

DETAILED SPECIFICATIONS

DY-CODO

CAGE TYPE DOUBLE SEATED CONTROL VALVE

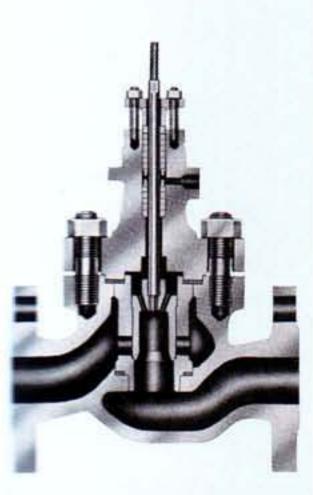
The feature of this control valve is the simple construction which allows easy trim exchange in a short time without disconnecting the body from the piping during maintenance.

The cage has flow characteristic ports in its circumference. The plug quided by the cage has balance holes. With this arrangement, unbalanced forces are offset and the dynamic unbalanced force on the stem is stable over the whole range of the valve travel. This in turn reduces the load on the actuator to secure stable controllability.

As this control valve is a balancing type double seated one, it is possible to limit the leakage at full closure within 0.3%, from low temperature range up to high temperature range, by adopting materials of small thermal expansion difference for cage and valve plug.

Bodies are avaiable in two types for most of the sizes and pressure ratings; S-series body (S: standard), and E-series body (E: enlarget).

DY-CODO cage type double seated control valve


NOMINA	L BO	ORE mm (i	nch)			32	A (11/	(B)			40	A (11/2	B)			5	50 ^A (2 ^B	3)			65	A (21/2	(B)	
	JIS	3		(K)	5 10	16 20	30 40	63		5 10	16 20	30 40	63	(100)	5 10	16 20	30 40	63	(100)	5 10	16 20	30 40	63	(100
RATING	AN	CIRCLE -	((Class)	125 150	300	600	900		125 150	300	600	900	1500	125 150	300	600	900	1500	125 150	300	600	900	150
		C (※1)	-	N-bar)	10 16	25 40	64			10	25 40	64 100			10 16	25 40	64			10 16	25 40	64 100		
BATED (%2)		w charac-	1	eries	(9.5)		-		(※2)	Ban	35	26		(%2)	[18	26)	36		(※2)	[36		56)	72	(%2
RATED (%2) Cv VALUE Value by reduced)	/ L	iner *2 \	Ese	ody eries	(0.0.	21	***	(%	(2)	(A TOCATA	36	117000	(%	(2)		55		(%	(2)		100		(%	(2)
valve plug		ck opening) Face to Fa	03 (02)3	ody	200	213	229	275	-	222	235	251	295	320	254	267	286	310	380	276	292	311	365	43
		///	G	22204		5	50		-		55		60	65		7	70		75		70		75	80
DIMENSIONS			н (ж	4)		7	08		-		715			800		7	96		818		8	12		90
DIMENSIONS (mm)	Height	Addi-	With	fin		1	00		ş			100					100					100		
	Δ.	tional valve	With	Тор		1	85		-		185			215		2	15		276		2	15		27
		to H	hand wheel	Side			0		-		0			0			0		0		, A	0		0
	Km	/XT	W	(※7)		0.	82/0	.69			0.	82/0	.69	,		0.	79/0	.66			0.8	81/0	.68	
				20		1	.4				1	.2												
		275		40	2.0		2.8			2.0		2.4												
				60		4.9				4.0		2000		0.0					1.4					
				20	2.0		3.0			2.0			.4			2	2.0		-	0.0	1	1.4		-
		355	1	40		4.9		5.9			7.2	1	.8			4.0	4.0	10.0-00		2.0	4.9	2.8	5.3	
	1		-	60			1	0.6		-	4.9		8.7	0.0	2.0	4.9		6.9 2.4			4.3	1.8		
	m m	122000	кРа)	20	-									2.8				4.8		2.0	T	CACCOLO	3.5	
(※5)	3	410		40										5.5	1	4.9		8.3		2.0	4.9		6.3	
PRESSURE	size		Balance	60	-									10.2		4.5		0.0	2.8		110		0,0	2.
DROP	Actuator	ACE	Off Ba	20	-														5.5	-				4.
(MPa)	Act	465	0	60	-														10.2					7.
			-	20															(Alberto)					
		520		40	+																			
		320	-	60	1																			
				20																				
(in case of single action		645		40	-																			
diaphragm actuator)		0.5480708		60																				
	0.00	ass (kg)	(%6)		50	55	60	80	-	50	55	60	90	130	65	70	80	115	185	80	90	100	145	5 22

^(%1) IEC in the column of rating indicates the ratings of valve groups formed in terms of face-to face dimension.

^(*2) Linear Cv value is larger than that of equal percent type by 10 to 20%. Quick open Cv value is larger than that of equal percent type by 10 to 30%. The Cv values of ANSI Class 1500 S body, and of ANSI Class 900 and 1500 E body are 65 to 85% of Cv values of ANSI Class 150~600.

⁽³⁾ As for face-to-face dimension, new face-to-face dimensions according to IEC are given up to PN 100. However, for individual items, please refer to dimension indicated on the drawing for approval for the time being. When the same face-to-face dimension as that of a valve already delivered is required, piease inform us the relevant serial number of the valve.

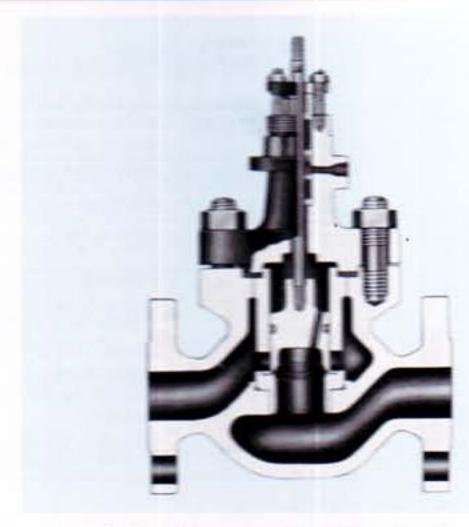
SPECIFICATIONS

Type of valve body assembly	Double seated globe type valve of casting, with cage guided plug.						
Pressuere rating	JIS 5~63K or ANSI 125~1500						
Normal bore	32~300 ^A						
Service temperature range	-196~550°C (-321~1022°F)						
Standard materials	 Valve body assembly FC200、FCD400、CAC403、CAC406 SCPH2、11、21、32、61、SCS13、14 						
	 Trim See Table 5.3 "Standard trim materials for cage type control valves" 						
	 Packing · Gasket (Asbestos Free) PTFE, graphite etc. 						

