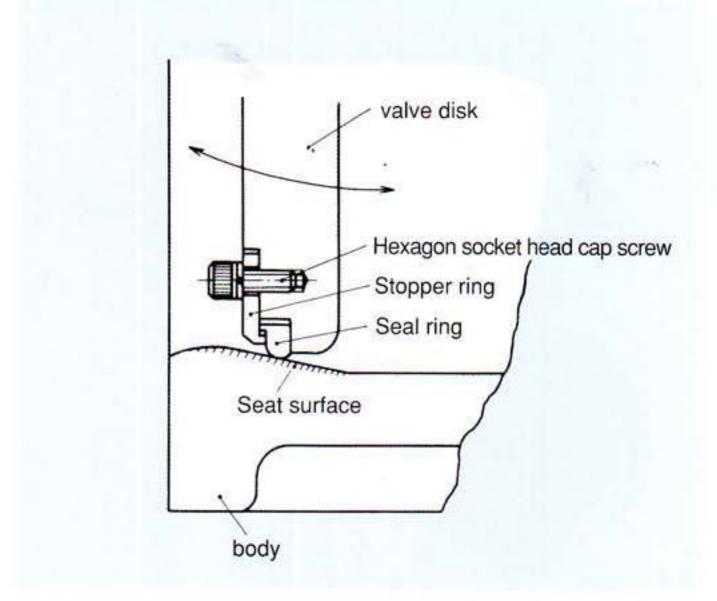
SPECIFICATIONS

Type of valve body assembly	Wafer type butterfly valve of casting.						
Pressure rating	JIS 5K、10K or ANSI 125 • 150						
Nominal bore	100~700 mm (4~28 inch)						
Service temperature range	-196~550°C (-321 ~ 1022° F)						
Standard materials	 Valve body assembly FC200、FCD400、CAC403、CAC406、 SCPH2、11、21、32、61、SCS13、14 						
	 Trim SUS403 • 304 • 316, SCS13 • 14 						
	 Packing, Gasket (Asbestors Free) PTFE, graphite, etc. 						

Cv value	See the table below. At fullyp open position, Km value: 0.38 Xt value: 0.32
Flow characteristics	Approximately parabolic characteristic
Performance	Rangeability 20:1 Leakage at full closure Not more than 3% of the rated Cv value
Maximum allowable pressure drop	Diaphragm type or cylinder type actuator can be mountes. Single action diaphragm type is normaly used. Maximum allowable pressure drop is shown in the table below.
Dimensions and mass	See the table below and the figure on the right.

DY-B butterfly control valve


NO	IMC	NAL	BOF	RE mm (i	nch)	100 ^A (4 ^B)	125 ^A (5 ^B)	150 ^A (6 ^B)	200 ^A (8 ^B)	250 ^A (10 ^B)	300 ^A (12 ^B)	350 ^A (14 ^B)	400 ^A (16 ^B)	450 ^A (18 ^B)	500 ^A (20 ^B)	550 ^A (22 ^B)	600 ^A (24 ^B)	650 ^A (26 ^B)	700 ^A (28 ^B	
Hei	F	RATE	ОС	v VALUE		220	400	580	1030	1600	2300	3100	4000	5200	6400	7500	9000	10500	12000	
S	F	ace t	o F	ace L	(※1)		8	80 100				15	12	20	140			180		
SIO	H	leight	Н	(※1)		93	35	950	975	1005	1295	1325	1355	1390	1430	1465	. 1495	1535	1575	
DIMENSIONS (mm)			Add	ditional va h handwh	lve; eel			385			540									
5			100	tuator J		Refer t	o followin	ıg (J)												
				Range	20~100	0.32	0.16	0.09	0.04	0.02										
רטהט		275		when open (kPa)	40~200	0.38	0.2	0.12	0.07	0.04										
				Off Balance	20	2.0	1.2	0.66	0.4	0.3										
	mm Pa)	kPa)	when close (kPa)	40	2.0	1.2	0.66	0.4	0.4											
3	(J) mm	355	~	Range	20~100	0.36	0.19	0.11	0.05	0.03	0.02	0.02	0.01	0.01	0.01					
	size (Balance	(kPa)	40~200	0.38	0.2	0.12	0.07	0.05	0.04	0.03	0.02	0.02	0.01					
(Kgh/cm²)				Off Balance	20	2.0	1.2	0.66	0.4	0.35	0.28	0.18	0.12	0.08	0.06					
(Kgh	Actuator	410	5	when close (kPa)	40	2.0	1.2	0.66	0.4	0.4	0.4	0.25	0.24	0.16	0.12					
3	Ä			Range	20~100						0.04	0.02	0.02	0.01	0.1	0.01	0.01	0.01	0.01	
2				when open (kPa)	40~200						0.66	0.04	0.03	0.02	0.14	0.15	0.02	0.01	0.01	
		465		Off Balance	20						0.4	0.25	0.2	0.15	0.1	0.11	0.09	0.07	0.08	
				when close (kPa)	40						0.4	0.25	0.24	0.17	0.17	0.13	0.16	0.14	0.11	
	Mas	s (kg	9)	(*:	2)	140	145	150	170	180	235	245	265	290	340	380	410	495	600	

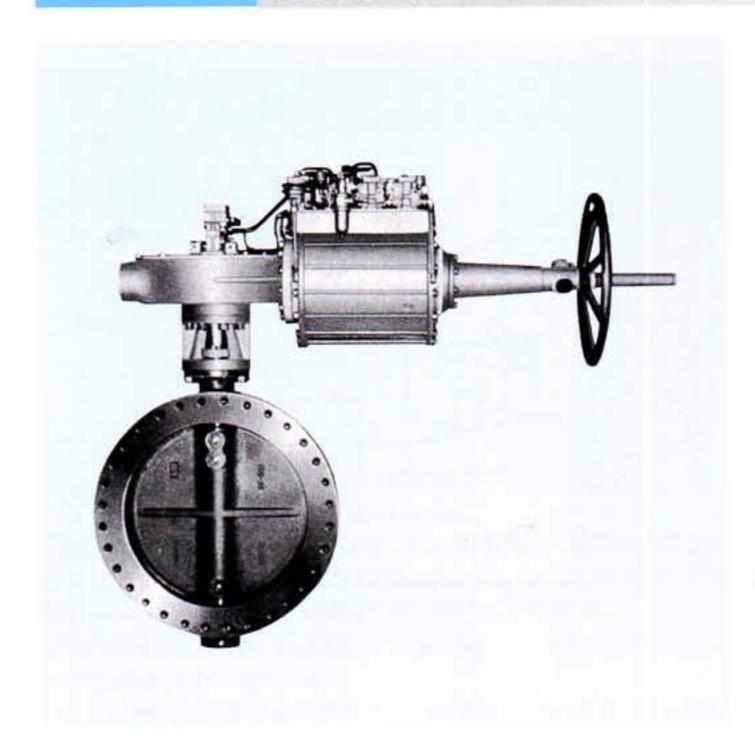

^(1) H dimension gives the longest dimension. However, when the valve is fitted with a handwheel, add the respective value shown above.

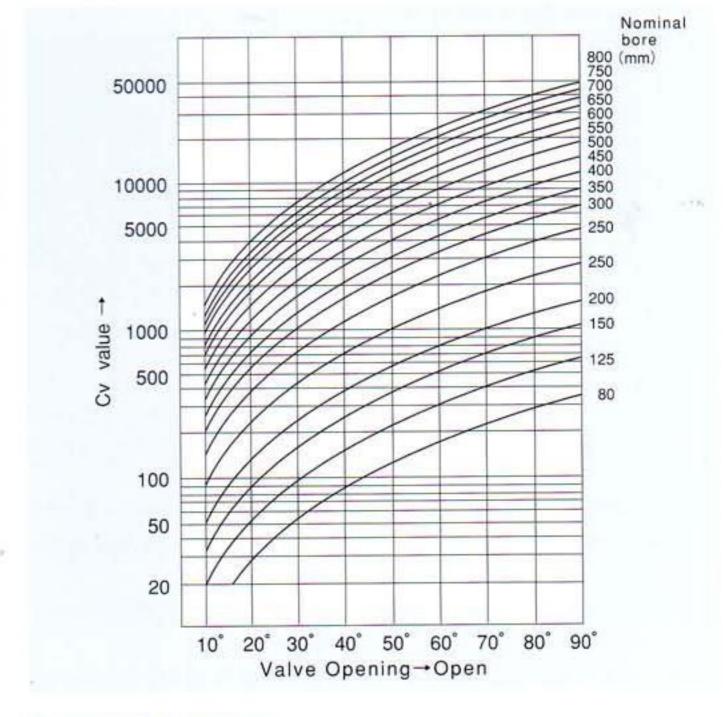
^(32) Mass indicated is that of the valve with a handwheel and positioner (=maximum mass).

DY-BR LOW LEAK BUTTERFLY CONTROL VALVE

For relatively low pressure drop services of large bore, butterfly valves have advantages in space and cost. This control valve uses a seal ring construction to minimize leakage at full closure, which is the weak point of butterfly valves, and assures low leakage of not more than 0.1% in a wide temperature range from low to high,

An appropriate slope is formed on the seat surface of the body by building stainless steel so as to ease sliding-in of the seal ring as well as to add corrosion resistance. On the other hand, a flexible seal ring margin for fixing is fitted on outer circumference of the valve disk with a stopper ring so as to obtain smooth leak-off. The stopper ring is for the seal ring as well as preventing slip-off.


This control valve is normally used for all typesof fluid, gas, vapor or liquid, However, it is not suitable to corrosive fluids like sea water or fluids with much slurry or scale.

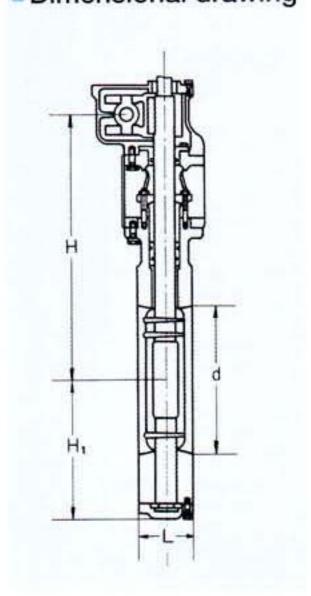

SPECIFICATIONS

Type of valve body assembly	Wafer type butterfly valve of casting. Seal ring construction.
Pressure rating	JIS 5K and 10K or ANSI 125 and 150
Nominal bore	100~700 ^A (4~28 inch)
Service emperature range	−196~550°C (-321 ~ 1022°F)
Standard materials	Valve body asseembly SCPH2 • 11 • 21 • 32 SCPL1 • 11 • 21 • 31
	 Trim SUS304 (surface-hardened), or SCS13 (surface- hardened).
	 Packinng · Gasket (Asbestors Free) PTFE, graphite, etc.
Or value	See the table (page 43).
Flow characteristic	Approximately parabolic characteristics.
Performance	Rangeability 1
	 Leakage at full closure Not more than 0.1% of the rated Cv value.
Maximum allowable pressure drop	For single action diaphragm type, see the table (page43). For cylinder type, it is obtained from the output ratio to the abovementioned diaphragm type shown in the detailed data on actuators on page 50, which is about 5 times larger.
Dimensions and Mass	See the table (page 43).

DETAILED SPECIFICATIONS BUTTERFLY VALVE

ID SERIES DAMPER TYPE BUTTERFLY CONTROL VALVE

This valve is similar to DY-B type butterfly control valve, and is equipped with a cylinder type actuator.


As no valve seat is provided for sealing at full closure, there is a slight gap left between the zalve body and the valve disk, and some leakage can not be avoided. We have many actual results of this valve for special applications such as fluid flow rate control around intermediate valve travel.

The power source of actuator is mainly pneumatic. The pneumatic type is a combination of a pneumatic positioner and a cylinder, and the pressure is normally 0.49 to 0.69MPa. We also produce oil hydraulic type and electric type.

SPECIFICATIONS

Type of valve assembly	Wafer type butterfly valve of casting.						
Pressure rating	JIS 5K~16K, or ANSI 125~150.						
Nominal bore	80 ^A ~1500 ^A						
Service temperature range	0~425°C (32~797°F). When the temperature exceeds 70°C, the frame type is used.						
Standard materials	 Valve body assembly FC200, FCD400, SCPH2(SCS13, 14), etc. 						
	 Valve disk SC (outer circumference:SUS304 facing), etc. 						
	 Packing · Gaskket (Asbestos Free) PTFE, graphite, etc. 						
Cv value	See the figure above.						
Flow characteristics	See the figure above.						
Performance	Rangeability 20: 1						
	Leakage at full closure Max. 5% of the Cv value.						
Dimensions and Mass	See the figure above.						

Dimensional drawing

Table of dimensions and weight

able of dime	nsions a	ind weig	gnt					(m
Nominal bore mm (inch)	d	L	H/HG *	H ₁	l1	l ₂	l ₃	Weight (kg)
80 ^A (3 ^B)	80	60	253/353	120	325	98	40	55/65
100 ^A (4 ^B)	100	60	268/388	124	325	102	40	67/78
150 ^A (6 ^B)	150	70	312/457	164	340	102	40	80/90
200A (8B)	200	80	338/483	189	340	102	40	105/115
250 ^A (10 ^B)	250	90	410/570	226	406	135	50	128/138
300 ^A (12 ^B)	300	90	435/595	251	406	135	50	155/168
350 ^A (14 ^B)	335	100	465/645	271	443	142	55	186/200
400 ^A (16 ^B)	380	110	521/701	306	505	162	65	240/255
450 ^A (18 ^B)	430	130	559/759	336	555	188	80	310/323
500 ^A (20 ^B)	480	140	601/821	368	575	198	85	368/385
550 ^A (22 ^B)	530	150	664/884	403	605	218	95	445/460
600 ^A (24 ^B)	580	160	697/947	428	640	231	105	532/566
650 ^A (26 ^B)	630	170	738/990	451	735	251	120	655/710
700 ^A (28 ^B)	680	180	788/1038	483	820	290	145	745/805
750 ^A (30 ^B)	730	190	818/1068	518	820	290	145	920/982
800 ^A (32 ^B)	780	200	851/1101	543	920	345	175	1064/113

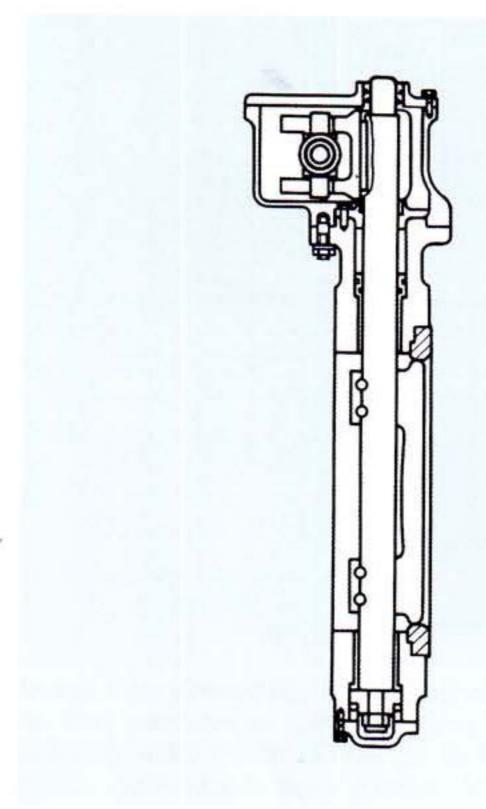
* HG: When valve is fitted with frame (and gland packing). For measurement of \$\ell_1, \ell_2\$ and \$\ell_3\$, see the dimensional drawing of page 47. This table is for valves without manual control unit. \$\ell\$ 1 of valve with manual control unit is longer.

HD SERIES DAMPER TYPE BUTTERFLY CONTROL VALVE

This valve is modeled on the "NS-C series" H-type putterfly valve which is one of our representative products, and is designed as control valve.

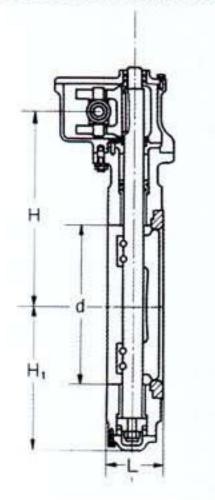
Although the valve has a valve seat, it does not give complete sealing at fully closed posotion. There is a small gap between the valve disk and the seat, and some leakage can not be avoided. The valve is used, in the same way as ID series valve, for flow rate control around the intermediate valve travel. We have many actual results of this valve in special applications.

The feature of this valve is that it allows replacement of the valve seat in case it is damaged.


The power source of the actuators is mainly pneumatic.

 Pneumatic type is a combination of a pneumatic positioner and a cylinder. The pressure is normally 0.49 to 0.69 MPa.

We also produce oil hydraulic type and electric type.


SPECIFICATIONS

Bredifical	IONS						
Type of valve body assembly	Wafer type butterfly valve of casting.						
Pressure rating	JIS 5K~16K, or ANSI 125 and 150.						
Nominal bore	$150^{A} \sim 1500^{A}$ (6 ~ 60 inch)						
Service temperature range	0~425°C (32~797°F). When the temperature exceeds 70°C, the frame (and gland packing) type is used.						
Sandard materials	 Valve body assembly FC200、FCD400、CAC403、CAC406、SCPH2、11、21、32、61、SCS13、14 Valve disk SC (outer circumference: SUS304facing), etc. 						
	Valve seat S25C, SUS304, etc.						
	 Packing · Gasket (Asbestors Free) PTFE, graphite, etc. 						
⊃ value	See the top right figure on page 47.						
low characteristic	See the top right figure on page 47.						
Performance	Rangeability 20:1						
	Leakage at full closure Max, 3% of the Cv below.						
Imensions and mass	See the table below						

Table of dimensions weight

D:	ensiona		
l lima	SHOIDH	31 0100	MAZINA
	711510117	11 (117	WILL
	21 101011	41 41 4	

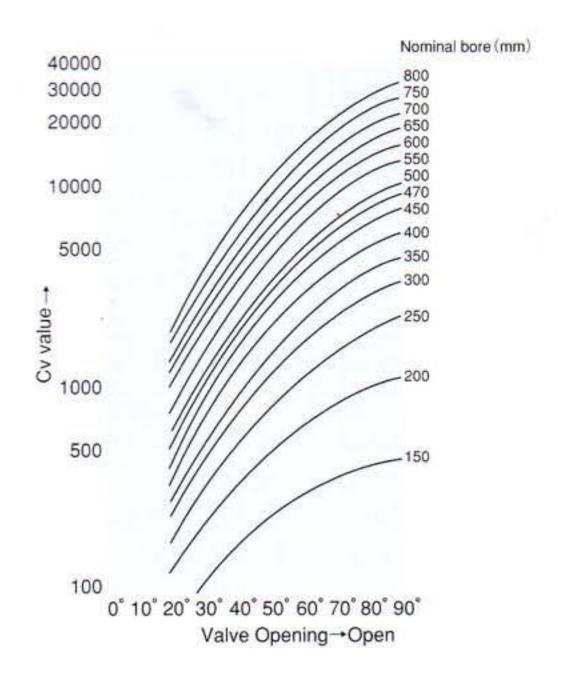


Nominaru bore mm(inch)	d	L	H/HG *	Hı	l ₁	l ₂	l ₃	Mass (kg)
150 ^A (6 ^B)	150	91	361/506	196	389	135	50	87/98
200 ^A (8 ^B)	200	101	396/541	207	421	138	50	116/127
250 ^A (10 ^B)	250	111	436/596	247	443	142	55	140/152
300 ^A (12 ^B)	300	111	482/642	272	505	162	65	170/185
350 ^A (14 ^B)	335	122	520/700	322	555	188	80	205/220
400 ^A (16 ^B)	380	132	567/747	342	575	198	85	265/280
450 ^A (18 ^B)	430	152	630/830	392	605	218	95	340/355
500 ^A (20 ^B)	480	162	673/893	418	640	231	105	405/422
550 ^A (22 ^B)	530	172	745/965	445	735	251	120	490/507
600 ^A (24 ^B)	580	202	774/1024	479	820	290	145	585/623
650 ^A (26 ^B)	630	212	839/1089	483	820	300	145	720/780
700 ^A (28 ^B)	680	222	872/1122	523	920	345	175	820/885
750 ^A (30 ^B)	730	232	933/1183	538	1090	365	195	1010/1080
800 ^A (32 ^B)	780	242	967/1217	592	1070	405	220	1170/124

* HG: When valve is fitted with frame (and gland packing). For measurement of \$\ell_1\$, \$\ell_2\$, and \$\ell_3\$, see the dimensional drawing on page 47.

NS-C

NON-LEAK BUTTERFLY CONTROL VALVE


This valve is NS-C series non-leak type butterfly valve, one of our representative products, which is equipped with an appropriate actuator to be used as control valve. We have many actual results of this valve in special application.

The features of this valve are rubber-lining type valve seat, completely nil leakage at full closure, easy replacement of valve seat, and small piping space requirement.

The power source of actuator can be either oil hydraulic, pneumatic, or electric one.

- The oil hydraulic type is an air-oil (or electiricity-oil) positioner, and feedback is effected by transmitting pneumatic signal of valve travel. Oil hyd. pressure 4.9 to 6.9 Mpa is made the standard, and suitable for high pressure and large bore valves.
- The pneumatic type is a combination of a pneumatic positioner and a cylinder. Pressure is 4.9 to 6.9 Mpa.
- "Twin power" is available as a special rotary type actuator.
 (See the separate "Technical Manuar".)

