

2400 SERIES

Pressure Relief Valve

Product Catalog

Farris Engineering is Available to Help You.

We provide a spectrum of services including product sizing, selection, system design and audit services.

Product Sizing & Selection

For optimal system performance it is critical to determine the correct product for your application. Our sizing selection software, **SizeMaster™**, assists with the task of deciding the right relief valve for your application.

You can access the software by visiting, **www.sizemaster.com** or contacting your local representative.

Relief System Design

For pressure relief system design and audit services turn to **Farris Engineering Services**. Our team of experienced engineers offer complete relief system design and audit services using a patented, web-based software package, iPRSM, which provides a comprehensive approach to the management of pressure relief systems for safety compliance. Contact your local representative for more information.

Local Support

We are a global company with local presence. Find your service support at **www.cw-valvegroup.com/farrisdistributors**.

Factory trained sales representatives are available to understand and meet your needs.

How to Order

All orders should be placed with your local Farris Engineering representative.

Our factory trained representatives are experts in:

- Determining valve size
- Identifying the right valve for the application
- Compliance with codes and standards

Visit **www.cw-valvegroup.com/farrisdistributors** to find your local representative.

Aftermarket Services

Our network of certified valve technicians can provide quick service and repair through our local Farris Authorized Service Team (FAST). Contact your local FAST Center for valve repair and maintenance.

Factory Maintenance Certification Training is available for valve repair technicians. Contact the Farris Engineering Technical Trainer at techtrainer@curtisswright.com.

2400 Series Pressure Relief Valve

A high performance direct spring loaded pressure relief valve with a soft seat design to provide reliable overpressure protection.

Target Markets & Applications

- · Oil & Gas
- Chemical & Petrochemical
- Air Separation / Industrial Gas
- Cryogenic Service

Features & Benefits

Suitable for a wide range of service fluids and operating temperatures involving gas and vapor relief.

External blowdown control allows accurate blowdown adjustment without affecting set pressure.

The packed lifting lever is an optional accessory used to manually open the valve to test valve functionality.

Bubble tight seat design allows for processes to operate closer to set pressure minimizing leakage and frequent maintenance.

Full lift at set pressure reduces the potential for freeze-up in cryogenic applications.

Recommended spare parts are available as a kit, which allows for ease of ordering and reducing inventory items.

Soft seat design to minimize fugitive emissions and costly product loss.

Back pressure assists the spring to close the valve after relief cycle.

Certifications:
ASME Section VIII
CRN (Canadian Registration Number)

2400 Series – Valve Diagram

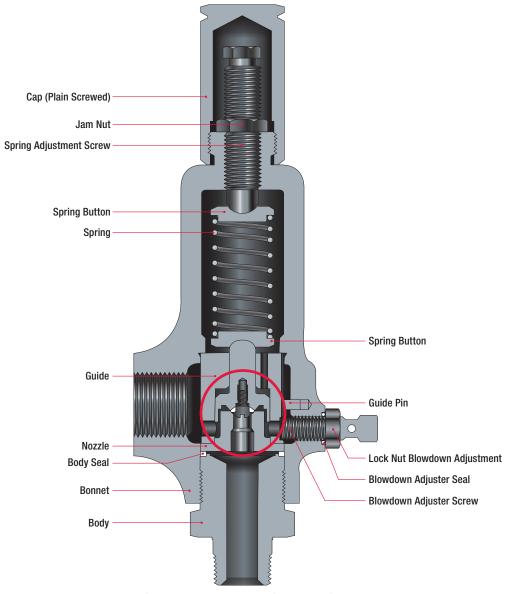
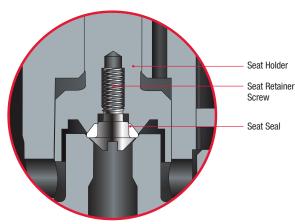
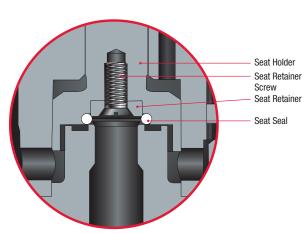