Cv valve	See the table below. Smaller rated Cv values not listed in the table can be manufactured with reduced size valve plug trim.
Flow characteristics	Equal percentage. Modified Parabolic, and Linear.
Performance	Rangeability50: 1
	 Leakage at full closure Not more than 0.3% of the rated Cv.
Maximum allowable pressure drop	Diaphragm type or cylinder type actuator can be mounted. Single action diaphragm pressure drop is used. Maximum pressure drop is shown in the table below.
Dimensions and mass	See the table below and the drawing in it.

DW	0	-		-	-
DY-	U	U	U	U	C

	8	80 ^A (3 ^E	B)		ш	1	004 (4	8)			1	25^ (5	(B)			1504	(6 ^B)	15	2	004 (8	B)	25	504 (10)B)	30	300^(12		
.5	16 20	30 40	63	(100)	5 10	16 20	30 40	63	(100)	5 10	16 20	30 40	63	(100)	5 10	16 20	30 40	=	5 10	16 20	=	5 10	16 20	PER S	5 10	16 20		
25 50	300	5556	1000	1500	105	300	600	900	1500	105	300	600	900	1500	105	300	600	-	125 150	300	_	125 150	300	_	125 150	300		
1000	25 40	64 100			10 16	25 40	64 100			10 16	25 40	64 100			10 16	25 40	64 100	-	10 16	25 40	229	10 16	25 40	_	10	25	70.	
56	72)	96		(※2)	22		-	155	(*2)	91	155	190	250	(%2)	(190			390	(276		500		800			950	1	
	130		(%	(2)		230		(%	(2)		275		(%	2)		-				730			950			1200)	
298	317	337	375	470	352	368	394	445	550	403	425	457	510	690	451	473	508	1775	543	568	62.65	673	708	-	737	775	-	
	80		85	90		10	00		105		110		115	120		125		-	17	70	_	2	15	223	26	60	-	
	83	30		920		96	35		1090		10	90		1270		1120		-	13	25	-	15	90	-	16	40	-	
		100					100					140				140		-	15	50	-	16	60	-	17	70	-	
	2	15		276		27	76		330		33	30		522		330		-	52	22		52	28	-	52	28	-	
		0		0		C)		200		()		250		200		-	25	50	1	25	50	-	25	50	-	
	0.8	80/0.	.67			0.8	31/0.	68			0.7	78/0.	66			0.78/	0.66		0.7	7/0.	65	0.8	31/0.	68	0.8	32/0	.69	
2-0	1.	2.4						_													ensi			- ø J		T		
20	1.	2.4																								H		
	1.	2.4 4.4 1.	.4		2.0	1.2																- 0 - 1 - 1				H		
2:0		2.4 4.4 1. 2.	.8		2.0	1.2	2.4																			- H		
	4.9	2.4 4.4 1. 2.	0000	1.8	2.0	1.2	2.4 4.2				1	2				1.0										H		
		2.4 4.4 1. 2.	.8	1.8		1.2	2.4 4.2 1.4	8		2.0	1.	.2				1.0								landw	vheel	G		
		2.4 4.4 1. 2.	.8	1.8 3.6 6.5	2.0		2.4 4.2 1.4 2.	8		2.0	1.	2.4				2.0	5								vheel	G		
		2.4 4.4 1. 2.	.8	3.6		4.9	2.4 4.2 1.4 2.		1.7	2.0		2.4 4.2				2.0	5		0.	THE STATE OF THE S				landw op ty	vheel	G		
		2.4 4.4 1. 2.	.8	3.6			2.4 4.2 1.4 2.		1.7	2.0	1,	2.4 4.2			2.0	2.0								landw	vheel	G		
		2.4 4.4 1. 2.	.8	3.6			2.4 4.2 1.4 2.		2000			2.4 4.2 4			2.0	2.0 3.	4		0.					landw op ty	vheel	G		
		2.4 4.4 1. 2.	.8	3.6			2.4 4.2 1.4 2.		3.4			2.4 4.2 4 2.8		2.4	2.0	2.0 3. 1.2 2.	4		0.	9 8 3.2				landw op ty	vheel	Ģ		
		2.4 4.4 1. 2.	.8	3.6			2.4 4.2 1.4 2.		3.4			2.4 4.2 4 2.8		2.4	2.0	2.0 3. 1.2 2.	4		0.	9 8 3.2		heel)		landw op ty	vheel pe	G 0		
		2.4 4.4 1. 2.	.8	3.6			2.4 4.2 1.4 2.		3.4			2.4 4.2 4 2.8		2.50	2.0	2.0 3. 1.2 2.	4		0. 1. 2.0	9 8 3.2 5		heel)	2	landw op ty	vheel pe	G 0		


- H dimension gives the longest dimension of the valve with standard type bonnet. However, in cases of fin type bonnet or handwheel installation, add the respective [additional H valve] of the table above to H.
- Allowable pressure drop and actuator shown in the table are for S series. Those for E series may differ slightly. Mass indicated is that of a valve with fin type bonnet, handwheel and positioner (=maximum mass). FL valve has a relationship with $FL^2 = Km = X_T/0.84$.

(continued)

DY-COBS

CAGE TYPE SINGLE SEATED CONTROL VALVE

DY-COBSO

This control valve is a cage guided single seat valve of cage type balancing construction. Leakage at full closure is minimum, and it is far more suited than ordinary single seated valves to handle fluids of large pressure drop.