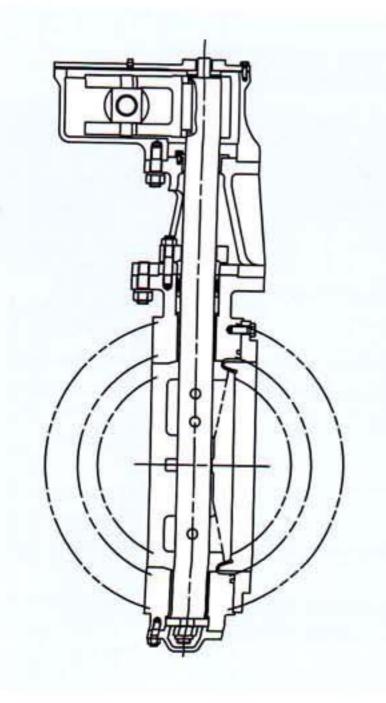
For the valve body assembly of butterfly valve, see the separate catalogue (Cat, No. 565).

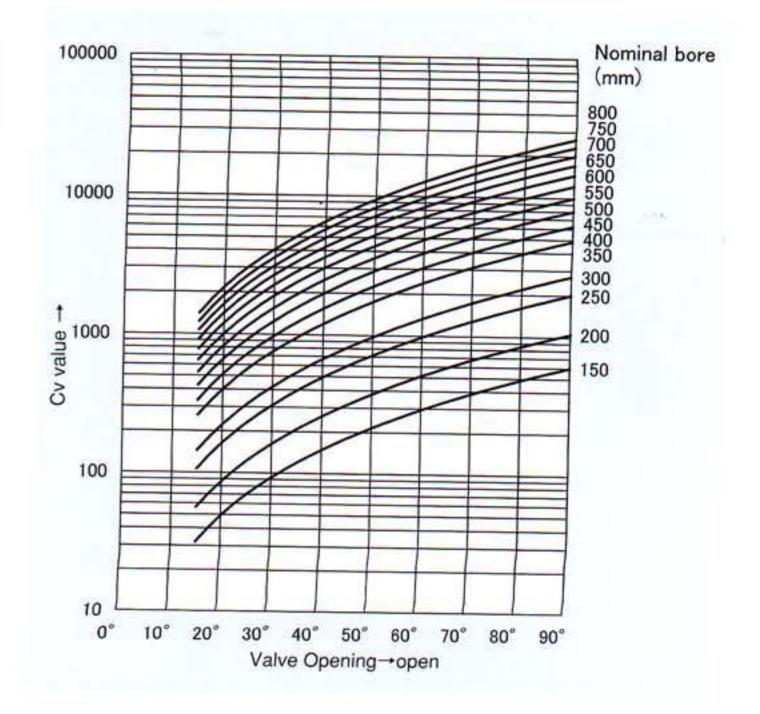
SPECIFICATIONS

Type of valve body assembly	Wafer type butterfly valve of casting, with rubber lining seat.
Pressure rating	JIS 5K~16K, or ANSI 125 and 150
Nominal bore	150~1500A
Maximum service temperature	70°C (158°F)
Standard materials	 Valve body assembly FC200、FCD400、CAC403、CAC406、 SCPH2、11、21、32、61、SUS13、14
	Trime (Valve seat···SS400+rubber lining (NBR • CR) Valve dish···SC(Seat contacting surface is given
	 Packing Gasket (Asbestos Free) PTFE graphite etc.
Cv value	See the figure above. At fully open position, Km value: 0.38 X ^T value: 0.32
Flow characteristic	See the figure above.
Performance	Rangeability 20:1
	 Leakage at full closure Nil.
Dimensions and mass	See the table and the figure below.

Dimensional drawing ℓ_3

This drawing shows without handwheel.


Table of dimensions and weight


aimens	sions ar	ia weig	nt				(mm)
d	L	Н	Hı	l ₁	l ₂	lз	Mass (kg)
150	90	361	196	389	135	50	87
200	100	396	207	421	138	50	116
250	110	436	247	443	142	55	140
300	110	482	272	505	162	65	170
335	120	520	322	555	188	80	205
380	130	567	342	575	198	85	265
430	150	630	392	605	218	95	340
480	160	673	418	640	231	105	405
530	170	745	445	735	251	120	490
580	200	774	479	820	290	145	585
630	210	839	483	820	300	145	720
680	220	872	523	920	345	175	820
730	230	933	538	990	365	195	1010
780	240	967	592	1070	405	220	1170
	d 150 200 250 300 335 380 430 480 530 580 630 680 730	d L 150 90 200 100 250 110 300 110 335 120 380 130 430 150 480 160 530 170 580 200 630 210 680 220 730 230	d L H 150 90 361 200 100 396 250 110 436 300 110 482 335 120 520 380 130 567 430 150 630 480 160 673 530 170 745 580 200 774 630 210 839 680 220 872 730 230 933	150 90 361 196 200 100 396 207 250 110 436 247 300 110 482 272 335 120 520 322 380 130 567 342 430 150 630 392 480 160 673 418 530 170 745 445 580 200 774 479 630 210 839 483 680 220 872 523 730 230 933 538	d L H H1 \$\ell_1\$ 150 90 361 196 389 200 100 396 207 421 250 110 436 247 443 300 110 482 272 505 335 120 520 322 555 380 130 567 342 575 430 150 630 392 605 480 160 673 418 640 530 170 745 445 735 580 200 774 479 820 630 210 839 483 820 680 220 872 523 920 730 230 933 538 990	d L H H ₁ l ₁ l ₂ 150 90 361 196 389 135 200 100 396 207 421 138 250 110 436 247 443 142 300 110 482 272 505 162 335 120 520 322 555 188 380 130 567 342 575 198 430 150 630 392 605 218 480 160 673 418 640 231 530 170 745 445 735 251 580 200 774 479 820 290 630 210 839 483 820 300 680 220 872 523 920 345 730 230 933 538 990 365	d L H H ₁ l ₁ l ₂ l ₃ 150 90 361 196 389 135 50 200 100 396 207 421 138 50 250 110 436 247 443 142 55 300 110 482 272 505 162 65 335 120 520 322 555 188 80 380 130 567 342 575 198 85 430 150 630 392 605 218 95 480 160 673 418 640 231 105 530 170 745 445 735 251 120 580 200 774 479 820 290 145 630 210 839 483 820 300 145 680 220 <td< td=""></td<>

[·] Please consult us for sizes not listed on the table

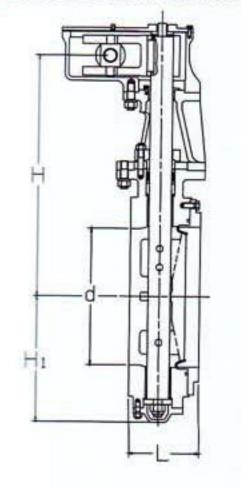
DM SERIES METALLIC VALVE SEAT TYPE BUTTERFLY CONTROL VALVE

This valve is not influenced by the kind of fluid or the temperature of fluid. It severs in a wide temperature range from very low up to high, and has a special feature of treproof design.

The valve has a double eccentric construction which permits me contact between the valve disk and the seat only at the fully closed position. As the deformation or/and defacement of the valve seat is very small, leakage is almost nil.

The powr source of the actuator is mainly pneumatic. The pneumatic type is a combination of a pneumatic positioner and a cylinder. The pressure is normally 0.49 to 0.69MPa. We also produce-oil hydraulic type and electric type.

SPECIFICATIONS


Type of valve body assembly	Wafer type butterfly valve of casting.(valve for cryogenic service is flange type.)
Pressure rating	JIS 5K~20K or ANSI 125~300
Vominal bore	150 ~ 1500(6~60inch)

Service temperature range	-253~+475°C (-423~887°F)
Standard materials	Valve body assembly FC200、FCD400、SCPH2、SCPH21、SCS13、SCS14、etc.
	Trim (Valve seat···S25C、SFVAF11A、SUS304、SUS316 Valve disk ···SCPH2、SCPH21、SCS13、SCS14 Contacting surfaces of both parts are given stellite fancing
	 Packing, gasket (Asbestos Free) PTFE, graphite.
Cv value	See the figure above
Flow characteristic	See the figure above
Perfomance	Rangeability 20: 1
	Leakage at full closure 100cc/minute/inch of nominal bore.
Dimensions and Mass	See the table and the figure below.

Table of dimensions and weight

(mm)

Dimensional drawing

Nominal bore mm(inch)	d	L	H/HG *	Hı	l1	l ₂	l ₃	Mass (kg)
150 ^A (6 ^B)	150	150	361/506	190	421	138 -	50	96/108
200 ^A (8 ^B)	200	160	396/541	212	443	142	55	128/140
250 ^A (10 ^B)	250	165	441/601	247	505	162	65	155/169
300 ^A (12 ^B)	300	170	492/652	288	575	198	85	190/207
350 ^A (14 ^B)	335	185	544/724	338	640	231	105	236/250
400 ^A (16 ^B)	380	200	600/780	367	735	251	120	310/351
450 ^A (18 ^B)	430	220	653/853	400	820	290	145	388/438
500 ^A (20 ^B)	480	240	696/916	446	920	345	175	460/520
550 ^A (22 ^B)	530	260	775/995	485	1070	405	220	560/628
600 ^A (24 ^B)	580	280	830/1080	526	1318	438	240	690/790
650 ^A (26 ^B)	630	300	865/1140	554	1318	438	240	816/980
700 ^A (28 ^B)	680	320	944/1194	605	1500	475	280	975/1130
750 ^A (30 ^B)	730	340	996/1246	650	1535	475	280	1186/1369
800 ^A (32 ^B)	780	370	1023/1273	695	1570	475	280	1360/1563


* HG: When valve is fitted with frame (and gland packing).

For measurement of ℓ_1 , ℓ_2 , and ℓ_3 , see the dimensional drawing on page 47. Flange standard are JIS, ANSI, and others, but some dimensions may be altered. This table does not indicate dimensions of valves of long bonnet construction. The size is different depending on the design pressure and the design temperature.

Prease refer to an individual drawing for a detailed size.

NAKAKITA's CONTROL VALVES!

This drawing shows DY-COBOO

CONSTRUCTION

VALVE BODY ASSEMBLY

- The pressure containing part consisting of the valve body, bonnet and trim is called the [valve body assembly]. The pressure-temperature rating for the materials is determined by the applicable standard. As to the type and size, the optimum selection is made according to your [specifications].
- The valve plug, seat ring, cage, guide bushing, valve stem, etc. are called the [trim], and its combination is determined according to your [specifications] including the fluid properties and pressure drop.
- The [flow characteristic] which indicates the relationship between the valve travel and the flow rate is determined by properly selecting the shape of the throttle portion consisting of the valve plug and seat ring.
- The gland packing is required to prevent leakage of the fluid as well as to possess low-friction property and durability. It has a vital role in the noemal operation of the control valve.

DIAPHRAGM ACTUATOR

- The [actuator] controls the travel of the valve, via the valve stem, by the balance between the operating air pressure applied to the diaphragm chamber and the compressive force of the counter spring.
- The signal (standard; 20 to 100kpa) from a pneumatic indicating controller is normally guided into the diaphrangm chamber. For further responsiveness, a positioner is installed.
- When the electric signal (4 to 20 or 10 to 50 mA DC) is used, an E/P positioner is applied.

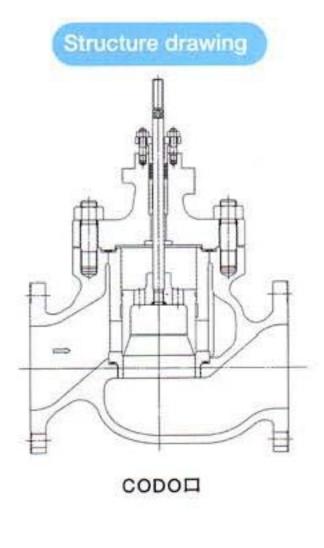
DETAILED SPECIFICATION

BUTTERFLY TYPE

MS-CODO CAGE TYPE DOUBLE SEATED CONTROL VALVE

Model MS-COD Cage-guided Double-seated Control Valve is designed using powerful multi-spring type diaphragm actuator. And it is compact and lightening that compare with using DY-series from before.

The valve trim is easy and quick replacement of trim without disconnecting the body from the piping. Special consideration is given to its durability and maintenance.


Unbalanced force is offset by the balance hole of the plug which is guided with Cage.

To secure stable controllability which dynamic unbalanced force on the stem is stable over the whole range of the valve travel.

SPECIFICATIONS

Type of valve body	Double seated glove valve of Cage guided type
Pressure rating	JIS5K~63K, ANSI 125~2500, PN10~100
Nominal bore	32~300A (11/4~12inch)
Service temperature range	-20~550℃
Standard material (JIS)	 valve body FC, FCD, SCPH2, SCPH21, 32, SCS13,14 Trim SUS403, SUS304, SUS316, SUS630, etc Gasket Packing Asbestos free
Flow characteristic	Modified Parabolic EQ% Linear etc.
Maximum allowable pressure drop	Single action diaphragm type is normally used. Maximum allowable Pressure dropis shown in the table below
Performance	Rangeability 50:1 Seat leakage 0.3% of rated Cv
Dimensions and mass	See the table and the figure below

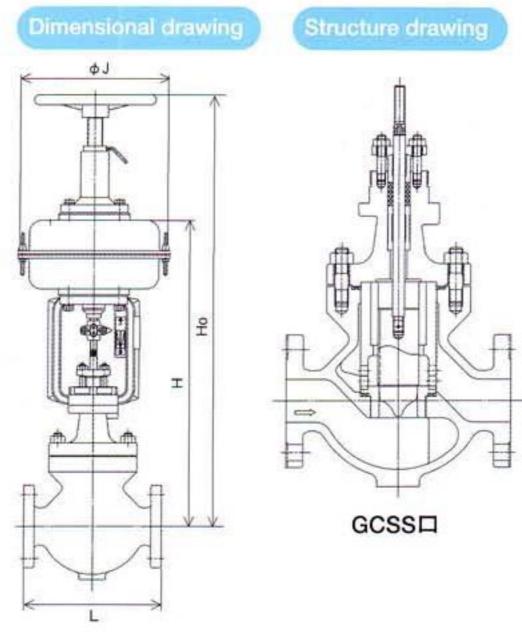
Dimensional drawing

MS-CODO Cage-guided double seated control valve

NOMINAL	BOR	E mm	(inch)	3	2A (11/4B)	40	A (11)	(2B)		50 ^A	(2B)		65	A (2	1/2B)		80 ^A	(3B)		10	OA (4B)		125	A (5	3)	150) ^A (6	B)	200 ^A (6 ^B)	250 ^A (10 ⁸	300 ^A (1
	JIS	(K)		5 10	0.70	30 40	63	1000	37.2	0 63			30 40	63			30 40 60		16	30 40		0.00	0.00	30 40 6	3 10	16	1.05500		5 10	1122	40	and the Person of		5
RATING	ANS	1 (Class)		125 150		600		125 150 3	00 60	00 900	125 150	300	600 9	900	125 150 3	300 6	900		300						125	300	_	_	_	_	600	_	125 150	125 1
	ISO	* (F	N-ba	r)	10 16		64 100			25 6 40 10	000			64 100		10 16				25			10000	25 (0.00	16	25	100		10 16		64 100	10 25 16 40	1 2 2 2 2 2	10
RATED CV		S ser	ies bo	dy		9.5] 18		[9.	5 18	26	E	18 2	6]36	6	[36	48 5	6]72	[56.7	2]9	6	[72 9	6 125	155	[12	5 155	190]250	[190	275]	390	276 390] 500	800	950
VALVE raive by reduced valve plus [E ser	ies bo	dy		21			3	36			55			07.	00			130				30		275						730	950	1200	
		Face t	o face	L	200	213	229	275	222 2	35 25	1 295	260	267	286	310	276 2	292	311 36	298	317	337	375	352 3	68 3	94 44	5 403	425	457	510	451	473	508	543 568	673 708	737 7
DIMENSION	D	imensio	n H (%1)		55	50		100	555			59	90			68	5		70	00			765			8	75		1	905		1025	1160	121
(mm)	additio	With fi	n			10	00			100			10	00			10	0		10	00			100			1	40			140		150	160	170
	nal to	With h	andwl	neel		19	90			190			19	90			26	0		26	60			260			2	60		13	340		340	340	370
		235		30	1.	.5			0.7			0	.1																						
		200	Press (kPa)	120	2.0	5.2	10.3	9.6	2.0	5.2 8	.0 6.8	2.0	5.2	6.1	5.1		-	-								_									_
ALLOWABLE	(C) es	270) 55	30								1	.0			0.0	7																		
PRESSURE	r size	210														2.0 5	5.2	5.2 4.5	5									4				_			
DROP (MPa)	nato	324	9	30												1.8			1	.1			0.4						_						
(※2)	Actuator	324	Balance	120													1	0.3 11.	7		9.6	8.6	2.0	5.2 7	.2 6.	4 2.0	5.2	5.0	4.6	2.0	5,2	3.8			
	15-15	400	_ i														120	17																	
		430		120																		-		- 33					or.	2.0	5.2	10.3	2.0 5.2	2.0 5.2	2.0
M	ASS (kg) (*	3)		3	39	50	70	43	8	1 11:	2 6	4	92	141	70		125 18	3 1	09	143	224	149	2	18 27	6	78	295	470	28	35	357	447	586	771

- (※1) H dimension gives the longest dimension of the valve with standard type bonnet. However, in case of fin type bonnet or handwheel installation (Ho. dimension).
 add the respective [additional H value] of the above to H.
 The off balance pressure of 120 kPa becomes a one with positioner.
- Mass indicated is that of the valve with handwheel and positioner. (=maximum mass).
 - ISO in the column of rating indicates the ratings of valve groups formed in terms of face to face dimension.

MS-GCSS CAGE-GUIDED SINGLE SEATED CONTROL VALVE



Model MS-GC Cage-guided Single-seated Control Valve is designed using powerful multi-spring type diaphragm actuator. And it is compact and lightening that compare with using DY-series from before. The valve trim is easy and quick replacement of trim without disconnecting the body from the piping. Special consideration is given to its durability and maintenance.

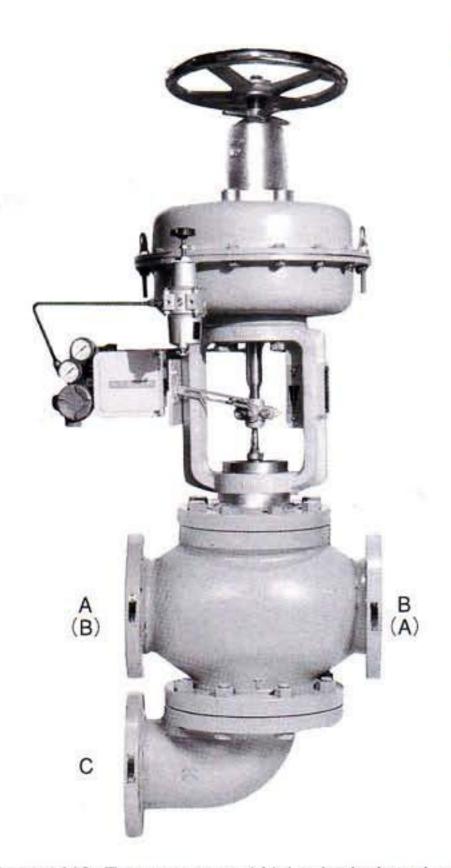
MS-GCS Cage-guided single seated control valve

Type of valve body	Cage guided type single seated glove valve
Pressure rating	JIS5K~63K、ANSI 125~900、PN10~100
Nominal bore	20~50A (3/4~2B)
Service temperature range	-20~550°C
Standard material (JIS)	·valve body FC, SCPH2, SCPH21, 32, SCS13,14 ·Trim SUS403, SUS304, SUS316, etc ·Gasket·Packing Asbestos free
Flow characteristic	Parabolic Linear EQ%
Maximum allowable pressure drop	Maximum allowable Pressure drop is shown in the table below.
Performance	·Rangeability 30:1 ·Seat leakage 0.01% of rated Cv 〈ANSI CLASS IV〉
Dimensions and mass	See the table and the figure below

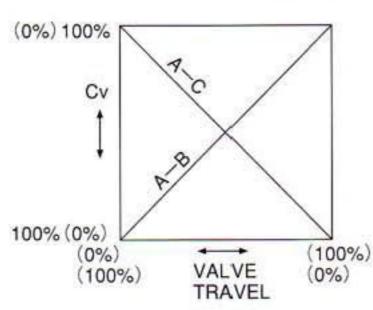
SPECIFICATIONS

NOMINA	L BOP	RE mi	m (ii	nch)			2	0 ^A (3/ ₄ B)					25	A (1B)			32A (11/4B	1)	4	OA (11/2B)		50 ^A	(2^8)	
	JIS		(K)			5,10	16,20	30,40	6	3		5,10	16,20	30,40	63	5 10	16 20	30 40	63	5 10	16 20	30 40	200.64	5 10	16 20	181933	63
RATING	ANS	SI	(Cla	ss)		125,150	300	600	9	00		125,150	300	600	900	125 150	300	600	900	125 150	300	600	900	125 150	300	600	
	ISO	*	(PN-	bar)	d.	10,16	25,40	64,100				10,16	25,40	64,100		10 16	1000	64 100		10 16	25 40	64 100		10 16	25	64	
		Face	e to fa	ace	L	154 162	162 166	212 216	240	256		154 162	162 166	216 220	244 262	2	10	220	280	23	35	250	305	26	5	275	370
DIMENSION	Ħ	Dime	ensio	nH(※1)	52	20	550	58	85		52	20	550	585	54	40	550	575	57	70	570	575	62	0	620	625
(mm)	Height	additio	With	fin		10)5	100	1	15		10	05	100	115	10	00	100	100	10	00	100	100	10	0	100	100
	H With handwh							180						180			180			1		180				180	
RAT	RATED CV VALUE				0.23 0.44	0.8 1,1	1.7 2.3	3.2 4.2		5.4	7.2		9.5	11	1	4	1	8	20	0	26			3	6		
	0	22	_	кРа)	30		5.2		2.7	2.2	1.6	1.1		0.8	0.6		0	4		0.	1	0.	06				
ALLOWABLE	size (J) 535 (KP) 735				120		15.5		11.5	9.8	7.4	5.7		4.5	3.6		2	.7		1.	8	1	.2				
PRESSURE DROP (MPa)	Sance data and and and and and and and and and an		30												0	8		0.4	46	0.2	26		0.0	07			
(₩3)		27	0	Off B	120												4.	3		2.	9	2	.0		1.	1	
М	ASS	(kg) (%2)			32	2	57	5	7		3	6	64	64	4	4	73	100	48	8	84	104	62	2	90	139

^(※1) H dimension gives the longest dimension of the valve with standard type bonnet. However, in case of fin type bonnet or handwheel installation (Ho. dimension). add the respective [additional H value] of the above to H.