Diagram represents plastic seat design

Plastic Seat

Elastomer Seat

Materials of Construction

Part Name	Standard Carbon Steel C1	316 SS S4	Brass/Bronze B4								
Body	316 SS ASME SA-479	316 SS ASME SA-479	Brass ASTM B16 H. H.								
Bonnet	Carbon Steel ASME SA-216 Grade WCB	Stainless Steel ASME SA-351 Grade CF8M	Bronze ASME SB 62								
Nozzle											
Guide											
Seat Holder	316 SS	316 SS	Brass ¹								
Seat Retainer											
Seat Retainer Screw											
Seat Seal, Elastomer		See page 9									
Seat Seal, Plastic		Coo page C									
Spring Adjustment Screw			Brass								
Jam Nut			DIdSS								
Guide Pin	316 SS	316 SS	316 SS								
Blowdown Adjuster Screw			Brass								
Lock Nut, Blowdown Adjustment			DIdSS								
Cap, Plain Screwed	Carbon Steel	316 SS	Brass								
Body Seal, Elastomer Seat	FKM	FKM	FKM								
Body Seal, Plastic Seat	Glass filled PTFE	Glass filled PTFE	Glass filled PTFE								
Blowdown Adjuster Seal	PTFE	PTFE	PTFE								
Spring	Stainless Steel	316 SS	Stainless Steel								
Spring Buttons	316 SS	316 SS Brass									
Wire Seal (Not Shown)	SS Wire / Lead Seal	SS Wire / Lead Seal SS Wire / Lead Sea									
Nameplate (Not Shown)	Stainless Steel	Stainless Steel Stainless Steel									

- 1. For other materials, contact your representative. www.cw-valvegroup.com/farrisdistributors 2. Plastic seated valves have a 316 SS seat retainer screw.

2400 Series – Model Number System

Whether you are specifying a new valve, replacing a valve or identifying an existing valve, our model number system will help.

Series Number – 2400 Series Pressure Relief Valve.

Orifice Letter – Letter is based on orifice area, generated after sizing calculation is performed using SizeMaster* to ensure proper fit.

*SizeMaster is our web-based sizing selection software. www.sizemaster.com

Seat Material – Elastomer or Plastic. To determine appropriate seat material you must know the system pressure and temperature ranges. Tables are provided on page 9 to assist with selection.

Inlet and Outlet Size and Connection Type – Based on compatibility with system piping.

Service Fluid – The type and state of fluid to the relieved.

Materials of Construction – Select to assure compatibility with process conditions.

Cap Type – Selection of a plain or packed lever cap should be based on code requirements and process conditions.

Accessory – Test gag option is available to hold valve closed when the system is being hydrostatically tested.

The valve model number consists of designators in the sequence shown below.

24		В			V	2		M		3		F		G	-	C1		2		0
Series Number	Orifice Letter	Orific Sq. In.	e Area mm²	ľ	Seat Material ¹	Inlet Size Connection Size type			Outlet Connection Type		Service Fluid			Materials of Construction	Cap Type		A	ccessory		
24	B D E	0.049 0.110 0.196	31.61 70.97 126.45		FKM Buna N EPDM	1/2" 3/4" 1"	M F	Male NPT Female NPT	3	3/4" 1"	F	Female NPT	G	Gas / Vapor		C1 Stainless Body Carbon Steel	2	Plain Packed Lever	0	No Gag Test Gag
	_	0.100	120.40	K T	Kalrez® PTFE		avai	ilable co	mbi	ination	ıs I	below				Bonnet S4 Complete 316 SS B4 Brass/				
				L	PCTFE											Bronze N1 NACE, Standard Trim				
																N4 NACE Trim All SS ²				

Notes

- 1. Selection of soft seat materials compatible with the service conditions is the customer's responsibility. See available options on page 9.
- 2. Inconel spring
- 3. Kalrez is a registered trademark of DuPont Performance Elastomers.