SPECIFICATIONS

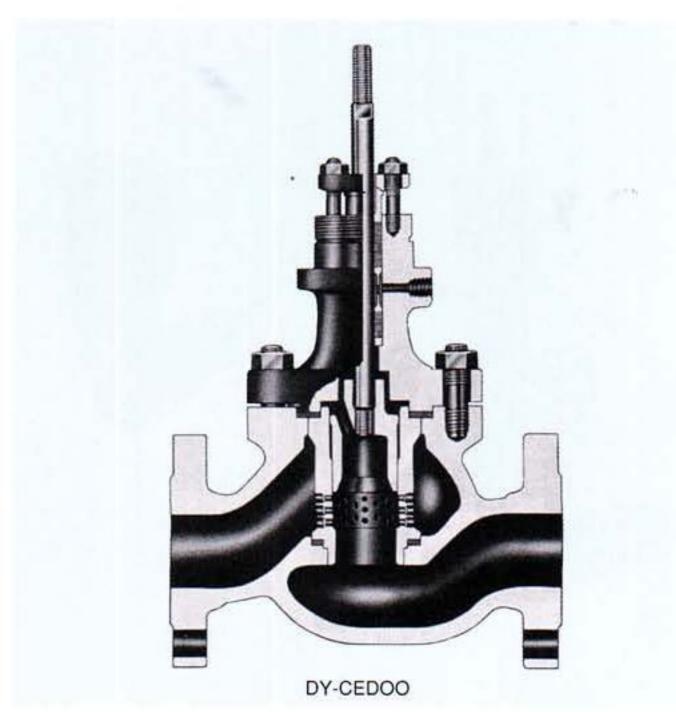
Type of valve body assembly	Balancing type, single seated globe valve of casting with cage guided plug.
Pressure rating	JIS 5~63K, or ANSI 125~900
Nominal bore	32~300 ^A
Service temperature range	-30~200°C
Standard materials (JIS)	 Valve body assembly FC200、FCD400、CAC403、CAC406 SCPH2、11、21、32、61、SCS13、14
	Trim See Table 5.3 "Standard trim materials".
	Packing • Gasket (Asbestos Free) PTFE, graphite etc

Cv value	See the table below
Flow characteristics	Equal percentage, modified Parabolic, and linear.
D. f	Rangeability 50 : 1
Performance	Leakage at full closure Not more than 0.01% of the rated Cv value.
Maximum allowable pressure drop	Diaphragm type or cylinder type actuator can be mounted. Single action diaphragm type is normally used maximum shown in the table below.
Dimensions and mass	See the table below and the dimensional drawing (page 20

NOM	INA m(i	L BC	ORE		32	(11/	(8)	40^	(11/2	3)	5	0 ^A (2 ^B)	65	(21/	2B)	80	A (3B)	10	04 (4	4 ⁸)	125	A(5ª)	13	504(6 ⁸)	20	04 (8	6)	250 ^A (10	200	A (12 ^B
	JIS			(K)	5 10	16 20	30 40	10	16 20	30 40	5 10	16 20	30 40	5 10	16 20	30 40	5	16 3 20 4	0 5	16	30 40	5	16 30 20 40	5 10	16	30 40	5 10	16	30 40	5 1	6 10	10
RATING	AN	ISI	Cla	ass)	125	300						300 6		125				300 60		300	600	125 150 3	00 60	125 150	300	600	125 150	300	600	125 150 30	0 125	30
	IEC	C (F	N-t		10	_	64	10 16		64 00	10	25 40 1				64	10 16	25 6 40 10		25 40	64	10 16	25 6 40 10	10	25 40	100	10 16	25 40	64 100	10 2 16 4		
RATED Cv VALUE Value by reduced valve plug	Flov	w Cha	the same of the same	e s	(9.5	Carlo	18	(9.5	made		4007110007	7.00 No. 1	36	[36 56	48)	72		72) 96	(70	96	155	[125 1 190	55 250	[19	(20)	390	[27		00	800		950
value by reduced valve plug	/Lin	ear ick op		1		21			36			55		-	100		1	30	-	230			75		-			730		950	1	200
STITL STREET	Fac	e to F	ace	L%1	200	213	229	222	235 2	51	254	267 2	86	276	292	311	298	317 33	7 352	368	394	403 4	25 45	7 451	473	508	543	568	610	673 70	8 737	7 77
SIONS (mm)			3		-	50			55			70			70			80		100)	1	10		125			170		215	2	260
≥ OE	Height	-	Н	% 2		708			715			830		_ 8	796		8	312		965		1	090		1120	0	1	325		1590	10	640
00		Addition with h	nal v	value; vheel		185			185		- 9	215		- 5	215		2	215		276	5	3	30		330			522		528	5	28
	(m)	/XT				0.	82/	0.69	9		0.79	9/0.6	6	0.8	1/0.	.68	0.80	/0.67	0.8	1/0	0.68	0.78	/0.66	0.7	8/1	0.66	0.7	7/0.	65	0.81/0.	8 0.82	/0.6
				20		1.0			0.9																							
		275		40		2.0			1.8																							
				60		4.0	0	2.0	3.2																		-				_	
E B				20	2.0	2.2	2		1.8			1.5			1.2			1.0	Ш													
(MPa) actuator)		355		40		4.4	4	2.0	3.6		2.0	3.0		2.0	2.	4		2.0														
act act				60		4.9	8.1		4.9	5.7		4.9 5	.3		4.	0		3.8						_							_	
DROP ohragm	3		(kPa	20								1.8			1.4			1.2		0.9												
HO H				40							2.0	3.6		2.0	2.		2.0	2.4		1.8												
E B	Jr S		nce	60								4.9	5.4		4.	8		4.2	2.0	-	3.4										-	
SS	late		ala	20																1.2		_	1.0		0.8							
PRE le a	Actuator s	465	Off Balance	40															2.0	-	2.4	- 4	2.0	-	1.6							
Sing	4		0	60						-										4	1.2		3.5	2.0		0.8	-				+	
AB of				20																			1.2		1.0			0.7				
ALLOWABLE PRESSURE DROP (MPa) (in case of single action diaphragm actuator)		520		40																		2.0	2.4		2.0		0.0	1.5	0	30		
ALL				60																			4.2	-	3	3.5	2.0	2.	Ö			0.0
2,12,12				20																							0.0	1.2	E	1.0		0.8
		645		40																							2.0	3.		2.0	6 2.0	1.6
				60																								1200		710 73		

^(%1) As for face-to-face dimension, new face-to-face dimensions according to ICE are indicated. However, for individual items, please reter to the dimension indicated on the drawing for approval for the time being. When the same face-to-face dimension as that of a valve already delivered is required, please infrom us the relevant serial number of the valve.

^(※2) H dimension gives the longest dimension of the valve with standard type bonnet. However, when a handwheel is mounted, add the respective value shown above to H.