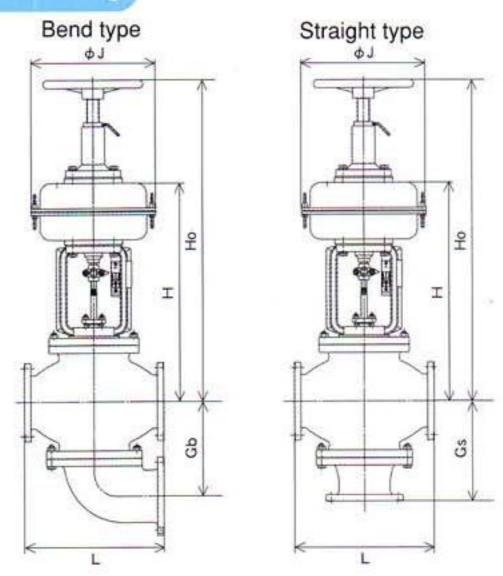

Mass indicated is that of the valve with handwheel by rating 300 (=maximum mass).

The off balance pressure of 120 kPa becomes a one with positioner.


ISO in the column of rating indicates of valve groups formed in terms of face to face dimension.

MS-T

3-WAY CONTROL VALVE


Inherent flow characteristic

SPECIFICATIONS

Type of valve body	Single seated 3-way valve with top and bottom guided plug
Pressure rating	JIS5K,10K, ANSI 125,150, PN10,16
Nominal bore	25~300A
Service temperature range	0~220°C
Standard material (JIS)	·valve body FC, FCD, CAC403, SCPH2, SCS13,14 ·Trim SUS304,316, or SCS13, SCS14 ·Gasket·Packing Asbestos free
Flow characteristic	Linear; See the left figure.
Maximum allowable pressure drop	In the case of mixing type, maximum allowable pressure drop is shown in the table below.
Desferment	·Rangeability 30:1
Performance	•Seat leakage 0.1% of rated Cv
Dimensions and mass	See the table and the figure below

Dimensional drawing

Model MS-T 3-way control Valve is designed using powerful multi-spring type diaphragm actuator. And it is compact and lightening that compare with using DY-series from before.

Depending on the direction of the flow of the fluid, the valve can be used for mixing (from two ways to one way) as well as dividing (from one way to two ways). Generally, a good control-ability mixing type is used for the cooling water and the lubricating oil system which is supplied to the large-sized diesel engine and the reduction gear.

way control valva

NOMINAL	BOF	RE mm	(inch)		25 ^A	(1B)	40 ^A (11/2B)	50 ^A	(2B)	65 ^A (21/2B)	804	(3B)	100	A (4B)	125	(5B)	150	4 (6B)	200	A (6B)	250 ^A	(10^{B})	300 ^A	(12^8)
	JIS	(K)			5	10	5	10	5	10	5	10	5	10	5	10	5	10	5	10	5	10	5	10	5	10
RATING	ANS	SI (C	lass)		125	150	125	150	125	150	125	150	125	150	125	150	125	150	125	150	125	150	125	150	125	150
	ISO	* (P	N-bar)		10	16	10	16	10	16	10	16	10	16	10	16	10	16	10	16	10	16	10	16	10	16
	RATE	D Cv			9	.5	3	33	4	18	8	6	1	15	1	80	2	70	4	00	6	30	9	50	14	100
	F	ace to	JIS		162	170	260	268	260	268	300	308	316	324	350	358	420	428	480	488	570	574	740	748	860	868
	f	ace L	SI	158	164	258	264	260	268	300	310	318	328	358	358	428	428	488	488	580	580	750	750	868	868	
	1	(FC)	ISC)	166	166	264	264	264	264	304	304	324	324	358	358	432	432	488	488	574	582	744	752	860	868
DIMENSION	Ber	Bend Gb			150		221		2	221		181		96	219*3	(250)	2	75	321		3	70	4	59	5	20
(mm)	Straight Gs					210		215		225		2	240		265		00	340		375		430		480		
	Straight Gs H without handwheel Ho with handwheel		dwheel	500		504		521		540		548		552		620		750		838		942		984		
	He	Ho with	handw	heel	6	86	6	90	7	07	726		7	34	738		879		11	100	11	88	13	322	13	364
		235		30	0.	56	0.	.21																		
	~	233	(kPa)	120	2.	72	1.	.00																		
ALLOWABLE	size (J)	270	Press (30	0.	78	0.	29	0.	.20	0.	11	0	.09	0.	.06										
PRESSURE	r Si	270	1000	120	3.	60	1.	32	0.	.90	0.	54	0	42	0.	.28										
DROP	Actuator	324	nce	30																						
(MPa) (※1)	Act	324	Balance	120													0.	31	0.	.21						
1800008	ш –		30																							
		430		120																	0	.31	0	.19	0.	.14
M	ASS(kg) (※2)				4	14	6	60	1	70	74		82		95		152		262		323		509		703	

OUTLINE

- An actuator is a control element which works as the drive assembly of a control valve and controls the valve travel. It is required to exhibit high performance and high reliability under any environmental conditions. We are constantly striving to further the qualities of our actuators; our efforts can be seen in our early acquisition of each classification society's certificate for severe environmental tests (performance, vibration, temperature, humidity, dripproof, and salty fog tests) of unmanned machinery space ship.
- An actuator consists of a diaphragm (or a piston), a stem, a casing (or a cylinder), is guided etc.
- An for the output of an actuator, the output of a controller (or a positioner) is guided into the diaphragm chamber (or a cylinder) so as to generate a driving force which is proportional to the effective area of the diaphragm (or piston). Under actual service conditions, the valve travel is controlled while this driving force is countered by the compression force of the spring, force exerted on the valve plug, and sliding resistance of the gland.

TYPES OF ACTUATOR

Diaphragm type and cylinder type are available. They are classified according to type of action as shown in the table below.

Table 7. 1 Classification of actuator

•		Type designation						
Operation	Description	Diapl	hragm	Cyli	nder			
type		With	Without spring	With spring	without			
Direct action	When controlled pressure is increased, the stem moves towards the valve.	D	_	Dc	—			
Reverse action	When controlleed air pressure is increased, the stem is extracted towards the actuator,	R	=	Rc	=			
Double action	Chambers are provided for both direct and reverse action. The stem is operated by the differential force.	0-0	В	-	Вс			

DIAPHRAGM TYPE ACTUATOR

For the standard specification of the diaphragm type actuators, see Table 7.2. Actuators for high pressure are also available.

> Diaphragm Diaphrgms are designed to exhibit high sensitivity and are of unique shape

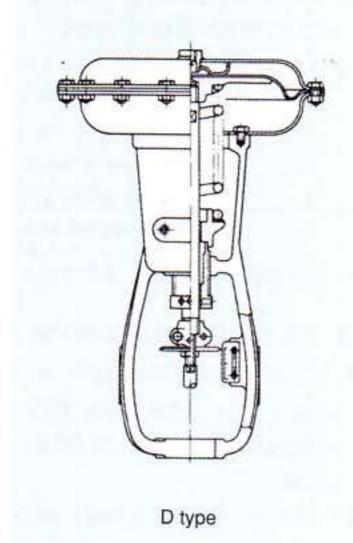
which assures constant effective area irrespective of the change in travel. Excellent weatherproofing rubber (CR) is reinforced with special cloth of

high strength. ■Spring

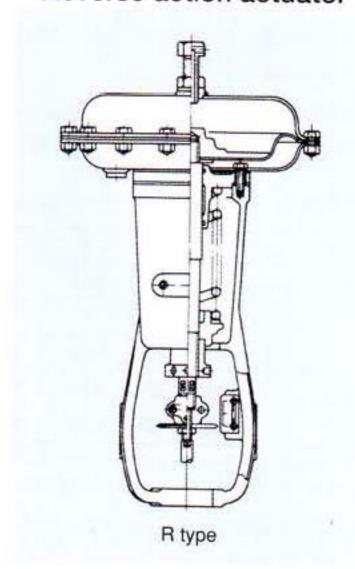
Spring, together with diaphragm, is an important component which determines the performance of the actuator. Linear characteristic and strength are assured by checking parallelism, squareness and load

characteristics.

Table 7. 2 Standard specifications diaphragm actuators


Yoke Yoke is made of casting. Mounting seats are provided on both sides for

easy mounting of positioner, air unit, etc.


■ Casing Casing is made of steel plate (large size casing is of casting) and designed

to withstand desing pressure of 240 to 690kPa.

Fig. 7A Direct action actuator

Fig. 7B Reverse action actuator

High power

was a second second second		The state of the s								
Nominal s	ize	(J)	275	355	410	465	520	645	410	465
Effective a	rea	(cm ²)	234	490	590	745	880	1520	500	820
Maximum	stroke	(mm)	15	35	35	50	70	100	50	60
Operating	press Range	(kPa)	(20~100) (4	0~120] (40~2	00) (60~220)	(0~200 (Double	action))	707.5		_
Output	Off	20 (100)	468	980	1180	1490	1760	3040	1180 (5900)	1640 (8200)
force kgf	balance	40 (200)	936	1960	2360	2980	3520	6080	2360 (11800)	3280 (16400
ngi	kPa	60 (400)	1404	2940	3540	4470	5280	9120	3540 (23600)	4920 (32800
Air consun	nption Ne/ St	rok	3.2	10	14	25	40	90		
Valve speed	Without bo	oster relay	2.3	7	13	17	27	60	_	
(sec.)	With boos	ter relay	0.7	2	3	5	7	12		
Supply pre	Supply pressure (kPa)		140 240		700000	max	. 700			
Casing ma	terial			SS	400		FC·FC	CD-SC		400

OFF-BALANCE PRESSURE

Off-balance pressure is the operating pressure when the actuator output for closing the valve is actually working as valve closing force, or the spring load corresponding to the operating pressure.

- ■In the case of the air-to-close (spring open) actuator off-balance pressure is the operating pressure added to the operating pressure under no load, so as to get the valve closing force.
- ■In the case of the air-to-open (spring close) actuator, off-balance pressure is the operating pressure corresponding to the spring load when the valve is in the closed state under no load.

CYLINDER TYPE ACTUATOR

For the specifications of the cylinder type actuators, see Table 7.3 below.

- Actuator of this type is more compact and shows better response than the diaphragm type one. When a diaphragm type actuator can not provide sufficient operating output, or when installation space is limited, an actuator of this type is used.
- Cylinder type actuator with dashpot is also available for high output use.

Cylinder type actuator with dashpot

- This actuator is equipped with an oil dashpot above the cylinder. The oil dashpot prevents jumping or slamming (sticking) of the valve plug due to a sudden change in valve stem thrust when the valve is at small or intermediate travel position.
- When a big stem thrust is generated, the insufficient stiffness of the pneumatic spring in the cylinder is covered by the incompressible oil in the dashpot.

Table 7. 3 Cylinder type actuator specifications

Nominal size (J)			100	125	150	200	250	300	335	375	400
Effective area (cm²)			76. 5	119.5	171.5	306	478	687	857.5	1076	1232
Supply pressure (kPa) 400~700											
Output	Off-	200	1530	2390	3430	6120	9560	13740	17150	21520	24640
force N	balance	400	3060	4780	6860	1224	19120	27480	34300	43040	49280
loice iv	kPa	700	5350	8360	12000	2142	33460	48090	60020	75320	86240

[Remarks] Effective area and output are values of the stem side (minimum).

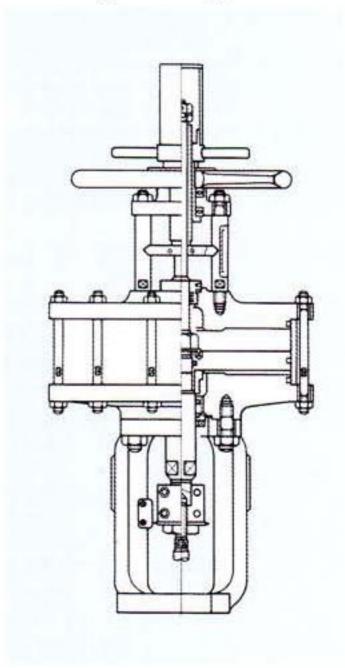
SELECTION OF ACTUATOR

Selection of size

The size of an actuator for a type of valve body assembly is selected according to the maximum allowable pressure drop indicated in the detailed specifications of each control valve (pages 19 to 48).

Selection of action type

 As to the selection of type of actuator, the operation type of the control valve itself is determined according to the plant characteristics. The type of the actuator is determined by the type of valve plug of the valve body assembly, direct or reverse. See Table 7.4.


Table 7. 4 Types of valve operation

Valve operation	Valve plug type	Actuator type	Remarks
Air less open	Direct plug	Direct action	
(Air to close)	Reverse plug	Reverse action	Used in special case.
Air less close	Direct plug	Reverse action	
(Air to open)	Reverse plug	Direct action	

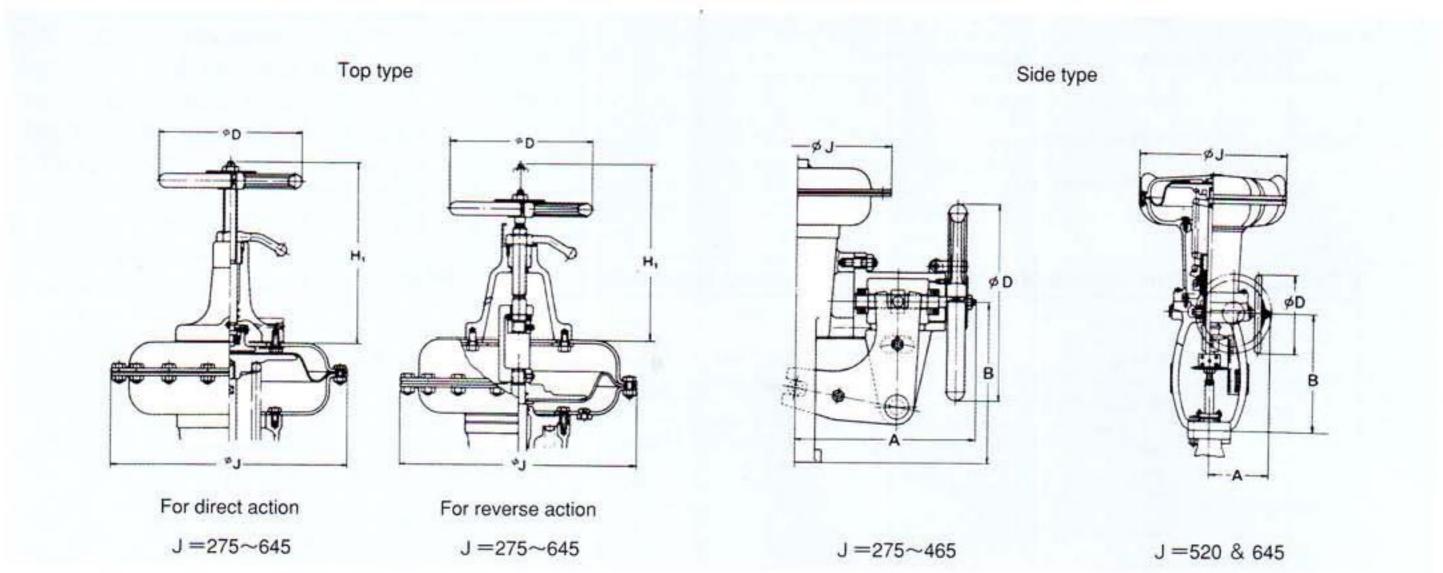
Fig. 7C Single action cylinder type actuator

Fig. 7D Double action cylinder type actuator

- The determination of the valve operation type is made on the safer side according to the plant characteristics, so as to avoid interference with the process when the supply air source is failed.
- In the case of the double action type actuator, as it is a system without spring, some method is taken to keep the status quo of the valve travel (with lockvalve...page 54), or to fully close or open the valve for safety by means of an air chamber.

ACTUATORS (DRIVE ASSEMBLY OF VALVE)

HANDWHEEL


This device is used when the controller or the controlled air system fails, when control is given manually or the valve travel is to be limited, or when a bypass valve is not installed. As shown in the figure below, two kinds of actuators are available. One is for direct action actuator, and the other one is for reverse action one. Types are also two, top type and side type. Each type can be easily installed on the actuator or the yoke.

Tsble 7.5 handwheel dimensions

1	Actuator size (J)		275	355	410	465	520	645
type	H ₁	Direct action	196	279	279	343	396	540
p typ	dimen sion	Reverse action	192	256	278	347	390	621
Top	Handle diameter (D)		160	224	224	280	355	630
type	А		265	340	340	400	238	280
le ty	В		230	290	320	355	407	500
Side	Handle diameter		280	355	355	400	280	355

[Remarks] Casings of J =275 to 465 mm are of steel plate. Casings of J =520 and 645 mm are of casting.

Fig. 7E Handwheels

POSITIONER

When any one of the following conditions is present, the installation of a positioner is always required.

- When the distance between the controller and the control valve is long:
 - (The dead time and the time constant can be reduced by installing a positioner.) When the distance is 40 m and over, a positioner is required.
- When the effects of thrust on the valve plug due to the flow of high pressure drop fluid are large:
 - (As the driving force of the control unit is increased by the installation of a positioner, maximum allowable pressure drop can be allowed.) When the service pressure is 2MPa and over, a positioner is required.
- When valve bore is large:
 - (A dead time is generated by the large capacity of the control unit.) When the bore is 100^A and over, a positioner required.
- When the accuracy of the control unit is to be raised.

- When split range is adopted:
 - For example, when the rangeability required is large and the control can not be effected by one control valve, two control valves are used. The control input signal for one control valve is 0 to 50% (20 to 60 kPa) and that of the other valve is 50 to 100% (60 to 100 kPa). The rangeability is widened by operating control valves in series.
- When ample range is adopted:

When the operating pressure range of an actuator is made wider than the control signal air pressure range 20 to 100 kPa, so as to increase the operating force.

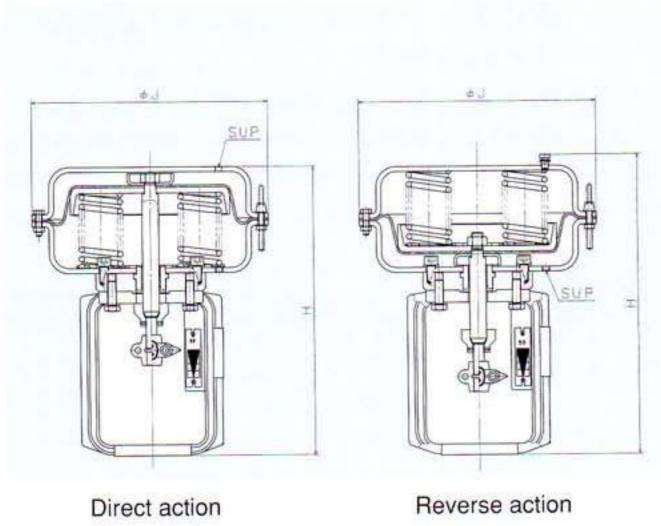
Table 7.6

Positioner	Linearity	Hysterisis	Sensitivity
With	±2.0%under	2.0%inclusive	2.0%under
Without	±6.0%under	6.0%inclusive	* 6.0%under
-1-			

Value marked * is obtained in no-load test. In actual service, the value is normally larger.

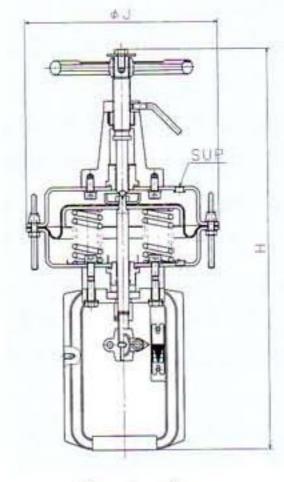
MULTI SPRING PNEUMATIC DIAPHRAGM ACTUATOR

The MS-DM/RM series are designed using powerful multi-spring type diaphragm actuator. And it is compact and lightning that compare with using DY-series before.