Available Inlet, Outlet Sizes and Connection Type Combinations

Orifice Area Sq. In. [mm²]	Orifice Designation	Valve Size Inlet x Outlet	Inlet, Outlet Designation	Inlet Connection	Inlet Connection Designation	Outlet Connection
0.049 [31.61]	В	1/2 x 3/4 1/2 x 1 3/4 x 3/4 3/4 x 1 1 x 1	12 13 22 23 33	Male NPT	M	5 1 107
0.110 [70.97]	D	1/2 x 1 3/4 x 1 1 x 1	13 23 33	Female NPT	F	Female NPT
0.196 [126.45]	E	3/4 x 1 1 x 1	23 33			

Seat Capabilities and Material Selection

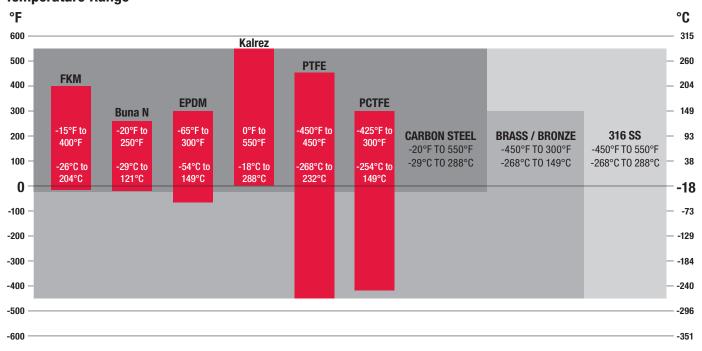
The 2400 Series is provided with either an elastomer or a plastic seat. Valves with both seat materials are tested to meet the requirements of American Petroleum Institute (API) Standard 527 and provide zero leakage up to 95% of set pressure.

Seat Tightness Capabilities

Seat Pressures Range	Operating Press. Range
100 psig (6.9 barg) and higher	0% to 95% of Set
50 to 99 psig (3.4 to 6.8 barg)	0% to 90% of Set
Below 50 psig (3.4 barg)	5 psig (.34 barg) below Set

Elastomer seat – Minimizes fugitive emissions and product loss.

Plastic seat – Suitable in cryogenic temperatures or corrosive applications.


The following tables provide the set pressure and temperature range for both elastomeric and plastic seat options.

Elastomer & Plastic Seat, Pressure and Set Pressure Range

	Coot	Cook			Set Press	ure Range			Max. Back Pressure
	Seat Material	Seat Code	B Orifice		D Oı	ifice	E Or	ifice	psig [barg] at
	Material	ooue	psig	psig barg		psig barg		barg	100°F [37.8°C]
_	FKM	V							
Elastomer	Buna N	В	20 to 2000	1.38 to 137.9	20 to 1410	1.38 to 97.2	20 to 600	1.38 to 41.4	
last	EPDM	Е	20 10 2000	1.30 10 137.9	20 10 1410	1.30 10 97.2	20 10 000	1.30 10 41.4	400
	Kalrez	K							[27.6]
*2	PTFE	T	50 to 1000	3.45 to 68.95	50 to 900	3.45 to 62.05	50 to 600	3.45 to 41.4	
Plastic*	PCTFE	L	1001 to 2000	69.0 to 137.9	901 to 1410	62.15 to 97.2			

Note

Temperature Range

Note:

^{*}Plastic seat material selection is set pressure dependent.

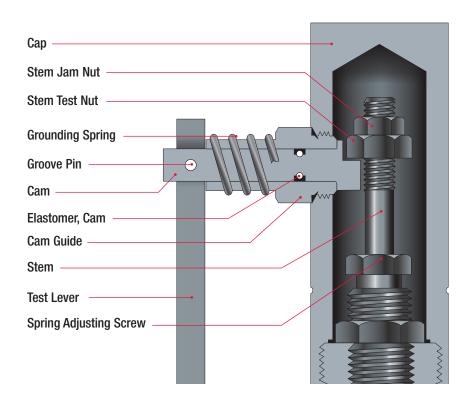
2400 Series – Capacity Tables

Complies with ASME Pressure Vessel Code, Section VIII. For sizing purposes the coefficient of discharge K_a is 0.817 for air, gas and vapor service.