^(%3) Mass indicated is that of a valve with handwheel and positioner(= the maximum mass),

^{*} ICE in the column of rating indicates the ratings of valve groups formed in terms of face-to-face dimension.

DY-CEDO CONTROL VALVE WITH CAVI-CAGE

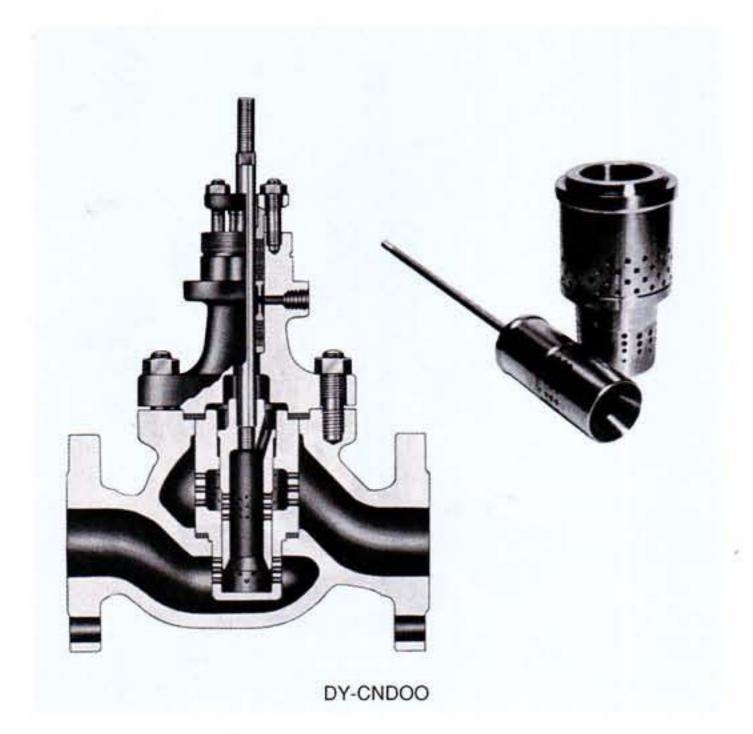
In boiler feedwater contorol valves, etc., the pressure drop at start-up or during low load running may become excessive and come into the range of caviation generation. It reduces the service life of the body and trim and causes maintenance problems.

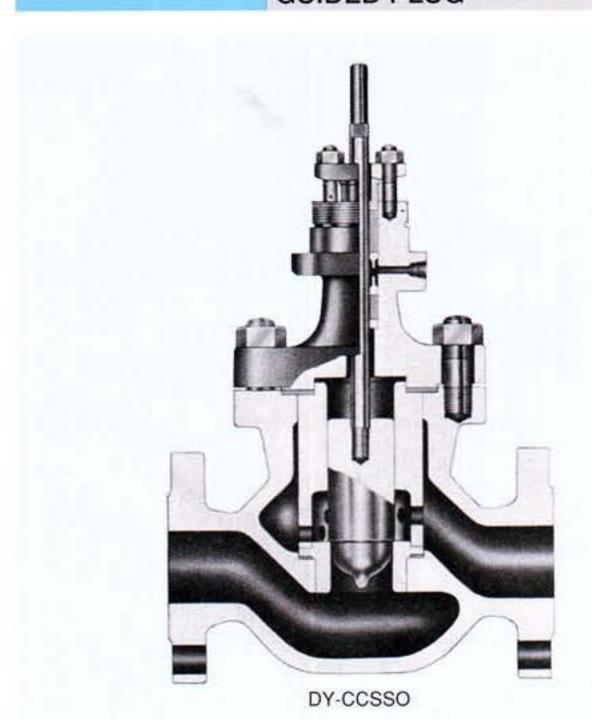
The cavi-cage has such construction that the fluid jets into the cage towards its center through small holes in the circumference of the cage. At the throttle of each small hole, the static pressure decreases due to high velocity of the fluid, and the esuating choked flow generates bubbles which cause cavitation. These jets are arranged to collide with each other directly in the center of the channel to dissipate cativation energy.

Endoor of the body and trim is thus prevented by arranging small holes opposing with each other in the circumference of the cage to suit the flow characteristic.

SPECIFICATINS

Type of valve body assembly	Double seated globe valve of casting, with multi-hole port cage.
Pressure rating	JIS 5~63K or ANSI 125~2500
Naminal bore	32~300 ^A
Service temperatur	-196~550°C
Standard materias (JIS)	Valve body assembly SCPH2 • 11 • 21 • 32 • 61, SCS13 • 14
	Trim See Table 5.3 "Stndard trim materials for cage type control valves"
	Packing • Gasket (Asbestos Free) PTFE, graphite etc.


Cv value	40~60% of those shown on page 19, 20. (Km value: 0.88)
Flow characteristics	Equal percentage, Parabolic, and Linear.
Performance	Rangeability 20: 1
	 Leakage at full closure Not more than 0.5% of the rated Cv value.
Maximum allowable pressure drop	Diaphragm type or cylinder type actuator can be mounted. Single action diaphragm type is normally used. Maximum allowable pressure drop is shown on page 19 and 20.
Dimensions and Mass	See the table (page 19 and 20) and the dimensiosal drawing (page 20).


DY-CNDO

LOW NOISE CONTROL VALVE

UNBALANCED SINGLE SEATED CONTROL VALVE WITH CAGE **GUIDED PLUG**

This contorol valve exhibits effective noise reduction by means of multi-stage pressure reduction and dispersion of the flow and frictional resistance into many small hole throttles. It has a unique construction developed by NAKAKITA.

The flow of the liquid enters the plug, from the lower side of the body, through the control port consisting of many small holes in the lower portion of the cage. The flow then goes through the control port consisting of small holes in the central portion of the plug and enters the recess at the center of the cage, and the flow velocity is reduced. This flow then runs out to the downstream side of the body, through the small holes of fixed resistance in the outer circumference of the cage, in dispersed small streams.

In this way, pressure reduction and flow dispersion are repeated through three stages consisting of two-tier control ports and fixed orifice, so as to reduce the noise.

For noise countermeasures, see page 60.

This control valve is an unbalanced single seated valve with rigid trim construction where P-port heavy guide plug is guided by the cage. As for its actuator, a powerful high output diaphragm type or cylinder type is used.