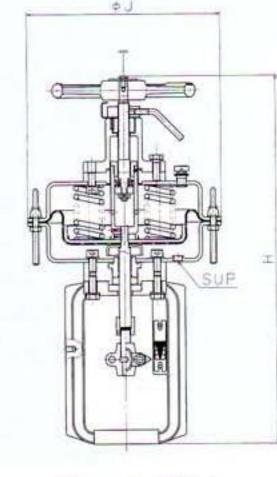

Standard specifications of multi-spring type diaphragm actuator Table1

Non	ninal size (J)		235	270	324	430	430(L)
Effec	ctive area (cm²)		212	277	445	834	834
Maxi	imum stroke (mm	1)	25	30	50	70	100
Oncort	range /	kPa\	30~110	30~110	30~110		8 - 8
Operating press range (kPa)		120~240	120~240	120~240	120~240	120~240	
Output force	Off balance	30kPa	690	816	1332	2502	2502
(N)	pressure	120kPa	2760	3264	5328	10008	10008
Air	Supply	140kPa	3.2	4.6	9.7	-	=
consumption (L)	pressure	340kPa	5.9	8.3	18	34	55
Valve speed	Without booster relay With booster relay		≦6.5	≦8.5	≦12	≦15.5	≦28
(sec.)			≦1.5	≦2.5	≦3	≦4	≦7

Dimensions and Mass of multi-spring type diaphragm actuator Table2


Nominal size (J)		235	270	270	324	324	430	430(L)	430(L)	
Ac	tuator type		235□M1	270□M1	270□M2	324□M1	324□M2	430□M1	430□ML1	430□ML2
Ma	ximum stroke (mm)	25	25	30	30	50	50	70	100
	Direct	Without	352	369	394	423	448	525	590	666
Н	action	With hand*	538	555	580	680	705	865	930	1036
Dimension	Reverse	Without	372	389	414	443	468	545	610	686
(mm)	action	With hand*	517	530	555	643	668	801	872	948
	Direct	Without	12	14	15	25	27	62	64	78
Mass	action	With hand*	20	23	24	37	39	85	87	100
(kg)	Reverse	Without	12	14	15	25	27	62	64	78
50000	action	With hand*	20	23	24	37	39	85	87	100
Cas		9				SPHC				
Material	York		FCD450							

(Remark) " Hand * " is the abbreviation of " Hand-wheel."



without hand-wheel

without hand-wheel

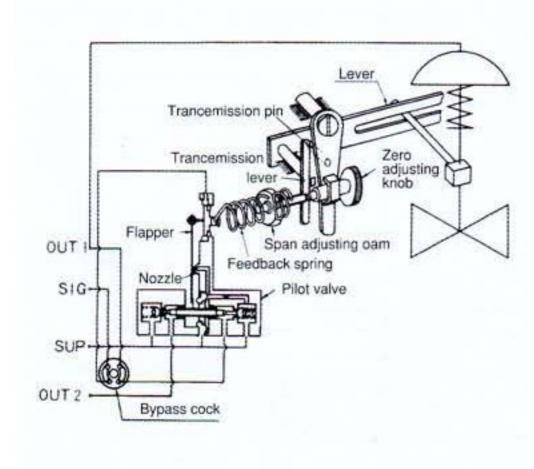
Direct action with hand-wheel

Reverse action with hand-wheel

ACCESSORIES

POSITIONER

[Type: NS737, NS728]


A positioner is installed on a diaphragm type or cylinder type actuator to improve the operating characteristics of the control valve.

The positioner drives the control valve, coping with the fictional resistance of gland packing and unbalanced force on the plug which prevent the movement of the valve stem, till the valve travel corresponding to the input pneumatic signal (20 to 100 kPa) or input current signal (4 to 20 mA · DC) is attained.

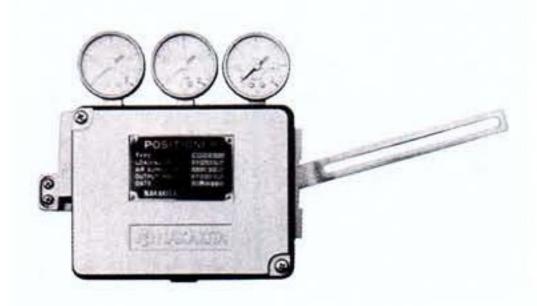
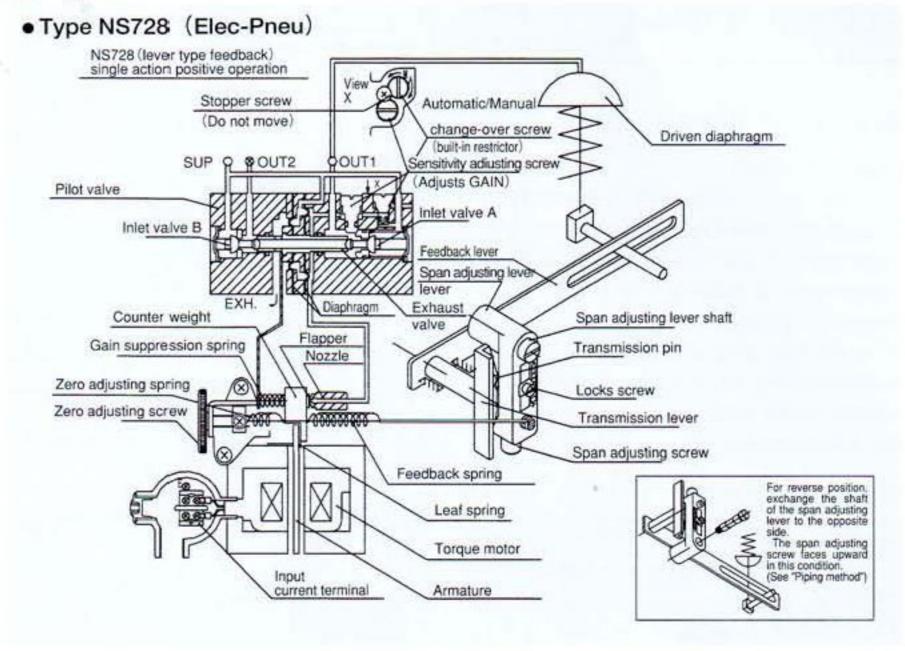

As for the features, the maximum supply air pressure is 0.69MPa, and they can be used for both single action and double action actuators; they can be used for all pneumatic type actuators from general purpose diaphragm type to high output cylinder type.

Fig. 8A

• Type NS737 (Pneu-Pneu)


• Type NS737 (Pneu-Pneu)

Specification

	Туре	NS737 (Pneu-Pneu)	NS728 (Elec-Pneu)		
Input signal		20 to 100kPa .	4~20mA·DC (standard)		
Supply air p	ressure	0.14 to	0.69MPa		
Actuator typ	е	Suitable to both single action (sp	ring return) and double action types.		
Charactieris	tic	Linear, or free	choice with cam.		
Split range		30~100%	50~100%		
Direction of	action	Direct action and reverse ac	tion, of action can be reversed.		
Lever type		5~30°	10~30°		
Input angle	Cam type	60~120°			
Air consump	otion .	7Nℓ/min. (when supply pressure is 140kPa)			
Outlet flow r	ate	70Nℓ/min. (when supply pressure is 140kPa)			
Air input por	t	R	c¼ female		
Explosionproof construction		-	Explosionproof construction Exd[BT5		
Electric wire	port		G ½ female		
Wiring syste	m	(-)	Conduit tube system. Pressure tight packing.		

Fig. 8B

• Type NS728 (Elce-Pneu)

FILTER REGULATOR

[Types NS 770C and NS770CG]

A high-performance pressure regulator and a filter are integrated in a unit for supplying air to pneumatic instrumentation devices.

Many of instrumentation devices consist of orifice and nozzle-flapper, and clogging or contamination will cauce troubles. This device stores 5 μ metallic filter to removes scale, water, oil and grease.

The internally stored air outlet pilot constantly works to restore the set pressure when the secondary pressure exceeds or drops below the set pressure. The device is thus designed with special emphasis on its instrumentation application.

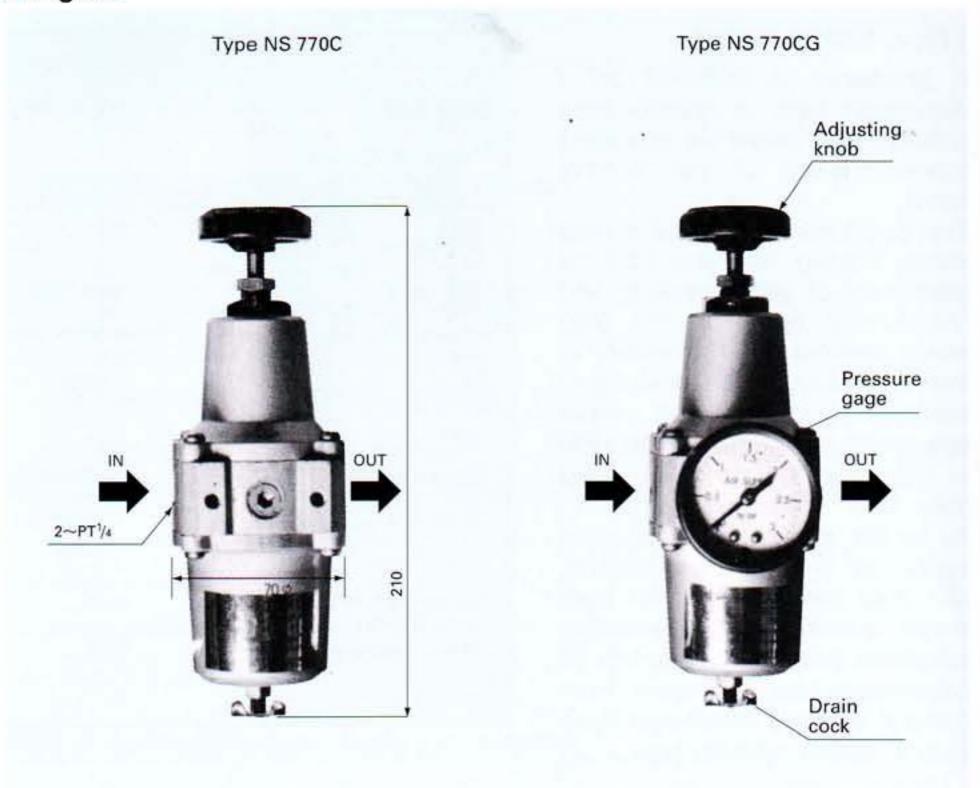
Specifications

Primary side Pressure	Less than 1MPa
Secondary side set pressure	20 to 300kPa 20 to 500kPa
Rate of flow	Max. $250N \ell/min$ (when $P_2=140kPa$ and $\triangle P=5\%$, flow is $60N \ell/min$)
Air consump- tion	1Nℓ/min

BOOSTER RELAY

[Type NC 766C]

This device is added to a pneumatic actuator to amplify the output of the controller or the positioner to a high capacity and substantially increase the driving speed.


In case the amplification results in overshooting or hunting, adjust the needle valve stored. Stable response can be obtained.

Specifications

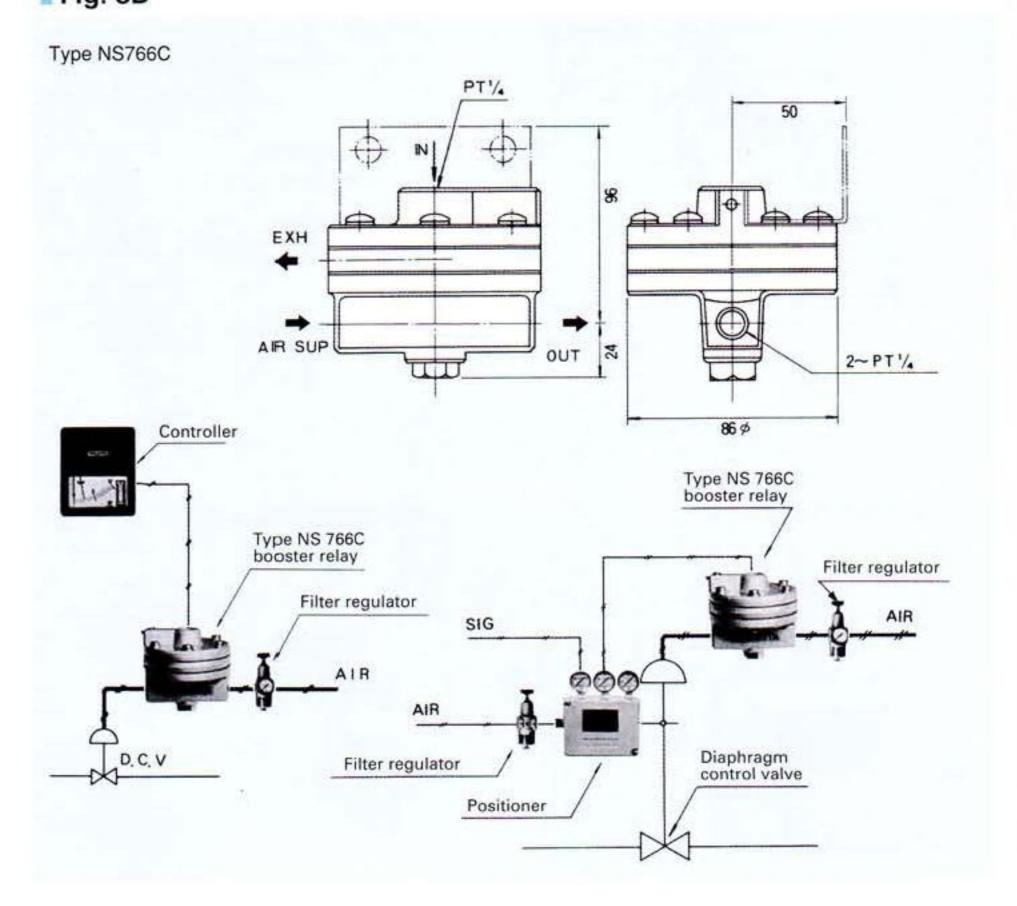

Input & output	Max. 0.6MPa
Supply air Pressure	Less than 1.0MPa
Input/output ratio	1:1

Fig. 8C

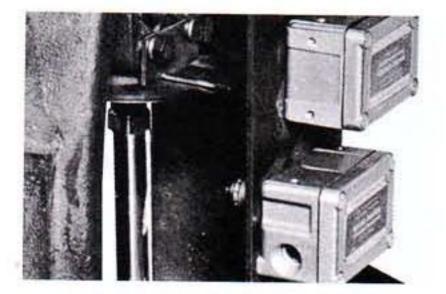
Fig. 8D

LOCK VALVE

[Types NS 772S and D]

If the air source of a pneumatic actuator fails, due to some trouble, to maintain the adequate supply pressure, the single action type actuator will resume its original position by the force of the spring, and the double action type actuator will become unstable, and in turn, the process will be adversely affected. To prevent this happening, a lock valve is installed in the control air piping of the actuator. When the supply air pressure drops, the line will be closed to keep the status quo of the final control element. When the supply air pressure is restored, the lock valve will resume the original working state.

Specifications


Lock setting pressure	0.14 to 0.69MPa
Line pressure	Max. 0.69MPa

LIMIT SWITCH FOR INDICATING VALVE OPEN/CLOSE POSITION

The limit switch is solidly designed for the use on a diaphragm control valve. A lever fixed on the valve stem actuates the switch at the full open or full shut position. A variety of switch constructions is available, from oiltight type to explosion proof one. They are used for operation displays and sequence control.

Specifications

Switch construction (service range)	Switch type	Switch type Electric rating Ci			
Standard type	Y Ltd.: =BZE6-2RN-J	AC 125V 250V 15A	Single pole double throw		
Drip-proof type (outdoor)	Y Ltd.: =OP-AR-J	480V DC 125V 0.5A 250V 0.25A	COM O NO		
Outdoor explosion- proof type (dzG4) Outdoor dust explo- sion proof type (SDP)	Y Ltd.: #EXZ-5000	AC 125V 250V 5A DC 125V 0.8A 250V 0.4A	Double pole double throw		

Fig. 8E

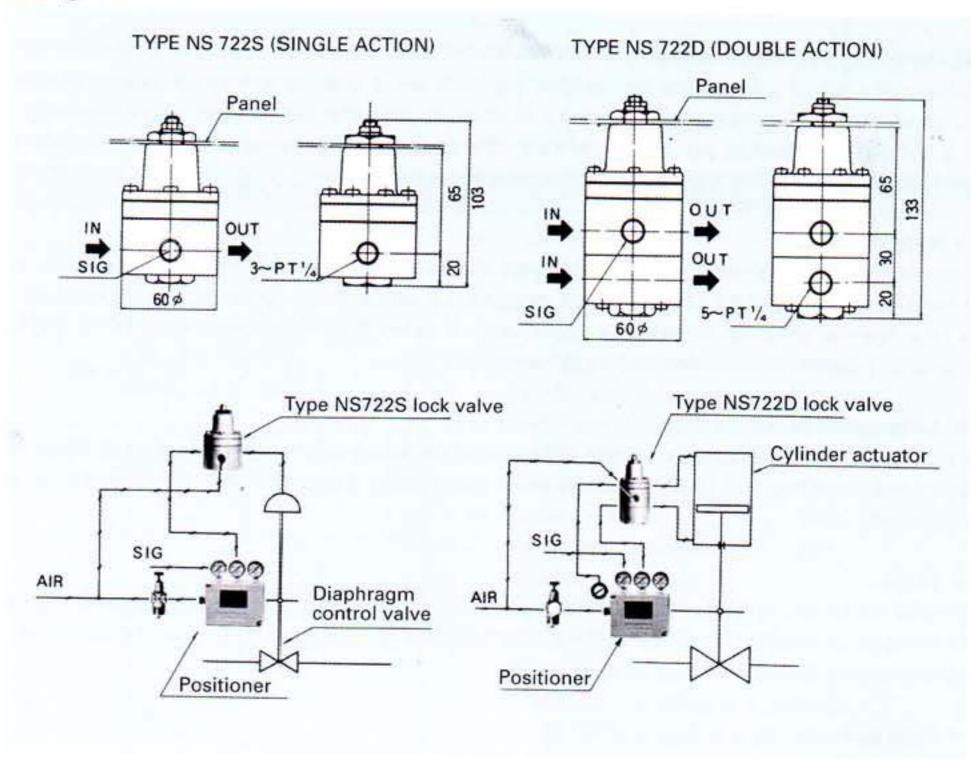
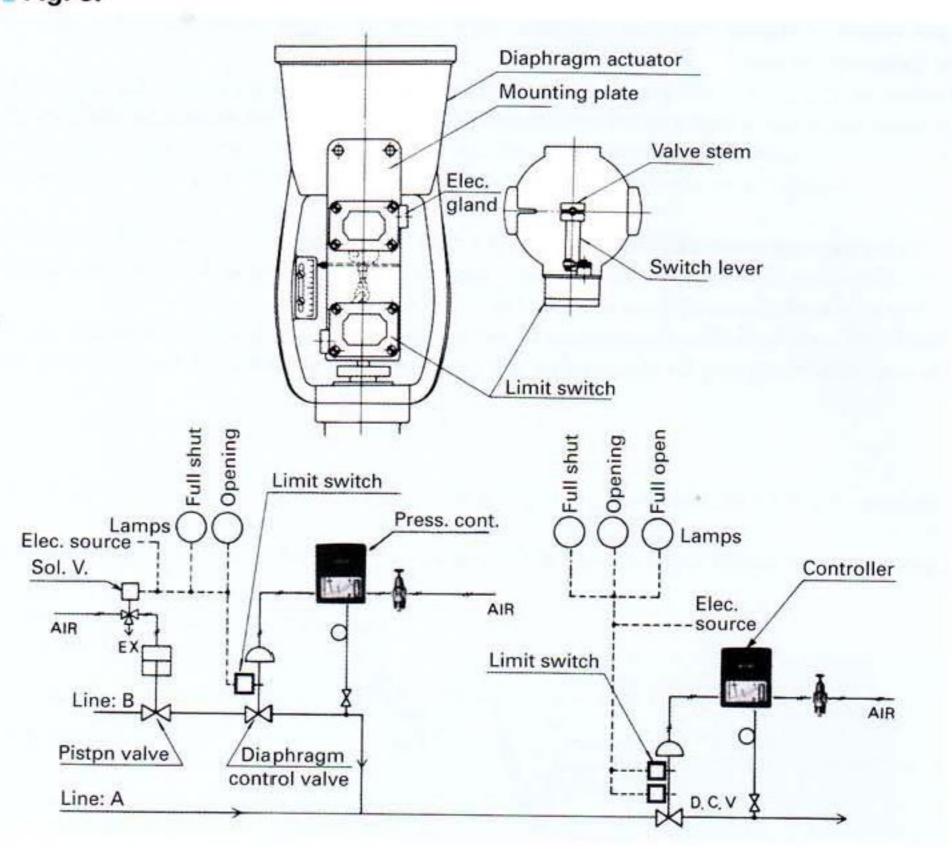



Fig. 8F

Line B is provided for backing up line A, and is normally closed. However, as the diaphragm control valve is double seated and its leakage is not desirable, a piston type valve is provided for tight shutting on the upstream side. When backup is required and the diaphragm control valve starts to open, the limit switch will send the signal to operate the diverter valve. This valve then fully opens the tight-shutting valve.

• The cage type control valves shown in this table are our standard valves. We also produce a variety of special valves.