AIR - 10% Overpressure Capacities in Standard Cubic Feet Per Minute at 60°F (Standard Cubic Meters Per Minute at 15.6°C)

	0	rifice Area, Sq. I	n.
Set Pressure	В	D	Е
(psig)	0.049	0.110	0.196
20* 30* 40 50 60	28 35 43 51 59	62 79 97 115 133	111 140 172 205 237
70 80 90 100 150	67 75 83 92 132	151 169 187 205 296	269 301 334 366 527
200 250 300 350 400	172 213 253 293 334	387 477 568 658 749	689 850 1012 1173 1335
450 500 550 600 650	374 414 455 495 535	840 930 1021 1112 1202	1496 1658 1819 1981
700 750 800 850 900	576 616 657 697 737	1293 1383 1474 1565 1655	
950 1000 1050 1100 1150	778 818 858 899 939	1746 1836 1927 2018 2108	
1200 1250 1300 1350 1400	979 1020 1060 1101 1141	2199 2289 2380 2471 2561	
1450 1500 1550 1600 1650	1181 1222 1262 1302 1343		
1700 1750 1800	1383 1423 1464		
1850 1900 2000	1504 1545 1625		

		wifing Awar www	2
Set Pressure	В	Orifice Area, mm D	E
(barg)	31.61	70.97	126.45
1.4* 2* 3 4 5	0.8 1.0 1.3 1.6 2.0	1.9 2.3 2.9 3.7 4.4	3.2 3.9 5.2 6.5 7.9
6 7 8 9	2.3 2.6 3.0 3.3 3.6	5.2 5.9 6.6 7.4 8.1	9.2 10.5 11.8 13.2 14.5
12 14 16 18 20	4.3 4.9 5.6 6.3 6.9	9.6 11.1 12.6 14.1 15.6	17.1 19.8 22.4 25.1 27.7
25 30 35 40 45	8.6 10.3 11.9 13.6 15.2	19.3 23.0 26.7 30.5 34.2	34.4 41.0 47.6 54.3
50 55 60 65 70	16.9 18.5 20.2 21.9 23.5	37.9 41.6 45.3 49.1 52.8	
75 80 85 90 95	25.2 26.8 28.5 30.1 31.8	56.5 60.2 64.0 67.7 71.4	
100 105 110 115 120	33.5 35.1 36.8 38.4 40.1		
125 130 135 138	41.8 43.4 45.1 46.1		

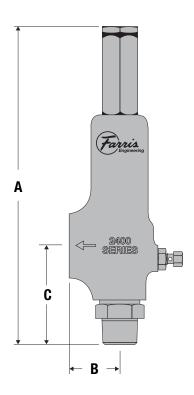

^{*}Capacities at 2.0 barg and below are based on 0.2 bar overpressure.

^{*}Capacities at 30 psig and below are based on 3 psi overpressure.

Packed Lifting Lever Option

The packed lifting lever is for applications where periodic testing is desirable. The lifting lever allows the valve to be tested at operating pressures of at least 75% of the valve set pressure.

ASME Boiler and Pressure Vessel Code Section VIII requires a lifting device for pressure relief valves used on air, steam, and water (over 140°F / 60°C).