The stored cage receives the jet out of the throttle and releases the flow through small holes in the circumference of the cage to the body side. It thus protects the inner wall of the body from erosion due to the jet of the flud.

This valve is used for large pressure drop service which generates flashing, cavitation, etc. One of the main application is the emergency drain escape valve of high pressure feedwater heater.

SPECIFICATION

This low noise control valve is DY-C control valve equipped with low noise trim. For the detailed specification, see those of DY-CODO double seated control valve (pages 19 and 20).

Cv value	25~40% of those shown in the table (page 19). (Km value; 0.9 X⊤ Value; 0.76)
Flow characteristics	Equal percentage, Parabolic, and Linear.
Performance	Rangeability 20: 1
	Leakage at full closure Not more than 0.5% of the rated Cv value

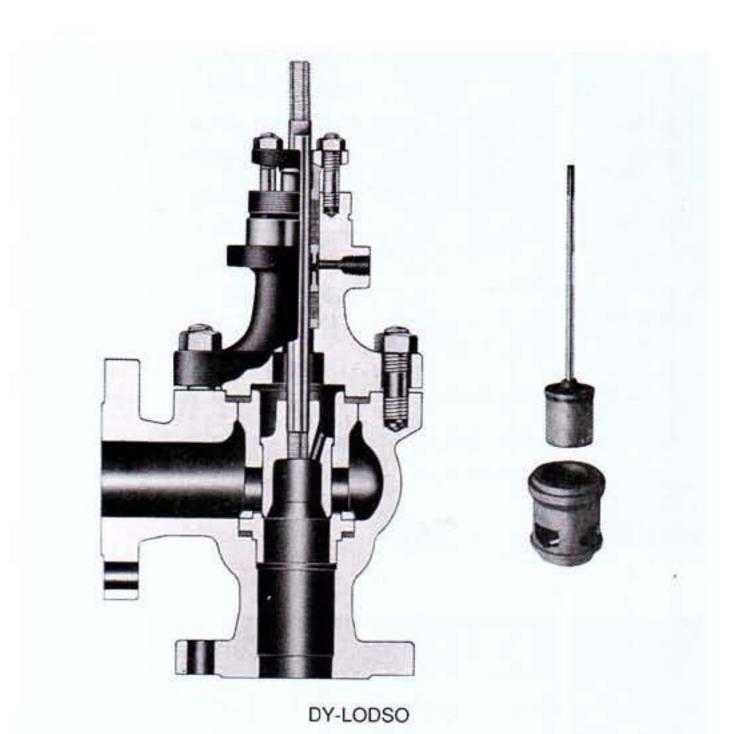
For other specifications, see the specifications on page 20.

DY-CNDO Cv TABLE

Nominal bore mm	50 ^A	65 ^A	80 ^A	100 ^A	125 ^A	150 ^A	200 ^A	250 ^A	300 ^A
	15	24	34	60	96	140	250	360	500
Max.Cv value	12.5	18	26	48	72	105	190	275	390
74.40	9.5	14	20	36	56	76	135	190	275

SPECIFICATIONS

Type of valve body assembly	Single seated valve, with P-port heavy guided plug, and cage
Pressure rating	JIS 5~63K, ANSE 150~900.
Nominal bore	50~200 ^A
Service temperature range	-196~550°C (-321~1022°F)
Standard materials	See the specifications on page 20.
Cv value	Maximum Cv value is indicated in the table below. However, reduced valve plug is normally used. (Km value: 0.8 XT value: 0.67)

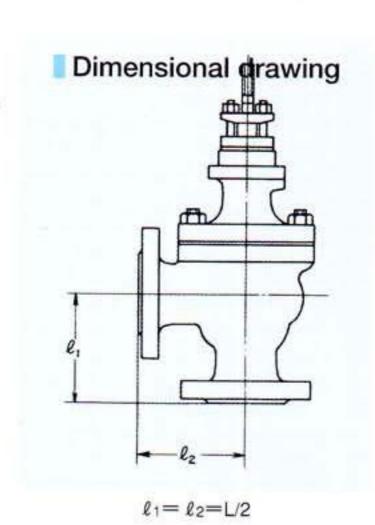

DY-CCSS Cv TABLE

Nominal bore mm	50 ^A	65 ^A	80 ^A	100 ^A	125 ^A	150 ^A	200 ^A	250 ^A	300 ^A
Max.Cv	15	24	34	60	96	140	250	360	500
	12.5	18	26	48	72	105	190	275	390
value	9.5	14	20	36	56	76	135	190	275

DY-LODS

CAGE TYPE DOUBLE SEATED ANGLE CONTROL VALVE

This control valve is DY-C control valve of which body type (globe type) is replaced with the angle type. Cage trim and actuator are common to the DY-C type, and this control valve allows winder application of the excellent features of DY-C type such as maintenance and controllability.


It is possible to fit cavi-cage (page 22) or low noise trim (page 23) on this valve.

Advantage of this control valve

The installation of the protective liner which is a seat ring elongated to the downstream side prevents erosion of the inner wall of the body due to cavitation and flashing.

SPECIFICATIONS

For the detailed specifications, see those of DY-C double seated control valve (pages 19 to 20). Note that the face-to-face dimension is L/2.

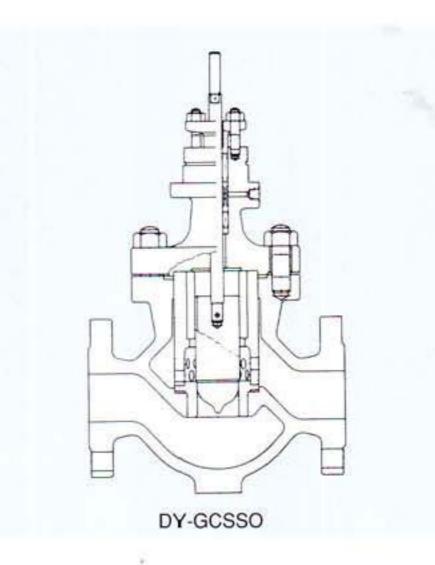
DY-COSO CAGE TYPE SINGLE SEATED CONTROL VALVE

This control valve is a single seated valve using cage port. It is used when low leakage is required.