	DY-CODOO	DY-COBSO	DY-CEDOO		
	Standard port cage, balanced valve plug, double seat • Easy maintenance	Standard port cage, balanced valve plug, single seat • Easy maintenance	Multi-hole port cage, balance valve plug, double seat Cavitation resistance. For boiler feed water, etc. Easy maintenance		
mm (inch)	32 ~ 300 ^A	32 ~ 300 ^A	32 ~ 300 ^A		
JIS (K)	5 ~ 63	5 ~ 63	5 ~ 63		
ANSI (Class)	125 ~ 2500	125 ~ 900	125 ~ 2500		
emperature	550℃	200°C	550℃		
	50:1	50:1	20:1		
e leakage	0.3% and under. (II)*	0.01% and under. (IV)*	0.5% and under. (II)*		
iven on page	19~20	21	22		
	DY-COSOO	DY-COSEO	DY-COPSO		
	Unbalanced valve plug, single seat • For low-Leak • Easy maintenance	Unbalanced valve plug, single seat with soft seat • For non-Leak • Easy maintenance	Pilot balanced valve plug, single seat • For large pressure drop • Easy maintenance		
mm (inch)	32 ~ 300 ^A	32 ~ 300 ^A	32 ~ 300 ^A		
JIS (K)	5 ~ 63	5 ~ 63	5 ~ 63		
ANSI (Class)	125 ~ 900	125 ~ 900	125 ~ 2500		
emperature	550°C	200°C	550°C		
		WALLOW CO.	30:1		
	50:1	50:1	30:1		
	JIS (K) ANSI (Class) emperature e leakage iven on page mm (inch) JIS (K) ANSI (Class)	Standard port cage, balanced valve plug, double seat • Easy maintenance mm (inch) JIS (K) ANSI (Class) 125 ~ 2500 enperature 550°C 50:1 e leakage 0.3% and under. (II)* iven on page DY-COSOO Unbalanced valve plug, single seat • For low-Leak • Easy maintenance mm (inch) 32 ~ 300^A JIS (K) 5 ~ 63 ANSI (Class) 125 ~ 900	Standard port cage, balanced valve plug, double seat • Easy maintenance mm (inch) 32 ~ 300^A 32 ~ 300^A 32 ~ 300^A JIS (K) 5 ~ 63 ANSI (Class) 125 ~ 2500 125 ~ 900 el elakage 0.3% and under. (II) * 0.01% and under. (IV) * iven on page DY-COSCO DY-COSCO DY-COSCO DY-COSCO mm (inch) 32 ~ 300^A 32 ~ 300^A 33 ~ 300^B Eseat • For low-Leak • Easy maintenance when on page 19 ~ 20 21 DY-COSCO DY-COSCO DY-COSCO DY-COSCO DY-COSCO Mm (inch) 32 ~ 300^A 33 ~ 300^A 34 ~ 300^A 35 ~ 63 ANSI (Class) 125 ~ 900 125 ~ 900		

>: Indicates the direction of flow under normal use condition.

^{* :} Figure in () indicates the corresponding leakage class prescribed in ANSI. B. 16. 104

INTRODUCTION

On sizing of control valves

Sizing of control valve must be decided by both valve user who has the comprehensive data of the process for which the valve is used, and valve manufacturer who is able to provide the proper valve capacity (Cv) data. Accordingly, we advise you to consider the following points on various effects on valve for proper and economical sizing, before proceeding to Cv calculation with the formula which will be introduced later.

Rate of flow

Determine the maximum rate of flow and the minimum rate of flow, and the valve pressure drops for both rates, respectively. These data allow NAKAKITA to select or design a valve which gives adequate control even at the minimum rate of flow. It is a normal practice to select a valve with a valve flow coefficient (Cv) 20 to 100% larger than the computed Cv value. This margin is determined according to the process.

Differential pressure (△p)

In general, it is desirable to set the differential pressure of the control valve at 40 to 60% of the pressure drop of the total piping system (including the control valve) from controlling point of view. It must not be less than 15%, otherwise control is hardly achieved.

• Fluid

Please let us know the name of fluid, property (liquid, gas, vapor, etc.), specific gravity (density, molecular weight), viscosity and vapor pressure. From these data, the formula for computing Cv can be selected, and by adding further corrections, proper sizing can be made.

Pipe size

When a reducer and an expander are used before and after the valve, respectively, or when other piping accessories are present, the valve flow coefficient must be increased just for the resistance due to them. Please let us know about the use of these items and the pipe size.

Selection of valve

Proper selection of the valve size and the type is made by satisfying the Cv obtained from the Cv formula and making much use of our experience. Please fill in the control valve specification sheet shown on page 68 and send it to us with your order.

Valve flow capacity coefficient "Cv"

Cv is the valve flow capacity coefficient. This coefficient indicates the flow rate in US gal/min of fresh water through the valve at a differential pressure of 1 psi and at 15.6℃ (60°F).

The Cv of a valve is thus determined by actual measurement, and this valve is indicated.

On the other hand, the Cv required by the process is calculated from the following formula.

Cv FORMULAS

NAKAKITA's Cv formulas are based on the generally accepted formulas (see the table below) of FCI (Fluid Control Institute), unless otherwise specified.

Table 9.1 Cv FORMULAS

FLUIDS	PRESSURE CONDITION	Cv FORMULAS	LEGEND	AC TIM
INCOMPRESS- IBLE FLUIDS (water, oil, etc.)	-	$Cv = \frac{0.366V\sqrt{G}}{\sqrt{\triangle p}*2}$	V: Max. Flow Rate (Incompressible Fluids) W: Max. Flow Rate	m³/h kg/h
	(1) Where $p_2 > 0.5p_1$ (or $\triangle p < 0.5p_1$)	$Cv = \frac{Q}{2947} \sqrt{\frac{G_1 (t+273)}{\triangle p(p_1+p_2)}}$	(Steam . Vapours) Q: Max. Flow Rate (Air-Gases) (at 101.325kPa abs. 15.6°C)*3	m³/h
AIR · GASES	(2) Where p₂≤0.5p₁ (or △p≥0.5p₁)	$Cv = \frac{Q\sqrt{G_1(t+273)}}{2549 \cdot p_1}$	N Q: Max. Flow Rate (Air-Gases) (at 101.325kPa abs. 32°F) \$\begin{align*} p_1: Inlet Pressure \(p_2: Outlet Pressure \)	m³ (Normal)/h MPa abs MPa abs
STEAM	(1) Where $p_2 > 0.5p_1$ (or $\triangle p < 0.5p_1$)	$Cv = \frac{W}{137.66\sqrt{\triangle p (p_1 + p_2)}} \times K$	 △Þ: Differential Pressure (Pressure drop = Þ₁-Þ₂) G: Specific Gravity (Water = 1) G₁: Specific Gravity (Air = 1) 	MPa
	(2) Where $p_2 \le 0.5 p_1$ (or $\triangle p \ge 0.5 p_1$)	$Cv = \frac{W}{119.31 \cdot p_1} \times K$	t: Fluids Temperature K: Correction Coefficient to Supering to Supering the Supering th	

*1 When the viscosity is 20 cSt and under, the formula can be used without considering the viscosity correction.

*2 $\triangle p$ m may be substituted for $\triangle p$. (See the following page).

*3 The flow rate of gases Q m³/h is expressed at "Standard Conditions", or pressure of 14.7 psia (= 760 mmHg = 1 atm.) and temperature of 60°F (15.6°C). If the flow rate at "Normal State" or pressure of 101.325kPa abs. and temperature of 0°C is denoted by N m³/h, we get Q = 1.057 x NQ.

Although the above-mentioned formulas are widely accepted, as a part of the activities of the IOS (International Organization for Standardization), IEC (International Electrotechnical Commission) is now preparing for international standardization of computation of flow coefficient of control valve, etc. We are prepared to compute the valve flow coefficient according to this standard (IEC STANDARD Pub. 534-2).

Technical data on sizing formulas of IEC STANDARD are also available. Please consult our Tecnical Department.

CORRECTION OF CV VALUE

Main corrections

- Correction with terminal pressure differential ratio factor may be made for valves handling compressible fluids at high pressure and large pressure drop.
- When chocked flow of incompressible fluid is generated, or when liquid of high viscosity is handled, the following corrections will be made.

Fig. 9A

- When a reducer is installed, correction will be made if necessary.
- For any uncertainties, please consult our Technical Department.

Correcion for chocked flow of incompressible fluid

When the inlet pressure (p_1) is reduced to the outlet pressure (p_2) , if the lowest pressure (vena contracta pressure: p_1) drops below the saturated vapor pressure (p_1) of the fluid at the inlet temperature, cavitation or flashing will occur. In this case, as shown in Fig. 9A, if p_2 is restored higher than p_1 , cavitation will happen.

If the reduced pressure p_2 is smaller than p_V , flashing will happen.

Cavitation or flashing does not happen.
Initial stage of cavitation
Cavitation
Cavitation
Flashing

Pvc: Vena contracta pres.
Choked flow
Direction of flow

Cv calculation for choked flow [Based on ISA. S39.1]

(1) First, obtain the pressure drop required to produce choked flow, using the following formula.

$$\triangle p m = Km (p_1 - r_c p v)$$

(2) Compare △pm obtained from the formula above with △p and substitute the smaller one for △p of the formula in Table 9.1 to get Cv.

Where

△pm: Pressure drop required to produce choked flow

 $\triangle p$: Pressure drop $(\triangle p = p_1 - p_2)$

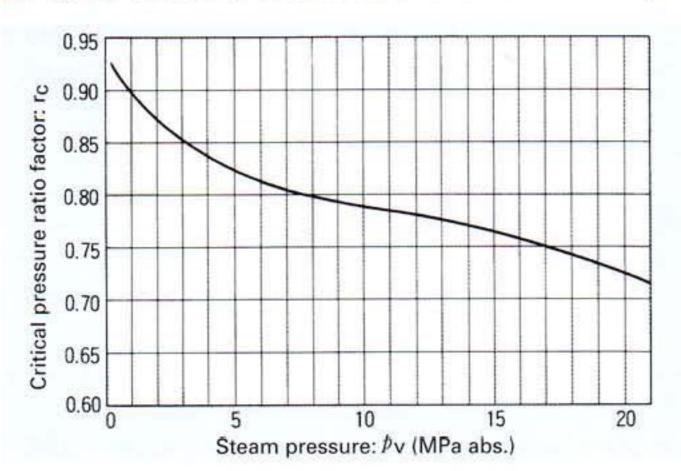
p₁ : Inlet pressure

p₂ : Outlet pressure

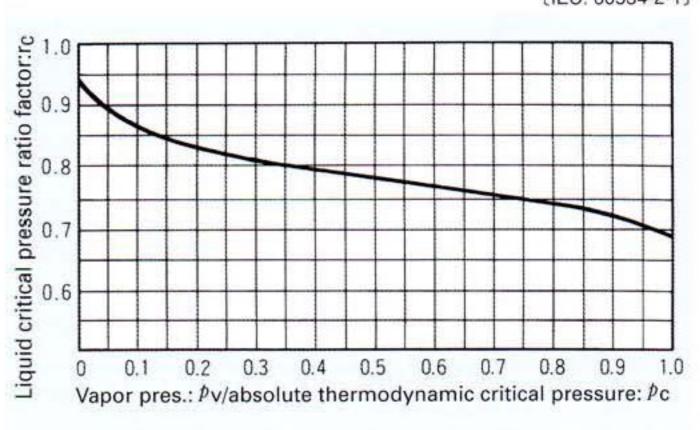
Km : Valve recovery coefficient Indicated on the page of respective type.

$$K_{\rm m} = F_{\rm L}^2 = \frac{X_{\rm T}}{0.84}$$

where FL: Liquid pressure recovery factor


XT: Pressure differential ratio factor

 p_V : Saturated vapor pressure of the liquid at the inlet


temperature (MPa abs.)

r_c : Liquid critical pressure ratio factor According to Figs. 9B and 9C.

Fig. 9B Critical pressure ratio factor of water: rc

Fig. 9C Critical pressure ratio factor of liquid other than water: rc [IEC. 60534-2-1]

Table 9.2 Absolute thermodynamic critical pressures "pc" of various fluids

Fluid	Molecular weight	Critical temperature (K)	Critical pressure (MPa		
Water	18.01	647.30	22.12		
Carbon dioxide	44.01	304.21	7.3825		
Ammonia	17.03	405.6	11.28		
Ethane	30.06	305.4	4.871		
Propane	44.10	369.82	4.250		
Ethanol	46.07	513.9	6.14		
Methanol	32.04	512.58	8.09		

Correction when a reducer (or expander) is installed before or after the valve

In many cases, reducers are designed just for adjusting the valve to the pipe size, and they are normally made of short pipe. Accordingly, when the valve is to be fitted with a reducer, a valve of a flow coefficient greater by the pressure resistance of the reducer must be selected. The correction procedure is as follows:

When the pressure-temperature condition is not that of choked flow

$$Cvp = \frac{Cv}{Fp}$$

Table 9.3 Piping geometry factor "Fp"

d/D Cd	10	15	20	25	30
0.80	0.99	0.98	0.96	0.94	0.91
0.75	0.98	0.97	0.94	0.91	0.88
0.67	0.98	0.95	0.91	0.87	0.83
0.60	0.97	0.93	0.89	0.84	0.79
0.50	0.96	0.91	0.85	0.79	0.73
0.40	0.95	0.89	0.82	0.76	0.70
0.33	0.94	0.88	0.81	0.74	0.69
0.25	0.93	0.87	0.79	0.72	0.65

The area in ____ is the range of which correction is normally omitted.

Where

Cvp: The required valve flow coefficient after the correction of piping geometry factor has been made.

Cv : The valve flow coefficient obtained by the Cv formula of table 9.1.

Ep : Piping geometry factor Based on Table 9.3.

d: Valve bore in mm

Cv: Outlet side pipe bore in mm

Cd: Relative flow coefficient of the rated Cv. Calculated with the following formula:

$$Cd = \frac{645 \text{ CV}}{d^2}$$

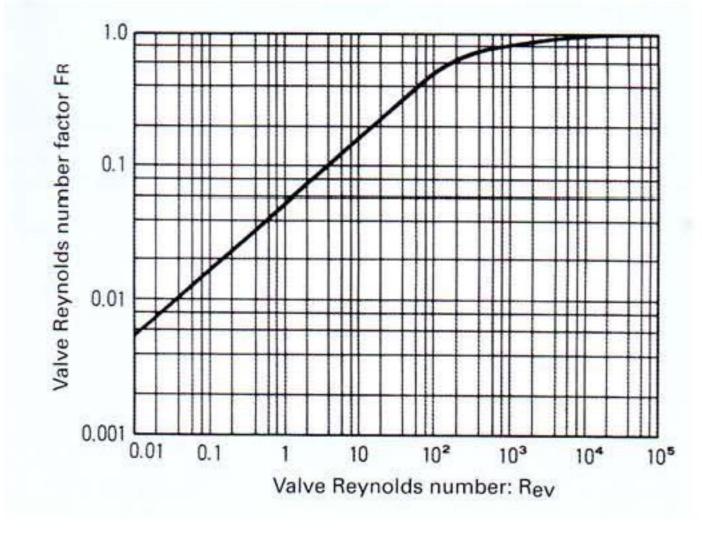
When the condition is that is choked flow, the calculation can be made with the formula of IEC.

Correction for laminar flow

When a fluid (liquid) has a high viscosity or when the valve pressure drop or flow rate is small, the flow rate is not proportional to $\sqrt{\triangle p}$ but to $\triangle p$. Correction in this case is made in the following manner.

(1) Calculate the Reynolds number of the valve pass from the following formula. [IEC 60534-2-1]

$$Rev = \frac{7.6 \times 10^4 \text{ Fd} \cdot \text{V}}{v \sqrt{\text{Fp} \cdot \text{FL} \cdot \text{Cv}}} \left(\frac{\text{Fp}^2 \cdot \text{FL}^2 \cdot \text{Cv}^2 \times 10^3}{2.14 \times \text{D}^4} + 1 \right)^{1/4}$$


(2) Read out the valve Reynolds number factor FR from the figure below.

(3) Make correction of Cv with the following formula.

Required Cv after correction = $\frac{\text{Cv before correction}}{\text{FR}}$

Most of the flows in a process plant have Reynolds numbers of 10⁴ and over, therefore the valve Reynolds number factor FR is 1.0.

Fig. 9D Valve Reynolds number factor: FR [IEC 60534-2-1]

Where

Rev : Valve Reynolds number

Fd : Valve style modifier factor

Single-ported globevalves: 1.0

Double-ported globe and butterfly valves: 0.7

v : Kinematic viscosity (in centistokes)

Fp : Piping geometry factor. Table 9.3

When pipe bore = valve bore: 1

When pressure loss of valve itself is large, such as

glove valve: Fp = 1

FL : Valve liquid pressure recovery factor.

See Km of respective valve type.

 $FL = \sqrt{Km}$

Cv : The Cv value of Table 9.1 will do for approximation.

Use the Cv value obtained by trial-and-error method.

D : Pipe bore [mm]

V : Rate of flow [m³/h]

SIZING

In sizing, Cv is computed by the above-mentioned procedure. The size and type are selected with due consideration given to factors such as process condition, rated Cv, cavitation, velocity, vibration, and noise.

Selection of rated Cv

- (1) The rated Cv value* of a valve has a margin of 20 to 100% of the computed Cv value. *The rated Cv value of each type is shown on pages 19 through 48.
- (2) It is desirable, in ordinary processes, to keep the valve load range within its travel range of 20 to 90%.
- (3) Make sure that the required minimum Cv value is within the rangeability of the rated Cv value thus selected, and that there is some margin.
- (4) If erosion damage on the trim is feared, keep the valve travel above 30% during control.

Prediction of cavitation generation

Consideration whether cavitation will be generated under the given conditions is made in the following manner:

(1) Compute △pc from the following formula.

 $\triangle p_{\rm C} = K_{\rm C}(p_1 - p_{\rm V})$

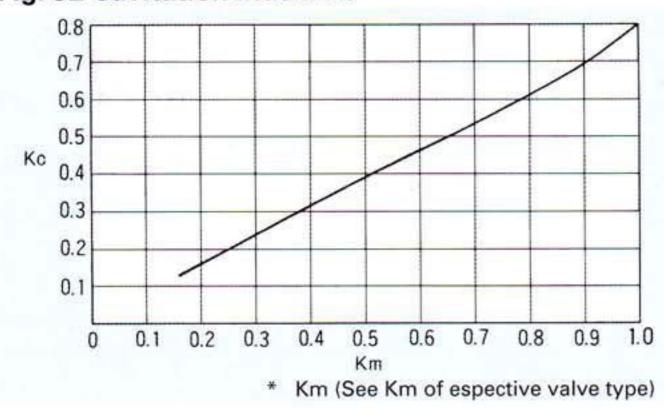
(2) Compare $\triangle p_c$ obtained and $(p_1 - p_2)$

if $\triangle p_{\mathcal{C}} \leq (p_1 - p_2)$,

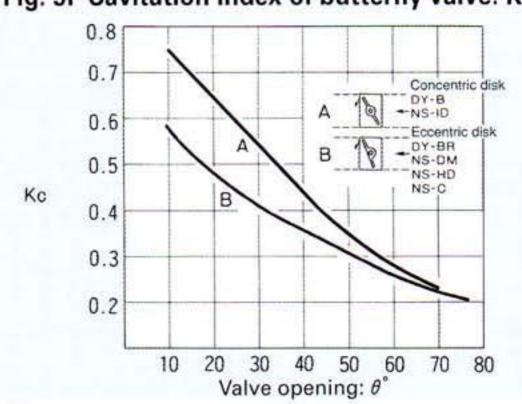
generation of cavitation will be predicted.

Where

 $\triangle p_{C}$: Pressure drop at which cavitation is generated.


(MPa)

by : Saturated vapor pressure of liquid at inlet temper-


ature. (MPa abs.)

Kc : Cavitation index. According to Fig. 9. E, F below.

Fig. 9E Cavitation index: Kc

Fig. 9F Cavitation index of butterfly valve: Kc

Limits of velocity and differential pressure

- We recommend the values shown in the table below for the velocity and differential pressure of controlled fluids, with consideration given to noise, vibration, erosion and durability of control valves. When flow noise of gases becomes a problem, the valve outlet velocity is designed not to exceed 30 or 50% of the velocity of sound. For noises, see pages 60 through 62.
- · Formula for calculating sound velocity at outlet of valve

Superheated steam

 $Vs = 111.5 \sqrt{p_2 v_2}$

Moisture bearing gas

 $Vs = 97.7\sqrt{kp_2v_2}$

(Dry) saturated steam

 $Vs = 104.3 \sqrt{p_2 v_2}$

(Dry) air and gas

 $Vs = 90.8 \sqrt{\frac{kT_2}{M}}$

Table 9.4 Valve inlet and outlet velocity limits (Example: steel valves)

Florid	Valve nominal	Valve velocity limits (m/s)				
Fluid	bore (mm)	Inlet side	Outlet side			
VEL TITLE	100 and under	5.0	-			
Mater	125 to 200	4.5	-			
Water	250 to 300	3.5	-			
	350 to 400	3.0	-			
	15 to 25	125				
	32 to 50	100	500 and under.			
Steam	65 to 100	85	Advisable to keep not more than			
	125 to 200	75	230.			
	250 to 300	65				

Remarks: Limits for cage type valve are 1.5 times as large as those shown in the table above.