Con Tuno	Dort Name		Materials of Construction	
Cap Type	Part Name	Carbon Steel C1	316 SS S4	Brass/Bronze B4
	Cap, Packed	316 SS		316 SS
	Stem Jam Nut		316 SS	
	Stem Test Nut	Stainless Steel		Stainless Steel
	Grounding Spring	Grammed Grad.	Stainless Steel	Ctail 11000 Ctool
Packed Lever	Groove Pin	Steel, Plated	Steel, Plated	Steel, Plated
	Cam	Stainless Steel	316 SS	Stainless Steel
	Elastomer, Cam	FKM	FKM	FKM
	Cam Guide		316 SS	
	Stem	- Stainless Steel	310 33	Stainless Steel
	Test Lever	งเลเาเธงง งเฮฮเ	Stainless Steel	olaii iicos oleei
	Spring Adjusting Screw		3141111622 31661	

2400 Series – Dimensions & Weights

Valve Size		US Customa	S Customary Units (inches) Me			its (millime	eters)	Approx.	Weight
Inlet x Outlet	Connection Type	A (Max.) Plain Cap ¹ Construction	B ²	C ²	A (Max.) Plain Cap Construction	В	С	Lbs.	Kgs.
B Orifice		•			•			<u>'</u>	
1/2 x 3/4	MNPT x FNPT FNPT x FNPT	9 9/16	1 1/2	2 7/8	243	38	73	4 1/2	2.1
1/2 x 1	MNPT x FNPT FNPT x FNPT	9 9/16	1 1/2	2 7/8	243	38	73	4 1/2	2.1
3/4 x 3/4	MNPT x FNPT FNPT x FNPT	9 9/16 9 3/4	1 1/2	2 7/8 3 1/16	243 248	38	73 78	4 1/2	2.1
3/4 x 1	MNPT x FNPT FNPT x FNPT	9 9/16 9 3/4	1 1/2	2 7/8 3 1/16	243 248	38	73 78	4 1/2	2.1
1 x 1	MNPT x FNPT FNPT x FNPT	9 3/4	1 1/2 —	3 1/16 —	248 —	38 —	78 —	4 1/2 —	2.1 —
D Orifice									
1/2 x 1	— FNPT x FNPT	 11	— 1 13/16	— 3 11/16	— 279	 46	94	— 8 1/2	— 3.9
3/4 x 1	MNPT x FNPT FNPT x FNPT	11	1 13/16	3 13/16 3 11/16	279	46	97 94	8 1/2	3.9
1 x 1	MNPT x FNPT FNPT x FNPT	11	1 13/16	3 13/16 3 11/16	279	46	97 94	8 1/2	3.9
E Orifice									
3/4 x 1 1 x 1	MNPT x FNPT FNPT x FNPT	11	1 13/16	3 13/16 3 11/16	279	46	97 94	8 1/2	3.9

^{1. &}quot;A" dimensions shown are for plain cap valves, for packed lever cap, add 1". 2. Tolerance for "B" and "C" dimensions are $\pm 1/8$ ".

Overview of Farris Engineering Pressure Relief Valves

				ē	nge		<u> </u>		Ser	vice			ē
V	alve	Material	Size Inches	Temperature Range	Pressure Range	ASME	Balanced or Bellows	Air	Steam	Water	Multi	Nuclear	CE Stamped
	2600 Series					UV	✓	✓	✓			✓	✓
	2600L Series	Carbon Steel, Stainless Steel, Monel & Hastelloy C	1" x 2" to 20" x 24"	-450°F to +1500°F	15 psig to 6000 psig	UV	✓	✓	✓	✓	✓	✓	✓
	2600S Series	Monor a riddlendy o				UV	✓	✓	✓				✓
	3800 Series Modulating Pilot	Carbon Steel,	1" x 2" to	-450°F to	15 psig to	UV	✓	✓	√	√	✓	√	✓
	3800 Series Snap Acting Pilot	- Stainless Steel, Monel & Hastelloy C	12" x 16"	+500°F	6170 psig	UV	✓	✓		✓			
	2700 Series	Carbon Steel, Stainless Steel, Monel & Hastelloy C	1/2" x 1" to 1-1/2" x 2-1/2"	-450°F to +750°F	15 psig to 6500 psig	UV	✓	✓	✓	✓	✓	✓	✓
	3700 Series	Carbon Steel, Stainless Steel	1/2" x 1" to 1-1/2" x 2-1/2"	-450°F to +750°F	15 psig to 6500 psig	UV		✓	✓	✓	✓	✓	
	2400 Series	Carbon Steel, Stainless Steel and Brass/Bronze	1/2" x 3/4" to 1" x 1"	-450°F to + 550°F	20 psig to 2000 psig	UV		✓					
	4200/4400 Series	Carbon Steel, Stainless Steel, Chrome-Moly	1-1/4" x 1-1/2" to 6" x 8"	-20°F to +1000°F	15 psig to 1000 psig	UV & V			✓				✓