As it is a single seated valve, a large force is required to close the valve. Accordingly, its use is normally confined to small pressure drop services. However, when pressure drop is large, a high output diaphragm type or cylinder type actuator is used. It is possible to meet non-leakage requirement by using soft sealing material on the seat of this valve.

SPECIFICATIONS

Type of valve body assembly	Single seated globe valve of casting, with cage port.
Pressure rating	JIS 5~63K or ANSI 125~900
Nominal bore	32 ^A and over.
Service temperature range	-196~550℃
Standard materials	See page 20.
Cv value	Shown on the table below Km value: 0.8 XT value: 0.67
Flow	Equal percentage, Parabolic, and linear.
characteristcs	Rangeability 50: 1
Perfomance	 Leakage at full closure Not more than 0.01% of the rated Cv value.
	Refer to the technical data or apply to us for relevant information.
Dimensions and mass	See pages 19 and 20


DY-COSO CV TABLE

Nominal bore mm	32 ^A	40 ^A	50 ^A	65 ^A	80 ^A	100 ^A	125 ^A	150 ^A	200 ^A	250 ^A	300 ^A
	9.5	9.5	18	36	56	72	125	190	275	500	800
Cv value		18	26	48	72	96	155	275	390		
Ov value				56		125	190				
	17	29	44	80	104	184	220	-	584	760	960

DY-GCSS

SINGLE SEATED CONTROL VALVE

This control valve is a single seated valve of which construction allows easy and quick replacement of trim without disconnecting the body from the piping. Special consideration is given to its durability and maintenance. As this valve allows numerous combinations of pressure rating, Cv value, valve flow characteristic, actuator, etc., a wide range of service conditions can be met by this valve.

DY-GC single seated control valve

NOMINAL E	BORE r	nm (inch)					20	A (3/4	в)						25 ^A (1 ^B)	
	J	IS (Kgf/d	emi)		5	, 10	,	16,20		30, 4	0	63	3	5, 10	16,	16,20 30, 40		63
RATING	А	NSI (CI	ass)		125	125, 150		300		600		90	0	125,150	30	00	600	900
	IE	EC * (I	PN-bar)	10), 16	2	25,40		64, 10	0			10, 16	25,	40	64,100	
		21	Eq	%														
RATED Cv	C	Flow Charac- Para teristics				(*1)												
VALUE	10	msucs	Linear		0.23 0.44 0.8 1.1 1.		1.7	2.3	3.2	4.2 5.4		7.2		9.5		11		
	Fa	ice to Fa	ice L		1	187		194		206		25	6	184	19	97	210	235
DIMENSIONS		H (*3)			678					705		808		678			705	
(mm)	Height	Addi tional	With	fin			105			100	115		5	105			100	115
		value to H	With	wheel	185							21	5		18	35		215
		К	m										0.9	9				
				20	8.4			4.8	:	3.0	1.8	1.5	1.2	0.9		0.	7	0.6
		275		40	1	14.9	.9 9.5		į	5.9	3.5	3.0	2.4	1.8		1.5		1.2
ALLOWABLE	E			60				14.9		0.8	6.4	5.5	4.4	3.4	1		8	2.4
PRESSURE DROP (MPa)	(J) mm		(kPa)	20		14.9		9.7		3.1	3.8	3.2	2.4	2.0		1.	6	1.4
(IVIF a)	size	355	Off Balance	40				14.9	1	2.3	7.5	6.3	4.8	4.0		3.	2	2.6
(in case of	Actuator		Off Bg	60					1	4.9	13.3	11.6	8.9	6.9		5.	7	4.8
single action diaphragm actuator)	A			20				11.3		7.4	4.4	3.8	3.0	2.4		2.	0	1.6
		410		40				14.9	1	4.7	8.7	7.5	5.9	4.6		3.	8	3.2
				60			- ye		1 45	14.9		13.8	10.8	8.4	¥.	6.	9	5.7
Mass	ka) (*4)			1 8	38		40	0	55		7	0	42	4	15	60	75

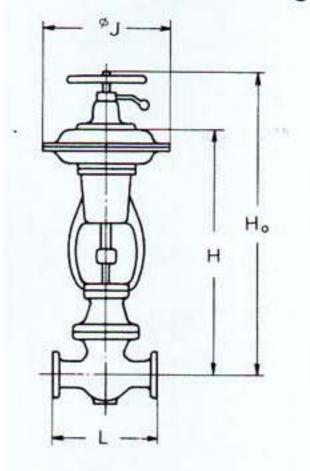
^(※1) In this type, valves of bore marked (※1) can select rated Cv values of valves of bore smaller than the marked one. For example, for the valve of nominal bore 50 mm, rated Cv value can be selected from the range of Cv max. = 36 to Cv min = 0.23.

^(*2) As for face-to-face dimension, new face-to-face dimensions according to IEC are given up to JIS 40 kgf/cm² (PN 100). However, for individual orders, please refer to the dimension indicated on the drawing for approval for the time being. When the same face-to-face dimension as that of a valve already delivered is required, please infrom us the relevant serial number of the valve.

^(※3) H dimension gives the longest dimension of the valve with the standard type bonnet. In cases of fin type bonnet or handwheel installation, add the respective value shown above.

^(※4) Mass indicated is that of the valve with fin type bonnet, handwheel and positioner (= maximum mass).

^{*} IEC in the column of rating indicates the ratings of valve groups formed in terms of face-to-face dimension.



SPECIFICATIONS

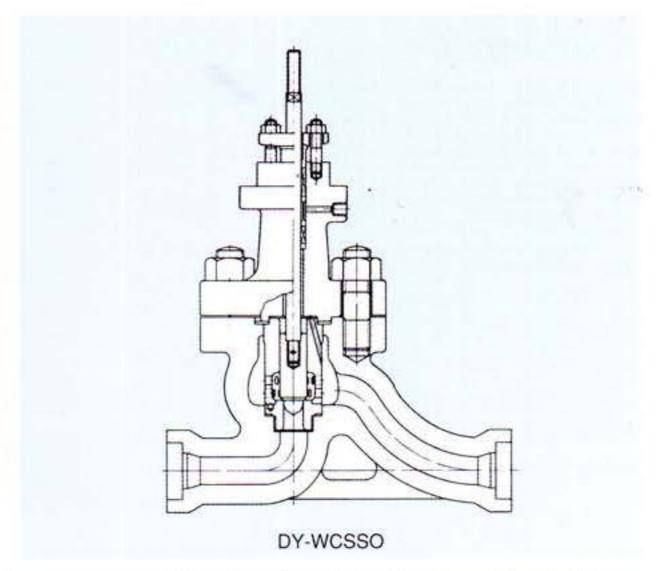
Tigge of valve body	Cage guided type single seated globe valve of casting.							
Pessure rating	JIS 5~63K or ANSI 125~900							
Naminal bore	20~50 ^A							
Senios temperature	-196~550°C (-321~1022°F)							
Sandard materials	 Valve body assembly FC200、FCD400、CAC403、CAC406 SCPH2、11、21、32、61、SCS13、14 							
	 Trim See Table5.3 "Standard trim materials" 							
	 Packing • Gasket (Asbestos Free) PTFE, graphite etc. 							