Where

Vs : Sound velocity

m/s

p₂: Valve outlet pressure

MPa abs.

v2: Specific volume on the

valve outlet side m3/kg

 T_2 : Absolute temperature on

the valve outlet side

(273 + t2°C)

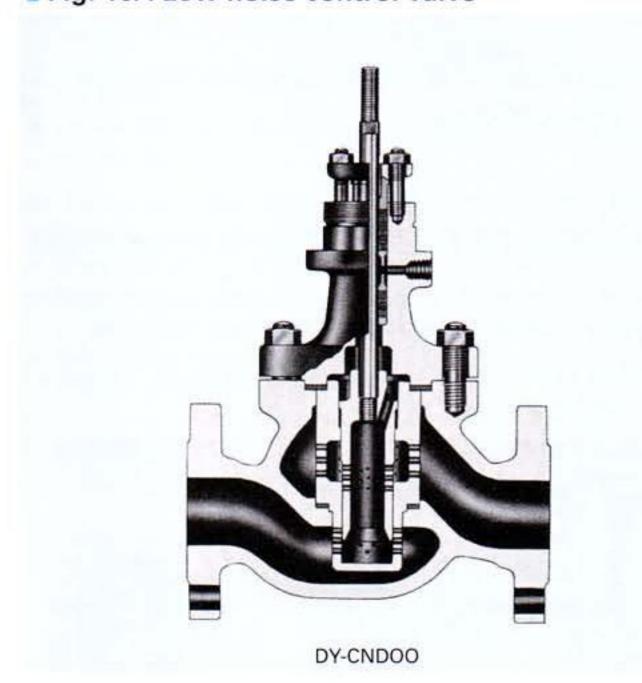
Table 9.5 Representative values of M and k

Fluid	Air	Oxy- gen	Nitro- gen	Hydro- gen	Pro- pane
M (molecular weight)	28.97	32.00	28.02	2.02	44.10
k (Ratio of specific heats of gas)	1.40	1.40	1.41	1.41	1.15

SUPPLEMENTARY EXPLANATION (REFERENCE)

 At present, Av and Kv are also used as flow coefficients, in addition to Cv. Av value is flow coefficient in SI system. Kv value is the flow rate of water in m³/h when the pressure drop is 1 bar and water temperature is within the range of 5 to 40°C.
 Conversion formulas are as follows:

$$A_V = \frac{24}{10^6} \times C_V$$


$$K_V = \frac{C_V}{1.17}$$

With the present trends for larger capacity and higher pressure of process plants, the problems of noises of plant is attracting much attention, and noise control of control valves is urgently required in view of environmental control and industrial psychology.

To meet these requirements, we have been conducting development of low noise valves as well as noise control measures by installing noise experiment devices to measure noises of various types of valves, and by conducting field noise measurement. An example of low noise valve has been given on page 23, which is just a part of our efforts.

In this chapter, we explain control valve noises and their countermeasures. Valve noises may be classified into machanical noises and fluid noises due to flow.

Fig. 10A Low noise control valve

KIND OF NOISE

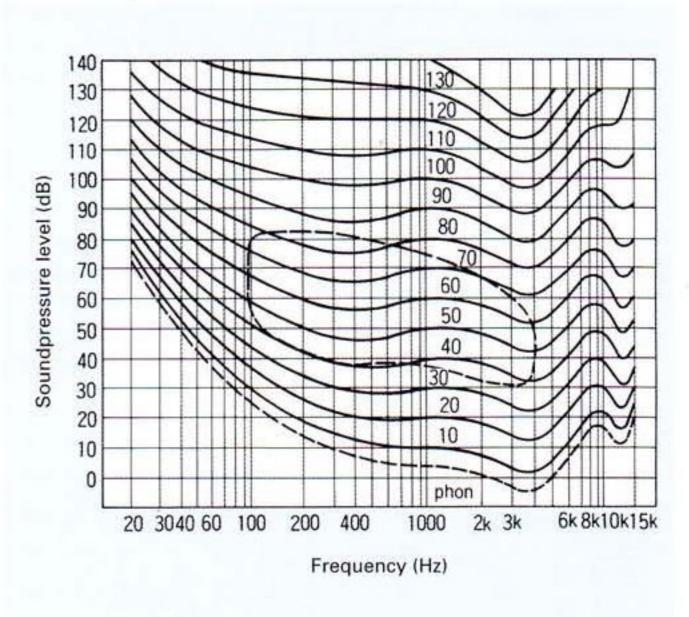
Mechanical noises

Mechanical noises are generated by fluctuation of forces due to jets and vortexes at movable portions inside the valve. The natural frequency of trim is normally within the range of 50 to 2000 Hz, and resonance is said to be generated around 2 to 7 kHz.

Noises due to liquid flow

When liquid passes the valve port, the velocity will increase and the static pressure will drop to generate bubbles in the liquid. These bubbles will collapse on the downstream side of the valve port when the velocity decreases and the static pressure recovers. This phenomenon is normally called cavitation. Bursting sounds generated by this cavitation are one source of noises. Noise levels of mechanical noises and of cavitation noises are usually not more than 100 dB, except few cases.

Noises due to gas flow


Most of valve noises are generated in the following manner. When the valve travel (area of path) is reduced to control the flow rate, a differential pressure will be generated at the valve port, and the fluid flowing in the pipe will be partly increased in velocity to acquire high kinetic energy. This high energy will be converted into sound energy to generate noises. Valve noises are similar to jet noises and proportional to the n th power of the veloity, n is said to be 5 to 8, and the value of n varies according to the differential pressure of the valve. This sound thus generated will be conveyed to the downstream side and transmitted outside via the vibrations of the pipe. If $(p_1 \times Cv) < 70$, the noise level will not exceed 90dB.

Sound intensity

The intensity of sound is expressed as flux of sound power through unit area normal to the direction of propagation, or as sound pressure in decibels (dB). The degree of apparent loudness of sound is called loudness level and measured in phons. For example, if some sound has an intensity of 60 phons, the apparent intensity of the sound is equal to that of sound of 60 dB at 1000 Hz. The sensitivity of ear deteriorates in both ranges of low frequencies and high frequencies. The unit of sound intensity measured with a sound level meter set to the A scale which has similar characteristics to human ear is dB (A). (See Fig. 10B below.)

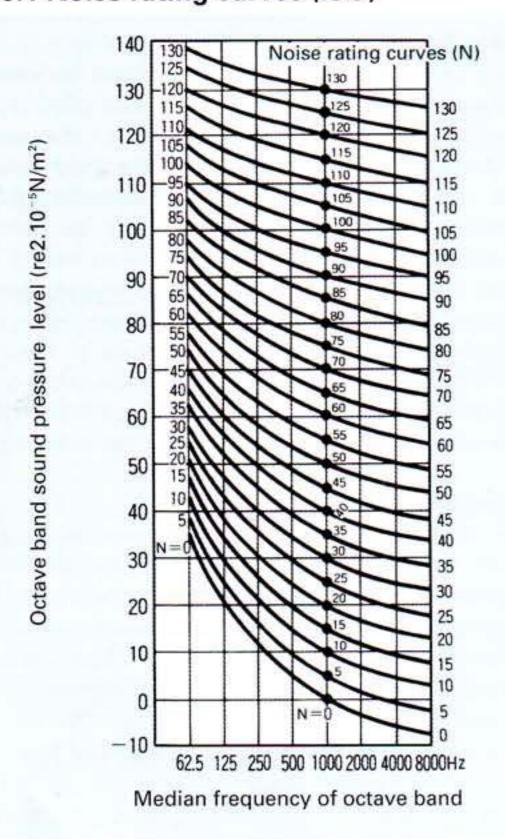

As the apparent "loudness" of steady sound and that of somewhat fluctuating sound can be well expressed in this unit by finding the median, the unit is used in practical noise evaluation.

Fig. 10B Ranges of audible asound frequency and sound pressure level

 The area enclosed by the broken line in the center of the figure indicates the range used by human voice.

Table 10.1 Noise rating curves (ISO)

For rating noise interference of hearing of voise, a variety of methods is available. ISO system measures sound pressure levels of octave bands of median frequencies of 500, 1000 and 2000 Hz and obtains the largest N number among them from the noise rating curves of Table 10.1 as NRN (noise rating number). This value is approximately equal to the value in dB (A) minus 5.

The allowable limits for hearing protection are shown in Table 10.2 below. Since the aparent "loudness" of noise depends on the difference between the noise and its background noise (the larger the difference, the louder the noise), and also varies according to factors such as environment, psychological background, nature of noise (monotonous, intermittent, impulsive, etc.), a comprehensive analysis is required.

Table 10.2 Allowable levels of noise for hearing protection.

Median frequency (Hz)	Allowable octave band level (dB)											
	480 min.	240 min.	120 min.	60 min.	40 min.	30 min.						
250	98	102	108	117	120	120						
500	92	95	99	105	112	117						
1000	85	88	91	95	99	103						
2000	83	84	85	88	90	92						
3000	82	83	84	85	88	90						
4000	82	83	85	87	89	91						
8000	87	89	92	97	101	105						

PREDICTION OF SOUND PRESSURE LEVEL

The prediction of noise of control valve is made on the basis of the formulas indicated in ISA HANDBOOK OF CONTROL VALVE. The prediction of sound pressure levels of our control valves is made with reference to various data.

Computation of predicted value of sound pressure level
Predicted value of sound pressure level is computed from
the following formula.

SPL: $S\triangle p + SCv + S(\triangle p/p^*) f + SI$

Code

SPL: Overall noise level in dB (A) at predetermined point (1 m downstream of the valve outlet and 1 m from the pipe surface).

S\times P: Base SPL in dB (A) determined as a function of pressure differential.

SCv: Correction in dB (A) for Cv.

S ($\triangle P/P^*$)f: Correction in dB (A) for valve style and flow regime.

SI: Correction in dB (A) for acoustical treatment; i.e. heavy wall pipe.

MEASUREMENT OF SOUND PRESSURE LEVEL

As for measurement, noise test devices and measuring method are in accordance with JIS Z8731 and ISO TC43.

Some data of low noise valves developed by us are shown below. (On pages 61 and 62.)

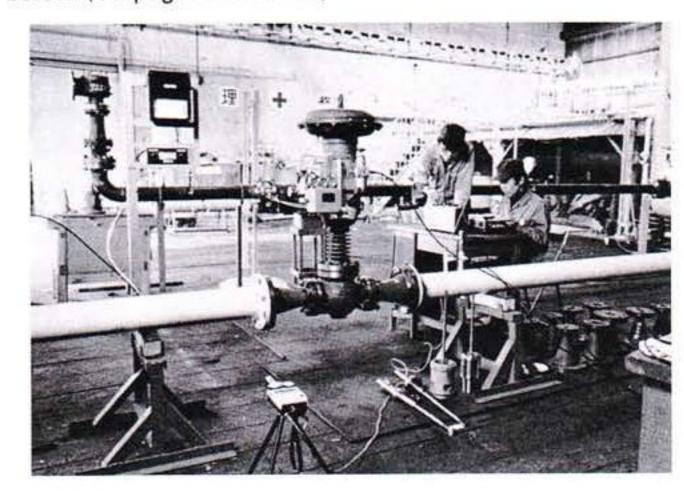


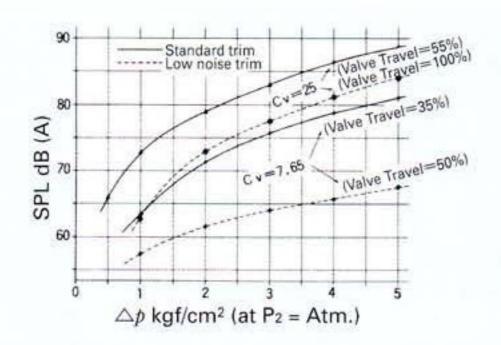
Fig. 10C Measuring point

NOISE CONTROL

When noises of control valve raise a problem, the following points should be paid due attention in planning countermeasures:

- Grasp the actual state of noise level and its frequency band.
- Identify the main sources of noises which are affecting the receiving point.
- 3. Locate where the noises are coming from.

As for noise control measures, it is important to consider valve, piping, structures, environment, etc., all in a system, and use some control methods in combination so as to take economic aspect into consideration.


- Selection of valve style → Low noise valve.
- Planning of upstream and downstream flows of valve Smaller velocity, silencer.
- Piping → Rugging, and use of thick wall pipe.
- Alternation of plan of process specifications → Smaller burden of valve differential pressure.
- Sound insulation → Sound insulation box, and sound barrier wall.
- Prevention of propagation of vibration → Support, and structures.

As for noise transmission control measures, the following points should be considered:

- · Keep the noise source away from the receiving point.
- Reorientate the exhaust port, etc., by considering the directivity of noise.
- Attenuate the noise by means of wall, buildings, environmental improvement, etc.

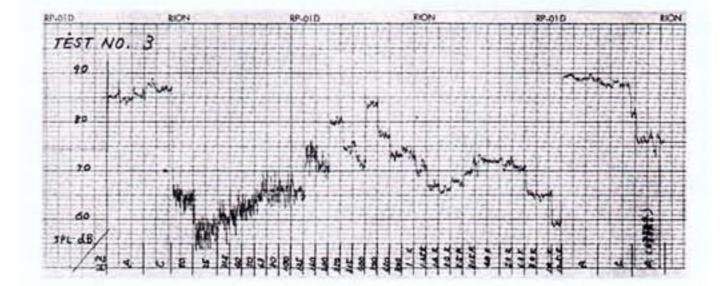
In selecting some measures from those mentioned above, it is necessary to pay due attention to economics, effects on environment of the installation site, noise level, etc.

Fig. 10D

Noise data

[Comparison of standard and low noise valve trims at the same Cv]

As shown on the data, low noise trim shouwed sound reducing effects of 5 to 15 dB (A). Especially, with the decrease of valve travel, high frequency range was cut off, and noise level was substantially reduced.


Fig. 10E Examples of noise control effects on downstream side of a valve

Example of low noise trim

Fig. 10F

PRESSURE-TEMPERATURE RATING (REFERENCE DATA)

Pressure ratings for ferrous material pipe flanges (JISB2238-1996) & (JISB2239-1996) [Attached table]

MPa (kgf/cm²)

		CONDITION	Hydraulic test							
NOMINAL	MATERIAL (1)		Condition of fluid							
PRESSURE	WATERIAL (1)	W	G1	G ₂	G ₃	pressure (reference) (4)				
		max. 120℃	max. 220℃	300℃	350℃	147				
2K	FC 200	0.29 (3)	0.20 2	_	2_0	0.39 4				
5K	FC 200	0.69 7	0.49 [5]		_	0.00[10]				
DK.	FCMB 340 (2) .FCD370 .FCD 400 (2) .FCMB-S 35 .FCD-S	0.69[7]	0.59 6	0.49(2) 5	-	0.98[10]				
104	FC 200	1.37 [14]	0.98 [10]	_		1.00(00)				
10K	FCMB 340 (2) 、FCD370、FCD 400 (2) 、FCMB-S 35、FCD-S	1.37 [14]	1.18 [12]	0.98(2) (10)	-	1.96 [20]				
101	FC 200	2.16 [22]	1.57 [16]	-		3.14 (32)				
16K	FCMB 340 (2) .FCD370 .FCD 400 (2) .FCMB-S 35 .FCD-S	2.16 [22]	1.96 [20]	1.77 (2) [18]	1.57 (2) [16]	3.43 [35]				
201	FC 250	2.75 28]	1.96 (3) [20]		-	3.92 [40]				
20K	FCMB 340 (2) .FCD370 .FCD 400 (2) .FCMB-S 35 .FCD-S	2.75 28	2.45 [25]	2.26(2)[23]	1.96(2) [20]	4.32 44				

Note (1) The materials shall be those given in the attached table or those satisfying requirement for flanges. The material notation of the table is based on the following.

Notation	Applicable standards
FC 200, FC 250	JIS G 5501
FCMB 340	JIS G 5702
FCD 370, FCD 400	JIS G 5502
FCMB-S 35, FCD-S	JIS B 8270's attachment 5, A&B

- (2) FCMB 340 & FCD 400 are not applicable against 16K & 20K of fluid condition when nominal pressures are 5K & 10K.
- (3) Applicable maximum working temperature is "F
- (4) The hydraulic test pressures are test pressures when flange is fitted to pipe, given for reference purpose. If otherwise specified, those shown in the table do not apply.

Remarks

- 1. Fluid condition W is applicable to still running water (with little pressure fluctuation) of F and unber only.
- 2. Fluid conditions G₁, G₂ and G₃ are applicable to steam, gas, oil or pulsating water (with fluctuating pressure) of the respective temperature shown in the table.
- When temperature or pressure is in between two figures on the table, the maximum working pressure or temperature can be determined by interpolation. (see attached table)
- 4. When the service entails impact, corrosion or other special condition, materials for the maximum working pressure corresponding to a higher temperature or materials for higher nominal pressure shall be used.
- 5. Figures in parenthesis are not usually used. They are given for reference in design.
- 6. When fluid condition is to be expressed in notation, W through G3 are used.

MPa (kgf/cm²)

			CONDITION OF FLUID AND MAXIMUM WORKING PRESSURE										Hydraulic test
NOMINAL	MATERIAL (4)	Condition of fluid											pressure
PRESSURE	MATERIAL (1)	W	Gt	G ₂	G ₃	Hı	H2	Нз	H4	H ₅	H ₆	H ₇	(reference)
1 11 1		120°C以下	220℃以下	300℃	350℃	400°C	425℃	450℃	475°C	490°C	500℃	510℃	(4)
2K	SS400, SF390A (3), S20C (2), SC410	0.29 3	0.20 2	-	_	-	-	_	_	_	_	_ :-	0.39 4
5K	SS400, SF390A (3), SFVC1, S20C (2), SC410, SCPH1	0.69 7	0.59 6	0.49 5	_	_	_	-	-	-	-	-	0.98 10
10K	SS400, SF390A (3), SFVC1, S20C (2), SC410, SCPH1	1.37 14	1.18 12	0.98 [10]	-	_	-	-	s :	-	-	-	1.96 20
16K	SF440A (3) 、SFVC2A、S25C (2) 、SC480 (4) 、SCPH2	2.65 27	2.45 [25]	2.26 23	2.06 21	1.77 [18]	1.57 16}	-	-	_	_	-	3.92 40
20K	SF440A(3), SFVC2A, S25C(2), SC480(4), SCPH2	3.33 34	3.04 [31]	2.84 29	2.55 26	2.26 [23]	1.96 20	_		-	_	-	4.90 50
	SF440A(3), SFVC2A, S25C(2), SC480(4), SCPH2	5.00 51	4.51 [46]	4.22 43	3.82 39	3.33 34	2.94 30	-		-	-	_	
30K	SFVAF1、SCPH11	(5.00 51)	(4.51 46)	(4.22 [43])	(3.82 39))	3.73 38	3.53 36	3.33 34	2.94 30	-	-	-	7.35 75
	SFVAF11A、SCPH21	(5.00 51))	(4.51 [46])	(4.22 43))	(3.82 39})	(3.73 38)	(3.53 36 })	(3.33 [34])	3.14 32	2.94 (30)	-		
	SF440A(3), SFVC2A, S25C(2), SC480(4), SCPH2	6.67 68	6.08 [62]	5.59 [57]	5.10 [52]	4.51 [46]	3.92 40	-	-	-		9-	
40K	SFVAF1、SCPH11	(6.67 68))	(6.08 [62])	(5.59 (57))	(5.10 52 })	5.00 [51]	4.71 [48]	4.41 [45]	3.92 40	-	-	-	9.81 [100]
	SFVAF11A、SCPH21	(6.67 68)	(6.08 [62])	(5.59 [57])	(5.10 52)	(5.00 [51])	(4.71 48)	(4.41 [45])	4.12 42	3.92 [40]	3.73 [38]	3.53 [36]	
	SF440A (3) , SFVC2A , S25C (2) , SC480 (4) , SCPH2	10.49 107	9.51 (97)	8.83 [90]	7.94 81	7.06 [72]	6.18 63	2-2	-	-	5750		
63K	SFVAF1、SCPH11	(10.49 [107])	(9.51 [97])	(8.83 [90])	(7.94 81)	7.85 80	7.45 [76]	6.96 71	6.18 (63)	==4			15.69 160
	SFVAF11A、SCPH21	(10.49[107])	(9.51[97])	(8.83 (90))	(7.94 81)	(7.85 80)	(7.45 76)	(6.96 [71])	6.47 66	6.18 63	5.79 [59]	5.49 [56]	(6)

Note (1) The materials shall be those given in the attached table or those satisfying requirement for flanges. Others than in the table are due to the agreement or negotiation on delivery. The material notation of the table is based on the following.

Notation	Applicable standards
SS400	JIS G 3101
SF390A, SF440A	JIS G 3201
SFVC1.SFVC2A	JIS G 3202
SFVAF1, SFVAF11A S20C, S25C	JIS G 3203 JIS G 4051
SC410, SC480	JIS G 5101
SCPH1, SCPH2, SCPH11, SCPH21	JIS G 5151

- (2) According to inspection through JIS G 0303, extension strength shall be more than 400 N/mm² {40.8kgf/mm²} for S20C and 440 N/mm² {44.9kgf/mm²} for S25C.
- (3) Carbon content shall be below 0.35%.
- Applicable maximum working temperature shall be below "F (350°C).
- (5) The hydraulic test pressures when flange is fitted to pipe, given for reference purpose. If otherwise specified, those shown in the table do not apply.
- Remarks 1. Fluid condition W is applicable to still running water (with little pressure fluctuation) of 120°C and unber only.
 - 2. Fluid conditions G₁, G₂ and G₃ are applicable to steam, gas, oil or pulsating water (with fluctuating pressure) of the respective temperature shown in the table.
 - 3. Fluid condition H1 is applicable to steam, air, gas or oil of 400°C.
 - 4. Fluid conditions H₂ through H₇ are applicable for steam, air, gas or oil of 425 to 510°C and which may cause creep in material due to high temperature.
 - When temperature or pressure is in between two figures of the table, the maximum working pressure or temperature can be determined by interporation.
 - 6. When the service entails impact, corrosion or other special condition, materials for the maximum working pressure corresponding to a higher temperature or materials for higher nominal pressure shall be used.
 - 7. Figures in parenthesis are not usually used. They are given for reference in design.
 - 8. When fluid condition is to be expressed in notation, W through H₇ are used.