Overview of Farris Engineering Pressure Relief Valves

			9)ge		<u> </u>		Ser	vice			q
Valve	Material	Size Inches	Temperature Range	Pressure Range	ASME	Balanced or Bellows	Air	Steam	Water	Multi	Nuclear	CE Stamped
6400/6600 Series	Carbon Steel, Stainless Steel, Chrome-Moly	1" x 2" to 4" x 6"	-20°F to +1000°F	15 psig to 1500 psig	UV & V		✓	✓				
4700 Series	Stainless Steels,	1/2" x 3/4"	-450°F to	5 psig to	UV	✓	✓	✓			✓	
4700L Series	Carbon Steels	to 1" x 1-1/2"	1000°F	6000 psig	UV	√			✓	✓	✓	
1890/1896M Series	Carbon Steel, Stainless Steel, Brass/Bronze	1/2" x 3/4" to 3/4" x 1"	-20°F to 750°F	15 psig to 800/300 psig	UV		✓	✓	√			

Certifications and Approvals:

- ASME V, UV, NV and NPT
- National Board Approval, NB
- ISO 9001:2015
- PED 2014/68/EU (European Pressure Equipment Directive)
- ATEX 2014/34/EU (European Potentially Explosive Atmospheres)
- CSA Z299.2/.3/.4, B51, N285.0 (Canadian Registration)
- CRN (Canadian Registration Number)
- CSQL (China Safety Quality License)
- Customs Union Certificates TR CU 010/2001 and TR CU 023/2013
- US Coast Guard
- Nuclear 10 CFR 50 Appendix B, NCA-4000, NQA-1, N285.0
- First Point Assessment Limited

Refer to individual product catalogs for product specific certification.

Pressure Relief Valve Sizing and Selection Worksheet

The specification of the appropriate pressure relief valve size and type requires calculations with specific criteria. This worksheet is a guide when collecting information to properly size a pressure relief valve. For additional information on sizing contact your local representative.

PROCESS CONDITIONS	MATERIALS
Set Pressure*	Body and Bonnet
Operating Pressure	Nozzle
Operating Temperature*	Seat Seal
Relieving Temperature*	Guide
Constant Back Pressure*	Spring
Variable Back Pressure*	Cap/Lever
Fluid State	
Fluid/Media*	VALVE DESIGN DATA & ACCESSORIES
Required Capacity	
% Allowable Overpressure	Size (Inlet x Outlet)
Compressibility	Test Gag
Molecular Weight	- 165 L NO
Viscosity	
Ratio of Specific Heats	
Latent Heat of Vaporization	
ASME Code	

^{*}Items required for order entry

Farris Engineering, a Division of Curtiss-Wright

Headquarters: 10195 Brecksville Road, Brecksville, OH 44141 USA • Telephone: 440-838-7690 • Fax: 440-838-7699 • www.cw-valvegroup.com/farris **Offices Worldwide:** For a listing of our global sales network, visit our website at www.cw-valvegroup.com/farrisdistributors.

While this information is presented in good faith and believed to be accurate, Farris Engineering, division of Curtiss-Wright Corporation, does not guarantee satisfactory results from reliance on such information. Nothing contained herein is to be construed as a warranty or guarantee, expressed or implied, regarding the performance, merchantability, fitness or any other matter with respect to the products, nor as a recommendation to use any product or process in conflict with any patent. Farris Engineering, division of Curtiss-Wright Corporation, reserves the right, without notice, to alter or improve the designs or specifications of the products described herein.