Cv value	See the table below. (Values down to the minimim Cv value 0.07 can be manufactured)						
Flow characteristics	Equal percentage, parabolic, and linear.						
	● Rangeability 20:1~30:1						
Perfomance	 Leakage at full closure Not more than 0.01% of the rated Cv value. 						
Maximum allowable	Diaphragm type or cylinder type actuator can be mounted. Single action diaphragm type is normally used. allowable pressure drop is shown in the table below.						
Dimensions and mass	See the table below and the drawing on the right.						

Dimensional drawing

Ho=H+ (additional value in the table)


	2 ^B)	50 ^A (1/2B)	40 ^A (1			1/4B)	32 ^A (1			
63	30, 40	16,20	5, 10	63	30, 40	16,20	5, 10	63	30, 40	16,20	£ 10		
900	600	300	125,150	900	600	300	125,150	900	600	300	25, 150		
	64,100	25,40	10, 16		64,100	25,40	10, 16		64,100	25,40	11, 16		
(※1)				(※1)				(※1)					
	6	3			26		20	3	18	4	14		
310	286	267	254	295	251	235	222	275	229	213	200		
830	822	6	82	796	790	2	79	776	708	8	69		
	00	10			00	10		0	10	В	98		
	15	2		215		185		215	185 215				
			.8	0).9	0			
				3	0.3	4	0.).5	0			
				i	0.5	7	0.		.0	1			
)	0.9	2	1.		.8	1			
		0.			0.5	7	0.		.0	1			
	6	0.)	1.0	4	1.		2.0	2			
	1	1.		3	1.8	5	2.		3.6				
		0.		5	0.6	9	0.		1.2				
		0.			1.2		1.		2.4				
	4	1.		2	2.2	0	3.		1.4	4			
110	90	80	75	90	70	60	55	80	60	50	45		


The table above, dimnsions correspond to the respective ratings in the column of rating.

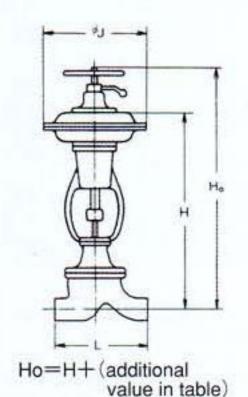
In the table above, maximum allowable pressure drops correspond to the respective Cv values of the column of rated Cv value. (For example, when Cv = 3.2, if the actuator size (J) is 275 and off-balance pressure is 40 kPa, the allowable pressure drop is 35 MPa.)

DY-WCSS[

SINGLE SEATED CONTROL VALVE FOR HIGH PRESSURE AND HIGH TEMPERATURE USE

This control valve is, so to speak, DY-GC control valve of which pressure raiting is raised to 1500 or 2500. It is a single seated valve with due consideration given to its durebility and maintenance. The body is shaped in a wave from most suited to high pressure and high velocity fluids so as to secure smooth flow.

SPECIFICATINS


Type of valve body assembly	Single seated globe valve of casting, with cage guided plug.									
Pressure rating	ANSI 1500, 2500									
Nominal bore	20~50 ^A									
Maximum service temperatur	550°C (1022°F)									
Standard materias (JIS)	Valve body assembly SCPH2 • 11 • 21 • 32, SCS13 • 14									
	 Trim SUS304, SUS316, with hard facing stellite, etc. 									
	Packing • Gasket (Asbestos Free) PTFE, graphite etc.									

Cv value	See the table below. (Km value: 0.8)							
Flow characteristics	Equal percentage, parabolic, and linear.							
D /	 Rangeability 20: 1 ~ 30: 1 							
Performance	 Leakage at full closure Not more than 0.01% of the rated Cv value. 							
Maximum allowable pressure drop	Diaphragm type or cylinder type actuator can be mounted. Single action diaphragm type is mormally used. Maximum allowable pressure drop is shown in the table below.							
Dimensions and mass	See the table and the drawing below.							

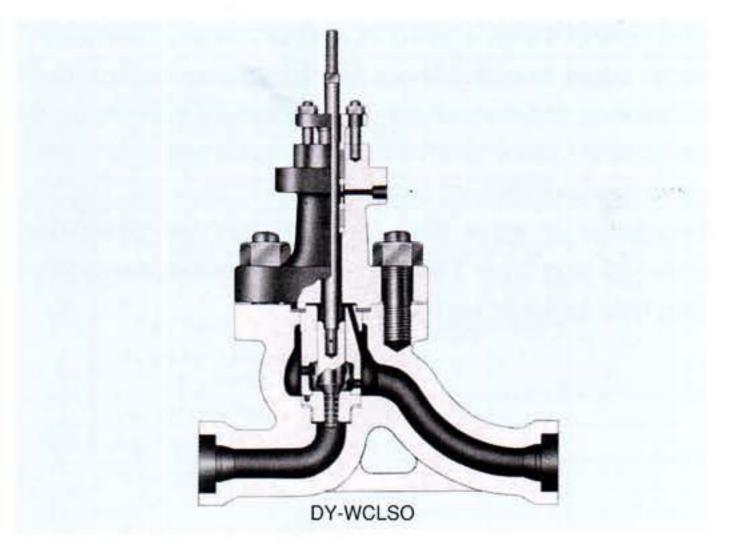
DY-W Single seated control valve for high pressure and high temperature use