Table 11.2 Pressure-temperature ratings of ASME

Extracted from Pressure Temperature Ratings of mainly steel materials prescribed in ASME B16.34 1996 Steel Valves, Flanged and Butt-Welding End.

Carbon steel (Categ.1)

Pressure				Pres	sure (M	IPa)		E 0.00	
Temp. in C	150	300	600	900	1500	2000	2500	3500	4500
-30~ 38	2.0	5.1	10.2	15.3	25.5	34.0	42.5	59.6	76.6
93	1.8	4.7	9.3	14.0	23.3	31.0	38.8	54.3	69.8
149	1.6	4.5	9.1	13.6	22.6	30.2	37.7	52.8	67.9
204	1.4	4.4	8.8	13,1	21.9	29.1	36.4	51.0	65.5
260	1.2	4.1	8.3	12.4	20.7	27.5	34.4	48.2	61.9
316	1.0	3.8	7.6	11.3	18.9	25.2	31.4	44.0	56.6
343	0.9	3.7	7.4	11.1	18.5	24.7	30.9	43.2	55.5
371	0.8	3.7	7.3	11.0	18.4	24.5	30.6	42.9	55.1
399	0.7	3.5	7.0	10.4	17.4	23.2	29.0	40.5	52.1
427	0.6	2.8	5.7	8.5	14.2	18.9	23.6	33.1	42.5
454	(0.4)	1.9	(3.7)	(5.6)	(9.2)	(12.3)	(15.4)	(21.5)	(27.6)

Remarks: when temperature or pressure is in between two figures on the table, the maximum working pressure or temperature can be determined by interpolation.

: Figures in parenthesis are not usually used.

0.5Mo Steel (Categ.1)

Pressure				Pres	sure (N	IPa)	1		
Temp. in C	150	300	600	900	1500	2000	2500	3500	4500
-30~ 38	1.8	4.8	9.6	14.4	23.9	31.9	39.9	55.8	71.8
93	1.8	4.7	9.4	14.0	23.4	31.2	39.0	54.6	70.2
149	1.6	4.5	9.0	13.5	22.5	30.0	37.5	52.5	67.4
204	1.4	4.4	8.8	13.2	22.1	29.4	36.7	51.5	66.2
260	1,2	4.3	8.6	12.9	21.4	28.6	35.7	50.0	64.3
316	1.0	4.2	8.3	12.5	20.9	27.8	34.8	48.6	62:5
343	0.9	4.1	8.1	12.2	20.3	27.0	33.8	47.3	60.8
371	0.8	3.9	7.8	11.8	19.6	26.1	32.6	45.7	58.7
399	0.7	3.7	7.3	11.0	18.3	24.4	30.5	42.7	55.0
427	0.6	3.5	7.0	10.5	17.5	23.3	29.2	40.8	52.5
454	0.4	3.3	6.7	10.1	16.8	22.4	28.0	39.2	50.4
482	(0.3)	(3.1)	(6.2)	(9.3)	(15.5)	(20.7)	(25.8)	(36.1)	(46.5)

Hemarks: when temperature or pressure is in between two figures on the table, the maximum working

pressure or temperature can be determined by interpolation.

Note : Figures in parenthesis are not usually used.

1Cr-0.5Mo Steel (Categ.1)

Pressure				Pres	sure (M	Pa)			
Temp. in C Class	150	300	600	900	1500	2000	2500	3500	4500
-30~ 38	2.0	5.2	10.3	15.5	25.9	34.5	43.1	60.3	77.6
93	1.8	5.2	10.3	15.5	25.9	34.5	43.1	60.3	77.6
149	1,6	5.0	10.0	14.9	24.9	33.2	41.5	58.1	74.7
204	1.4	4.8	9.5	14.3	23.9	31.9	39.8	55.8	71.7
260	1.2	4.6	9.2	13.8	22.9	30.6	38.2	53.5	68.7
316	1.0	4.2	8.3	12.5	20.9	27.8	34.8	48.6	62.5
343	0.9	4.1	8.1	12.2	20.3	27.0	33.8	47.3	60.8
371	0.8	3.9	7.8	11.8	19.6	26.1	32.6	45.7	58.7
399	0.7	3.7	7.3	11.0	18.3	24.4	30.5	42.7	55.0
427	0.6	3.5	7.0	10.5	17.5	23.3	29.2	40.8	52.5
454	0.4	3.3	6.7	10.1	16.8	22.4	28.0	39.2	50.4
482	0.3	3.1	6.2	9.3	15.5	20.7	25.8	36.1	46.5
510	0.2	2.2	4.4	6.6	11.0	14.7	18.3	25.6	33.0
538	0.1	1.5	3.0	4.5	7.4	9.9	12.4	17.4	22.3
566	☆0.1	1.0	2.0	3.0	5.0	6.6	8.3	11.6	14.9
593	☆(0.1)	(0.7)	(1.3)	(2.0)	(3.3)	(4.4)	(5.5)	(7.7)	(9.9)

Remarks : when temperature or pressure is in between two figures on the table, the maximum working

pressure or temperature can be determined by interpolation. Note1 : Figures in parenthesis are not usually used.

2.5Cr-1Mo Steel (Categ.1)

Note2 : * mark does not apply to flange type.

Pressure	1.		III.	Pres	sure (M	Pa)		-	
Temp. in C Class	150	300	600	900	1500	2000	2500	3500	4500
-30~ 38	2.0	5.2	10.3	15.5	25.9	34.5	43.1	60.3	77.6
93	1.8	5.2	10.3	15.5	25.9	34.5	43.1	60.3	77.6
149	1.6	5.0	10.0	15.1	25.1	33.5	41.9	58.6	75.3
204	1.4	4.9	9.7	14.6	24.3	32.4	40.5	56.8	73.0
260	1.2	4.6	9.2	13.8	22.9	30.6	38.2	53.5	68.7
316	1.0	4.2	8.3	12.5	20.9	27.8	34.8	48.6	62.5
343	0.9	4.1	8.1	12.2	20.3	27.0	33.8	47.3	60.8
371	0.8	3.9	7.8	11.8	19.6	26.1	32.6	45.7	58.7
399	0.7	3.7	7.3	11.0	18.3	24.4	30.5	42.7	55.0
427	0.6	3.5	7.0	10.5	17.5	23.3	29.2	40.8	52.5
454	0.4	3.3	6.7	10.1	16.8	22.4	28.0	39.2	50.4
482	0.3	3.1	6.2	9.3	15.5	20.7	25.8	36.1	46.5
510	0.2	2.6	5.2	7.8	13.0	17.3	21.7	30.4	39.1
538	0.1	1.8	3.6	5.4	9.0	12.0	15.0	21.0	27.0
566	☆0.1	1.2	2.4	3.6	6.0	8.0	10.0	14.1	18.1
593	☆(0.1)	(0.8)	(1.5)	(2.3)	(3.8)	(5.1)	(6.3)	(8.8)	(11.3)

Remarks: when temperature or pressure is in between two figures on the table, the maximum working pressure or temperature can be determined by interpolation.

Note1 : Figures in parenthesis are not usually used.

Note2 : in mark does not apply to flange type.

Low temperature carbon steel (Categ.1)

Pressure				Pres	sure (M	IPa)			
Temp. in C Class	150	300	600	900	1500	2000	2500	3500	4500
-30~ 38	1.8	4.8	9.6	14.4	23.9	31.9	39.9	55.8	71.8
93	1.7	4.5	9.1	13.6	22.6	30.2	37.7	52.8	67.9
149	1.6	4.4	8.8	13.2	22.0	29.3	36.6	51.3	65.9
204	1.4	4.3	8.5	12.8	21.3	28.4	35.5	49.7	63.8
260	1.2	4.0	8.0	12.0	20.1	26.8	33.4	46.8	60.2
316	1.0	3.7	7.3	11.0	18.4	24.5	30.6	42.9	55.1
343	(0.9)	(3.6)	(7.2)	(10.8)	(18.0)	(24.0)	(30.0)	(42.0)	(54.1

Remarks: when temperature or pressure is in between two figures on the table, the maximum working

pressure or temperature can be determined by interpolation. : Figures in parenthesis are not usually used.

18Cr-8Ni Steel (Categ.1)

Pressure	application of the same		TU	Pres	sure (M	Pa)			
Temp. in C Class	150	300	600	900	1500	2000	2500	3500	4500
-30~ 38	1.9	5.0	9.9	14.9	24.8	33.1	41.4	57.9	74.5
93	1.6	4.1	8.3	12.4	20.7	27.6	34.5	48.3	62.1
149	1.4	3.7	7.4	11.2	18.6	24.8	31.0	43.4	55.8
204	1.3	3.4	6.9	10.3	17.1	22.8	28.5	40.0	51.4
260	1.2	3.2	6.4	9.6	16.1	21.4	26.8	37.5	48.2
316	1.0	3.0	6.0	9.0	15.1	20.1	25.1	35.1	45.2
343	0.9	3.0	5.9	8.9	14.8	19.8	24.7	34.6	44.4
371	8.0	2.9	5.9	8.8	14.7	19.5	24.4	34.1	43.9
399	0.7	2.9	5.7	8.6	14.3	19.1	23.9	33.4	43.0
427	0.6	2.8	5.6	8.3	13.9	18.5	23.2	32.4	41.7
454	0.4	2.7	5.4	8.2	13.7	18.2	22.8	31.9	41.0
482	0.3	2.7	5.4	8.0	13.4	17.9	22.3	31.3	40.2
510	0.2	2.6	5.3	7.9	13.2	17.5	21.9	30.7	39.5
538	0.1	2.2	4.4	6.7	11.1	14.8	18.4	25.8	33.2
566	☆0.1	2.1	4.2	6.4	10.7	14.2	17.7	24.8	31.9
593	☆0.1	1.8	3.6	5.3	8.9	11.8	14.8	20.7	26.6
621	☆0.1	1.4	2.8	4.1	6.9	9.1	11.4	16.0	20.6
649	☆0.1	1.1	2.1	3.2	5.3	7.1	8.9	12.4	16.0
677	☆0.1	0.8	1.6	2.3	3.9	5.2	6.5	9.1	11.7
704	☆0.1	0.6	1.2	1.8	3.0	4.0	4.9	6.9	8.9
732	☆0.1	0.4	0.9	1.3	2.1	2.8	3.6	5.0	6.4
760	☆0.1	0.3	0.7	1.0	1.7	2.2	2.8	3.9	5.0
788	☆0.1	0.2	0.5	0.7	1.2	1.6	2.0	2.8	3.6
816	(0.1)	(0.2)	(0.4)	(0.6)	(0.9)	(1.3)	(1.6)	(2.2)	(2.8)

Remarks: when temperature or pressure is in between two figures on the table, the maximum working

pressure or temperature can be determined by interpolation.

Note1 : Figures in parenthesis are not usually used.

Note2 : ☆ mark does not apply to flange type.

Note3 : For over *F (540°C) materials should be selected out of C ≥ 0.04%

18Cr-9Ni-2Mo Steel (Categ.1)

Pressure		TIV TO		Pres	sure (M	Pa)			
Temp. in C Class	150	300	600	900	1500	2000	2500	3500	4500
−30∼ 38	1.9	5.0	9.9	14.9	24.8	33.1	41.4	57.9	74.5
93	1.6	4.3	8.6	12.8	21.3	28.5	35.6	49.8	64.1
149	1.5	3.9	7.7	11.6	19.3	25.7	32.1	45.0	57.8
204	1.3	3.6	7.1	10.6	17.7	23.6	29.5	41.3	53.1
260	1.2	3.3	6.6	9.9	16.5	22.0	27.4	38.4	49.4
316	1.0	3.1	6.2	9.3	15.5	20.7	25.9	36.3	46.7
343	0.9	3.1	6.1	9.2	15.3	20.4	25.5	35.7	45.9
371	0.8	3.0	6.0	9.0	15.0	20.0	25.0	34.9	44.9
399	0.7	2.9	5.9	8.8	14.7	19.6	24.5	34.4	44.2
427	0.6	2.9	5.8	8.7	14.5	19.4	24.3	34.0	43.7
454	0.4	2.9	5.8	8.7	14.4	19.2	24.0	33.6	43.2
482	0.3	2.9	5.7	8.6	14.3	19.1	23.9	33.4	43.0
510	0.2	2.7	5.3	8.0	13.3	17.8	22.2	31.1	40.0
538	0.1	2.4	4.8	7.2	12.1	16.1	20.1	28.1	36.2
566	☆0.1	2.4	4.7	7.1	11.9	15.8	19.8	27.6	35.5
593	☆0.1	2.1	4.2	6.3	10.5	14.0	17.5	24.5	31.5
621	☆0.1	1.6	3.3	4.9	8.2	10.9	13.6	19.0	24.5
649	☆0.1	1.3	2.6	3.8	6.4	8.5	10.7	14.9	19.1
677	☆0.1	1.0	2.0	3.0	5.1	6.8	8.5	11.9	15.2
704	☆0.1	0.8	1.6	2.4	4.0	5.4	6.7	9.4	12.1
732	☆0.1	0.7	1.3	2.0	3.3	4.4	5.5	7.7	9.9
760	☆0.1	0.5	1.0	1.6	2.6	3.5	4.3	6.1	7.8
788	☆0.1	0.4	0.8	1.2	2.0	2.7	3.3	4.7	6.0
816	☆ (0.1)	(0.3)	(0.6)	(0.9)	(1.4)	(1.9)	(2.4)	(3.3)	(4.3

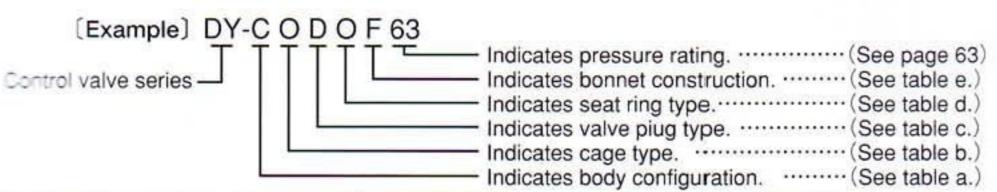
Remarks: when temperature or pressure is in between two figures on the table, the maximum working pressure or temperature can be determined by interpolation.

Note1 : Figures in parenthesis are not usually used.

Note2 : ☆ mark does not apply to flange type.

Note3 : For over *F (540°C) materials should be selected out of C ≥ 0.04%

9Cr-1Mo-V Steel (Categ.1)


Pressure				Pres	sure (M	Pa)			and the
Temp. in C Class	150	300	600	900	1500	2000	2500	3500	4500
−30∼ 38	2.0	5.2	10.3	15.5	25.9	34.5	43.1	60.3	77.6
93	1.8	5.2	10.3	15.5	25.9	34.5	43.1	60.3	77.6
149	1.6	5.0	10.0	15.1	25.1	33.5	41.9	58.6	75.3
204	1.4	4.9	9.7	14.6	24.3	32.4	40.5	56.8	73.0
260	1.2	4.6	9.2	13.8	22.9	30.6	38.2	53.5	68.7
316	1.0	4.2	8.3	12.5	20.9	27.8	34.8	48.6	62.5
343	0.9	4.1	8.1	12.2	20.3	27.0	33.8	47.3	60.8
371	0.8	3.9	7.8	11.8	19.6	26.1	32.6	45.7	58.7
399	0.7	3.7	7.3	11.0	18.3	24.4	30.5	42.7	55.0
427	0.6	3.5	7.0	10.5	17.5	23.3	29.2	40.8	52.5
454	0.4	3.3	6.7	10.1	16.8	22.4	28.0	39.2	50.4
482	0.3	3.1	6.2	9.3	15.5	20.7	25.8	36.2	46.5
510	0.2	2.6	5.3	8.0	13.3	17.8	22.2	31.1	40.0
538	0.1	2.5	5.0	7.5	12.5	16.7	20.9	29.2	37.6
566	☆0.1	2.5	5.0	7.4	12.4	16.5	20.7	29.0	37.2
593	☆0.1	2.1	4.2	6.2	10.4	13.9	17.3	24.3	31.2
621	☆0.1	1.6	3.1	4.6	7.7	10.2	12.8	17.9	23.1
649	☆0.1	1.0	2.0	3.0	5.0	6.6	8.3	11.6	14.9

Remarks: when temperature or pressure is in between two figures on the table, the maximum working

pressure or temperature can be determined by interpolation.

Note1 : Figures in parenthesis are not usually used. Note2 : the mark does not apply to flange type.

DY-CNDOO	DY-CCSSO	DY-LODSO
Balanced valve piug, low noise cage, double seat • For low noise • Easy maintenance	Cage guide unbalanced valve plug, single seat • Easy maintenance	Cage balanced valve plug, double seat Cavitation resistance Flashing resistance Easy maintenance
32 ~ 300 ^A	50 ~ 200 ^A	32 ~ 300 ^A
5 ~ 63	5 ~ 63	5 ~ 63
125 ~ 2500	125 ~ 1500	125 ~ 1500
550°C	550°C	550°C
20:1	30:1	50:1
0.5% and under. (II)*	0.01% and under. (IV)*	0.3% and under. (II)*
23	23	24
DY-GCSSO	DY-WCSSO	DY-WCLSO
Small size single seat, unbalance valve plug, medium pressure • Easy maintenance	Small size single seat, unbalance valve plug, • High temperature • High pressure • Easy maintenance	Unbalanced and labyrinth valve plug Cavitation resistance. For large pressure drop & noncompressible fluid. Easy maintenance
Small size single seat, unbalance valve plug, medium pressure	unbalance valve plug,	Valve plug Cavitation resistance. For
Small size single seat, unbalance valve plug, medium pressure • Easy maintenance	unbalance valve plug, High temperature High pressure Easy maintenance	 Cavitation resistance. For large pressure drop & noncompressible fluid. Easy maintenance
Small size single seat, unbalance valve plug, medium pressure • Easy maintenance 20 ~ 50^A	unbalance valve plug, High temperature High pressure Easy maintenance	Cavitation resistance. For large pressure drop & non-compressible fluid. Easy maintenance 20 ~ 50 ^A
Small size single seat, unbalance valve plug, medium pressure • Easy maintenance 20 ~ 50^A 5 ~ 63	unbalance valve plug, • High temperature • High pressure • Easy maintenance 20 ~ 50^A	 Valve plug Cavitation resistance. For large pressure drop & noncompressible fluid. Easy maintenance 20 ~ 50^A 5 ~ 63
Small size single seat, unbalance valve plug, medium pressure • Easy maintenance 20 ~ 50^A 5 ~ 63 125 ~ 900	unbalance valve plug, • High temperature • High pressure • Easy maintenance 20 ~ 50^ —— 1500 • 2500	valve plug Cavitation resistance. For large pressure drop & noncompressible fluid. Easy maintenance 20 ~ 50^A 5 ~ 63 1500 ~ 2500

27

28

25~26

■ Table a. Body configuration

Symbol	Meaning
С	Cage guided type body
G	Single seated and top guided type body
L	Cage guided and angle type body
w	Single seatded and suitable flow type body
Z	Special body (other than those mentioned above)

■ Table b. Cage type

Symbol	Meaning
0	Standard port cage
С	Cage quide
E	Multi-hole port cage
N	Low-nouse cage
Z	Special type cage

■ Table c. Valve plug type

Symbol	Meaning
В	Balanced valve plug with single seat joint
D	Balanced valve plug with double seat joint
L	Labyrinth
Р	Pilot type valve plug with single seat joint
s	Unbalanced valve plug with single seat joint
Z	Special type

■ Table d. Seat ring type

Symbol	Meaning
0	Cage-ring monolithic type
Е	Soft seat
S	Split type (metal)
Z	Special type

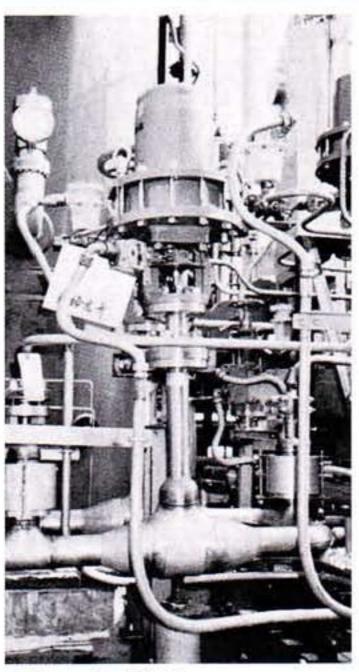
■ Table e. Bonnet construction

Symbol	Meaning	
0	Standard type	
F	Fin type	
L	Long type	
В	Bellows seal type	
×	Extension type	
Z	Special type	

CONTROL 2 SPECIAL APPLICATIONS VALVES

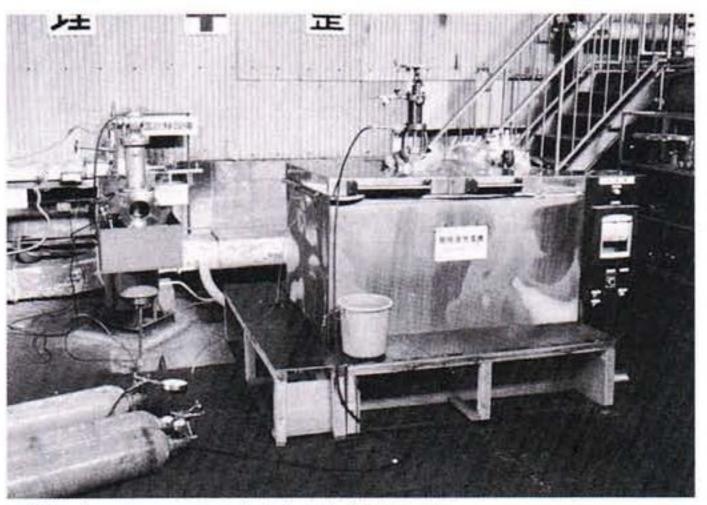
CONTROL VALVE FOR LOW TEMPERATURE AND ULTRA LOW TEMPERATURE USES

Today, in low temperature and ultra low temperature plants, a variety of practical plants are being developed and extended rapidly, on the basis of test plants of ultra low temperature ranges, and technical innovations in the fields of cryogenic and low temperature technologies are rapidly advancing. We have already delivered many valves. Just to show a part of our actual results, we have delivered control valves, cylinder valves, butterfly valves, etc. to the following plant facilities and devices:


following plant facilities and devices:

40°C
1. Control valves for LPG facilities − 46°C
2. LNG facilities and LNG carriers
3. Large capacity oxygen production unit
Liquid air
Liquid oxygen
Liquid argon · · · · · · · · · · · · · · · · · · ·
Liquid nitrogen · · · · · · · · · · · · · · · · · · ·
4. Hydrogen purifier and helium liquifier
Liquid hydrogen, gas hydrogen − 253°C
Gas helium
5. National Space Development Agency:
Rocket fuel valves
Liquid oxygen
Liquid nitrogen
Liquid hydrogen
6. Power Reactor and Nuclear Fuel Development Corporation:
Krypton recovery facilities
Liquid krypton
Gas nitrogen
7. Nuclear fusion experiment device
Liquid helium

 Ultra low temperature testing device



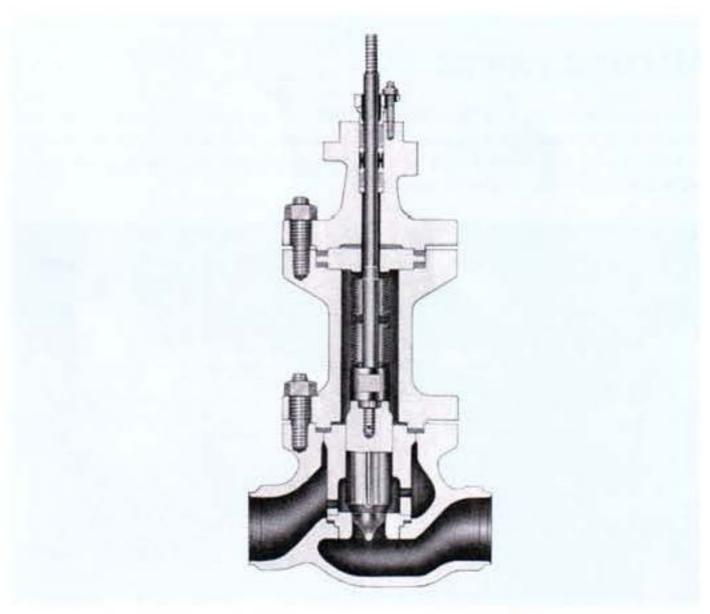
Example of field installation

Valve with exetension type bonnet

Ultra low temperature leak test (bubble test)

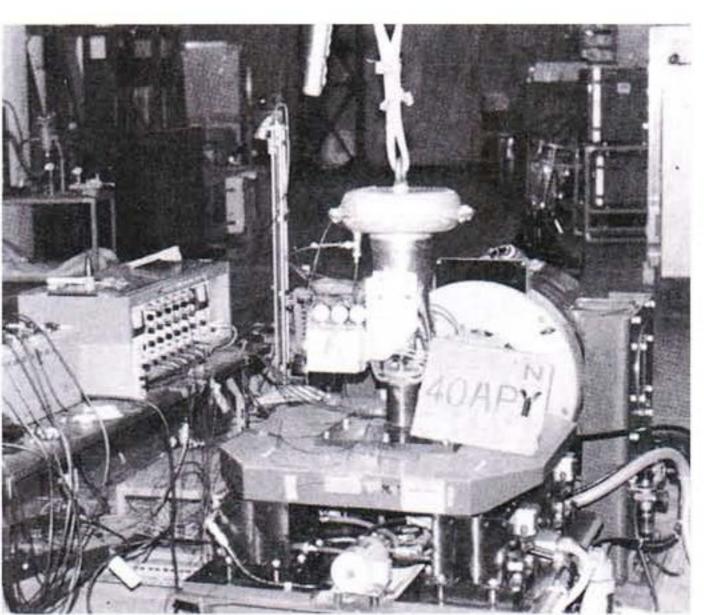
CONTROL VALVES FOR NUCLEAR POWER PLANTS

With deliveries to No.1 Machine of Tokai Nuclear Power Plant, nuclear ship the "Mutsu", and No.1 Machine of Mihama Nuclear Power Plant of Kansai Electric Power Co., Ltd. as the start, we have delivered valves to each power plant in Japan. We have delivered valves to Rokkasho Spent Fuel Reprocessing Plant of Japan Gennen Co., Ltd.


To assure safety of nuclear powr plant, valves for nuclear power plant require sophisticated quality control and quality assurance. To meet these requirements, we have established a quality assurance manual and have been exercising adequate quality control all over the production processes, from receiving orders, through designing, accepting materials, manufacturing, inspecting, and up to delivering the products. We have also been conducting various demonstrations on strength and durability, including earthquake resistance, of valves, so as to supply products of high reliability.

GAS TURBINE FUEL CONTROL VALVE

Fuel control valves for gas turbine requires high reliability for high response, accuracy and shut sufficiency against turbine's wide range load conditions (ignition~start-up~load operation~emergency cut-off). Servo actuator (electric type & oil hydraulic type) is used, which makes possible higher response and larger stiffness. In order to meet wideranged operating conditions, rated Cv, flow characteristics, rangeability, etc. are specially designed and reafirmed through sever test and inspection. Open/close time of valve is designed within 1 second, and load shut-out makes immediate fuel cut-off. At the same time full closure brings shut sufficiency of sent leak class V. Construction is top-entry one of cage type for easier maintenance purpose.


Cylinder type butterfly control valve

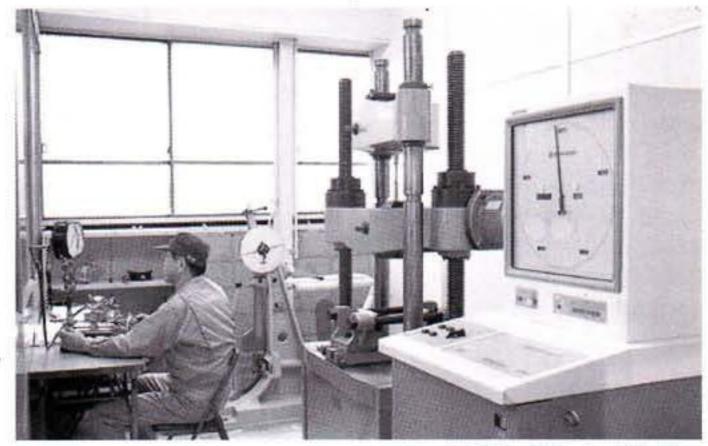
Bellows seal valve

Oil hydraulic servo valve

Scene of demonstration test

GENERAL OFFICE BUILDING

The general office building is the center of our plants for the production of [valves and control systems].


- · The lower floor accomodates general offices of General Affairs Dept., Engineering Dept., Quality Assurance Dept., etc.
- · The upper floor accomodates Technical Department (Design Section, and Production Technology Section).

Disign room

INSPECTION SECTION

Each inspection section is directly connected to the respective assembly plant. Reliable inspectors working on high performance inspection facilities are sending out reliable [NAKAKITA Products] after making strict quality check.

Material testing Machine

MACHINE WORKS

The machine works is functionally laid out to maximize performance of each machine type. Latest NC machines and automatic exclusive machines of our own make are continuously producing interchangeable components of stable quality.

Machine works

Measurement device of valve flow capacity coefficient Cv (for water)

ASSEMBLY PLANT

NAKAKITA, a comprehensive maker of valves, is producing valves of many types. Each type is produced by skilful fitters to possess reliable quality on its exclusive assembly floor. Our own heat treatment shop, and cleaning shop assure complete satisfaction of the customers' specifications.

Assembly plant

 Measurement device of valve flow capacity coefficient Cv (pneumatic type) MAX, Cv=10000

super-critical pressure boiler A Ultra-low temperature test device (LN2 · CE)

CONTROL VALVES WHEN PLACING ORDERS

In inquiring or pla	acing orders for control valves, please use the following control valve specifications sheet. Always specify the
to an analyzed	on the enecifications sheet
As for plant side	conditions, please specify service conditions, pipe size, open/ close time of valve, atmosphere, noise regulation
(limite) enecial te	

	lve specificat							secondary p	ressure
	USE (Control	system)						ontrol valve	
	VALVE No.							Steam	
		Fluid	it // Vice coity		1			1	
		Specific gravity/ Viscosity			-		MAX.	NOR.	MIN.
	Load condition Flow rate (m³/h) (Nm³/h) (kgf/h)					10,000	5,000	500	
	Valve inlet temperature (°F)					380	380		
	Valve inlet temperature (17) Valve inlet pressure (Mpa)					54			
			pressure (Mpa)				10	10	10
Serv		State Control of the State Con	ure drop (Mpa)				4.4		
Con	dition	And the second second second second	pressure (Mpa)					6	
		Calculation	Cv					-	
		Valve	When signal input is increased	Open,	Shut		Open,	Shut	Look
		Operation	When supply pressure is lost	Open,	Shut,	Lock	Open,	Shut	Lock
		Applied sta	Applied standard				-04	MUTAL C-L	40
		Bore (inlet/d	outlet) Sch No.	1			80"/150" Sch 40		
		Туре						_	
		Nominal bore — Pressure rating							
		Maximum pressure (kgf/cm²g)/ Maximum temperature (°C)		1		JIS 63K RF flange		410	
	1000	Connection					51	O DAIN THE TIME	nu-
	Valve	Rated Cv value							
	Body	Valve	Flow characteristic	Single,	Balance,	Double	Single,	Balance,	Doubl
Assembly	Plug	Style	Less than	THE PARTY OF THE P	I Cv Value	Less than	% of Rat	ed Cv Val	
Control	Control	Leakage at full shut Body • Bonnet		2000 (111111)					
Valves		Materials	Trim No.		-				
		Gasket / Packing			1			1	
		Size · Type							
		Operating	pressure range (kgf/cm²g)						
	Actuators	Supply air pressure (kgf/cm²g)			No. Committee		NAC VAC	described A	
	Handwheel		With, Without		With Without				
			Туре						
		Positioner Input		20~100 kPa,()~() mA · DC		20~100 kPa,()~() mA · DO			
		Filter regulator/type							
		Limit switch (type/elec. source)		Full open (/ AC V) Full close		Full close (/ AC V)			
Acc	essories	Solenoid valve • Type/elec. source		/ AC V · 50 Hz					
		Lock valve • Type / Set pressure			/	(kPa)		1	(kPa)
		Booster re	lay • Type						
		Regulator	• Type				San		150,000
		Reducer		With, Wit	thout		(With, W	st'd ; Silver.	150/200mr

Any contents of this catalogue subject to change without notice.

Product List

- Automatic Contorol Valves Pneumatic Diaphragm Control Valves Hydraulic and Electric Control Valves
- Regulating Valves (Self-powered) Reducing Valves for High Pressure and Temperature Steam Use. Regulating Valves for Furnace
- Remote Operated Valves Electric Valves Pneumatic Cylinder Valves Hydaulic Clinder Valves
- Solenoid Operated Valves Direct Drive Type Solenoid Operated Valves Pilot Type Solenoid Operated Valves 3-way, 4-way, Change-over Solenoid Operated valves

Emergency Cut-off Solenoid Operated Valves Special Solenoid Operated Valves

Safety Valves

Safety-Relief Valves for Air, Any Gases or Vapors Service Safett Valvesfor Steam Service Relief Valves for Liquid Service

Butterfly

Hand and Remote Control Method Cryogenic (LNG). High Temperature

- Valves of High Pressure and Temperature
- Valves for Cryogenic (LNG. liquid oxygen)
- Valves for Nuclear Plant
- Pneumatic Automatic Control Equipment Indication Controllers for flow, differential

pressure, temperature

Transmitters

liquid level, flow rate, viscosity, etc.

Valve Positioners Other Instrementation

- Presssure and Temperature Reducing Devicers for Super-Heated Steam
- Ship Loading and Ballast Remote Control Devicer

Control Panels

Hydraulic

Other Hydraulic Equipment.

- Remote Tank Level Gauges and Alarm Devicer Air Purge Type Remote Level Gauges Electric Float Wind-up Type Remote Level Gauges
- Float Type Level Switches
- Design and Fabrication of Various Automatic Control Special Valves and **Automatic Devicer**
- Twin Power Actuators (Technical Collaboration Product)

NAKAKITA SEISAKUSHO CO.,LTD.

Head Office; Factory; 1-1 Fukono-Minamimachi, Daito-shi Osaka 574-8691 Japan Tel;81-72-871-1341, 81-72-7871 Fax; 81-72-874-7501

Tokyo Office;

c/o Sanwa Bldg., 27-17, Hamamatsu-cho 1-chome, Minato-ku Tokyo 105-0013 Japan

Tel; 81-3-3431-7201 Fax; 81-3-3431-5594

c/o KMM Bldg., Annex, 11-15, Asano,2-chome, Kokurakita-ku,Kitakyushu-shi 802-0001,Japan Kitakyushu Office; Tel; 81-93-531-5481 Fax; 81-93-521-4993

NAKAKITA CONTROL

VALVES

The general purpose control valves and butterfly type control valves shown in this table are our standard valves. We also produce a variety
of special valves.

Туре		DY-D	DY-S	DY-P
Construction				
Features		Double seated control valve for low and medium pressure (Standard)	Single seated control valve for low and medium pressure (Standard)	Double seated control valve for high pressure and high temperature (Pressure seal bonnet)
Nominal bore	mm (inch)	25 ~ 400 ^A	25 ~ 300 ^A	50 ~ 200 ^A
Pressure rating	JIS (K)	5 ~ 63	5 ~ 63	
r ressure raing	ANSI (Class)	125 ~ 1500	125 ~ 900	1500 • 2500
Max.desigh te	mperature	550℃ (1022°F)	550°C (1022°F)	700°C (1292°F)
Rangeability		30:1	30:1	30:1
Max. allowabl	e leakage	0.5% and under	0.01% and under	0.5% and under
Explanation g	iven on page	29~30	31~32	33
Туре		DY-□□X	DY-T	DY-M
Construction		This drawing shows DY-AOX		
Feature		Extension bonnet type control valve • For low temperature plant	For temperature control of engine cooling piping system	Mixing 3-way contorol valve with rotary plug • For temperature control of engine cooling piping system • Small operating torque For large bore.
Nominal bore	mm (inch)	15 ~ 300 ^A	25 ~ 350 ^A	125 ~ 500 ^A
Pressure rating	JIS (K)	5 ~ 40	5 ~ 10	5 ~ 10
r ressure rating	ANSI (Class)	125 ~ 900	125 ~ 150	125 ~ 150
Max design te	emperature	-196 ~ -20°C	220℃	100℃
With a congrete		30:1	30:1	30:1
Rangeability				
	le leakage	0.01% and under	0.1% and under	2% and under

^{▷ :} Indicates the direction of flow under normal use condition.

^{* :} Figure in () indicates the corresponding leakage class prescribed in ANSI.

[Example] DY-D O F 63 Pressure rating (63^K type in this case) ·······(See page 63.) Indicates bonnet construction (fin type in this case)(See Table c.)

Control v	alve series	· ·	Table a. Body configuration
DY-DF	DY-G		Symbol Meaning
DY-PF	DY-GOZ	DY-U	A Angle type body
DY-SF	DI-GOZ		B Butterfly type body
A.	n n	1	D Double seated standard type body
		≘.	. G Single seated and top guided body
	<u></u>	F P	M Rotary mixing 3-way body
			P Double seated and pressur seated type body
			S Single seated and top & bottom guided type body
			T 3-way standard type body
			U Single seated and balance piston type body
This drawing shows DY-DF			W Single seated and suitable flow type body
07.0 01.04 20.04	2000	Balance piston type valve	■ Table b. Trim type
lashing guard	Small size single seated	plug with single seat	Symbol Meaning
Drain control for feed water	For low and medium pressure	 Pressure drop several times larger than that 	O Standard type trim
heater, etc.	a i di idii dia modidii procedio	of single seated contorol	F Flashing guard type trim
		valve DY-S can be accepted.	L Labyrinth trim
50 ~ 200 ^A	20 ~ 25 ^A	40 ~ 300 ^A	R Ring trim Z Special type trim
10 ~ 63	5 ~ 63	5 ~ 20	■ Table c. Bonnet construction
150 ~ 2500	125 ~ 1500	125 ~ 300	Symbol Meaning
550℃	550℃	550°C	O Standard type
20 . 1	20.1-20.1	20.1	F Fin type
30:1	20:1~30:1	20:1	L Long type
0.5% and under.	0.01% and under.	0.01% and under.	B Bellows seal type X Extension type
34	35~37	38	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.
9-1	33 - 37	30	Z Special type
DY-B	DY-BR	NS-ID Series NS-HD Series	NS-C Series NS-DM Series
	DY-BR	NS-ID Series	NS-C Series
	DY-BR	NS-ID Series NS-HD Series	NS-C Series NS-DM Series
DY-B Butterfly type Actuator: Diaphragm	DY-BR Butterfly type with seal ring Actuator: Diaphragm and Cylinder	NS-ID Series NS-HD Series This drawing shows NS-HD Damper shaped butterfly type Actuator: Cylinder	NS-C Series NS-DM Series This drawing shows NS-DM Rubber seat or mental seat typ Actuator: Butterfly
DY-B Butterfly type Actuator: Diaphragm (Standard)	Butterfly type with seal ring Actuator: Diaphragm and Cylinder • For Low-Leak	NS-ID Series NS-HD Series This drawing shows NS-HD Damper shaped butterfly type Actuator: Cylinder No-shut, flow rate control	NS-C Series NS-DM Series This drawing shows NS-DM Rubber seat or mental seat typ Actuator: Butterfly For non-leak
Butterfly type Actuator: Diaphragm (Standard) 100 ~ 700^A	DY-BR Butterfly type with seal ring Actuator: Diaphragm and Cylinder • For Low-Leak 100 ~ 700^4	NS-ID Series NS-HD Series This drawing shows NS-HD Damper shaped butterfly type Actuator: Cylinder No-shut, flow rate control 80 ~ 1500^4	NS-C Series NS-DM Series This drawing shows NS-DM Rubber seat or mental seat typ Actuator: Butterfly For non-leak 150 ~ 1500^A 5 ~ 16 125 ~ 150
Butterfly type Actuator: Diaphragm (Standard) 100 ~ 700^4 5 ~ 10	Butterfly type with seal ring Actuator: Diaphragm and Cylinder • For Low-Leak 100 ~ 700^ 5 ~ 10	NS-ID Series NS-HD Series This drawing shows NS-HD Damper shaped butterfly type Actuator: Cylinder No-shut, flow rate control 80 ~ 1500^4 5 ~ 16	NS-C Series NS-DM Series This drawing shows NS-DM Rubber seat or mental seat typ Actuator: Butterfly For non-leak 150 ~ 1500^4 5 ~ 16
Butterfly type Actuator: Diaphragm (Standard) 100 ~ 700^A 5 ~ 10 125 ~ 150	Butterfly type with seal ring Actuator: Diaphragm and Cylinder • For Low-Leak 100 ~ 700^4 5 ~ 10 125 ~ 150	NS-ID Series NS-HD Series This drawing shows NS-HD Damper shaped butterfly type Actuator: Cylinder No-shut, flow rate control 80 ~ 1500^A 5 ~ 16 125 ~ 150	NS-C Series NS-DM Series This drawing shows NS-DM Rubber seat or mental seat typ Actuator: Butterfly For non-leak 150 ~ 1500^A 5 ~ 16 125 ~ 150
Butterfly type Actuator: Diaphragm (Standard) 100 ~ 700^4 5 ~ 10 125 ~ 150 200°C	Butterfly type with seal ring Actuator: Diaphragm and Cylinder • For Low-Leak 100 ~ 700^4 5 ~ 10 125 ~ 150 550°C	NS-ID Series NS-HD Series This drawing shows NS-HD Damper shaped butterfly type Actuator: Cylinder No-shut, flow rate control 80 ~ 1500^4 5 ~ 16 125 ~ 150 0~425°C	NS-C Series NS-DM Series This drawing shows NS-DM Rubber seat or mental seat typ Actuator: Butterfly For non-leak 150 ~ 1500^A 5 ~ 16 125 ~ 150 -253~475°C (70°Cand under for NS-C)