NOMINAL B	ORE	mm	(inc	ch)					20 ^A	(3/ ₄ B)				25 ^A	(1 ^B)	32 ^A (11/ ₄ B)	40 ^A (1½ ^B)	50 ^A (2 ^B
DATING		ANS	1 (0	Class)								15	00	2	500			
RATING		IEC	(PI	N-bar)	0													
	Fa	ace t	o F	ace L		380												
	_	H (*2)				975												
DIMENSIONS (mm)	Height	tional to H	W	ith fin		130												
	I	Addi tional valueto H	Wi	ith ndwhe	eel	276												
	Ac	tuato	r J			Ref	Refer to following (J)											
RATED	Flow Eq %				(※1)													
C _V VALUE	CI	Charac-		Para		2022 2000 0000			25/237		000000	75190	101627	21107	910	_		33
	te	ristics	S	Linear		0.23	0.44	0.8	1.1	1.7	2.3	3.2	4.2	5.4	7.	2	9.5	11
ALLOWABLE	mm				20		20.6		11.3	7	7.4		3.8	3.0	2.	4	2.0	1.6
PRESSURE	(J)	4	10	(kPa)	40	į.	41.2		23.1	14.7		8.9	7.7	5.9	4.	6	4.0	3.2
(MPa)	size (alance	60				41.7	27	1.1	16.1	13.8	10.6	8.	4	6.9	5.7
(in case of	tor si			Balar	20		25.9	-	14.6	9	.4	5.5	4.8	3.6	3.	0	2.4	2.0
single action diaphragm actuator)	Actuator	46	65	Off B	40	41.7			29.0	18	3.7	11.0	9.7	7.3	5.	9	4.8	4.0
	A				60			41.7	34.2		20.2	17.5	13.4	10	.6	8.7	6.9	

Dimensional drawing

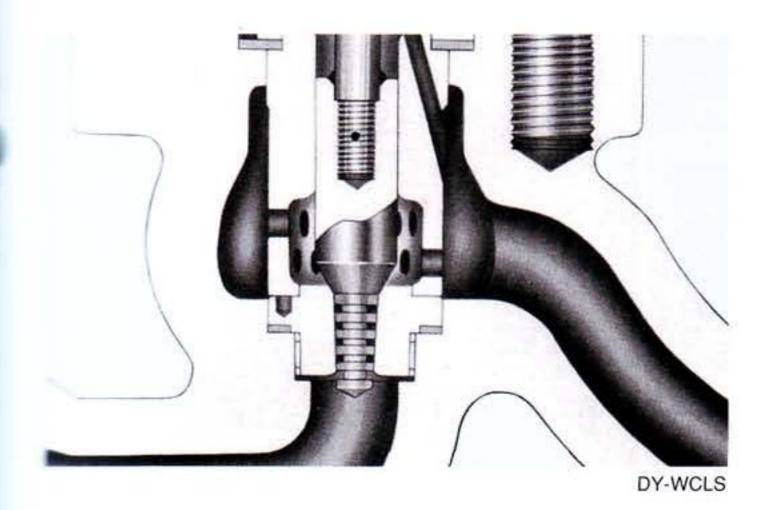
In this type, for valves of bore marked (*1), rated Cv values of valves of bore smaller than the marked one can be selected. For example, for the valve of

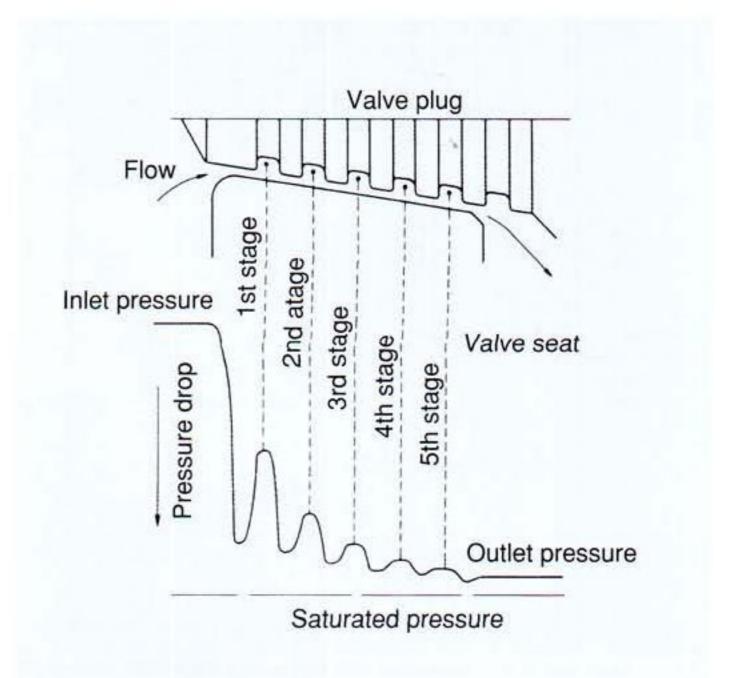
Mass indicated is that of the valve with fin type bonnet, handwheel and positioner (= maximum mass).


(*1)

nominal bore 50A rated Cv value can be selected in the range from Cv max. =11 to Cv min. =0.23o H dimension gives the longest dimension of the valve with the standard bonnet. However, in cases of fin type bonnet or handwheel installation, add the respective (*2)value shown above. For individual orders, please refer to the dimensions indicated in the drawing for approval.

CONTROL VALVE WITH LABYRINTH TRIM




Inis control valve is trim-exchangeable DY-GC or DY-W control valve equipped with this labyrinth trim. It is normally used for prevention of erosion due to incompressibile fluids.

Senerally speaking, control valves used as feedwater control valve for boiler start-up, feedwater pump recirculation have, hot water control valve for desuperheater, etc. experience large pressur drop, and cavitation generated in the mottle will cause many problems such as erosion, vibration and noise.

This valve uses the labyrinth trim (tapered plug or valve seat) so as to divide a large a pressure drop into many stages by means of the groves made in the plug as shown in the figure below and prevent generation of cavitation.

As for the distribution of the pressure drop over the labyrinth trim, as shown in the figure below, the first stage is large and the final stage is vary small. The distribution is made effectively according to the effective characteristic of the process, and the static pressure in the throttle is carefully kept above the saturated pressure at which cavitation will be generated.

BPECOFICATIONS

The detailed specifications, please see those of DY-GCSS DY-WCSS control valves (pages 25 to 27).