CHECK VALVES ()

www.checkvalves.co.uk

Goodwin International Company Overview

Goodwin International is globally recognised and approved for its design, manufacture and supply of Dual Plate Check Valves and Axial Check Valves to the world's hydrocarbon, energy and process industries.

Located in the heart of England in Stoke-on-Trent, Goodwin International is an engineering company of diverse skills, capabilities and products, and is a wholly owned subsidiary and member of the Goodwin PLC group of companies. The Group's core activities lie in engineering, refractories and investment powders and is trans-global in its activities.

The history and pedigree of Goodwin dates back to 1883. The initial company established in that year was its foundry, Goodwin & Sons. The foundry exists to this day operating under the name of Goodwin Steel Castings, and is one of the foremost nickel alloy foundries in Europe. It too is located in Stoke-on-Trent.

Publicly quoted on the London Stock Exchange, Goodwin PLC is family managed. Currently the group is headed by the fifth generation of the Goodwin family with members of the sixth generation now in management positions within its operating companies.

With over 1.5 million valves in service from over 35 years of supply to the global hydrocarbon, energy and process industries, Goodwin International Ltd provides a comprehensive level of customer service supported by a comprehensive representative network and its own overseas offices in Brazil, Dubai, Korea, China and Japan.

Goodwin International

Goodwin Steel Castings

Company Commitment...

To maintain an underlying commitment to engineering by investing in the design, manufacture and sale of technically advanced products.

The company's philosophy is to supply well designed products fit for purpose that are internationally competitive, whilst being superior to our competitors' be it by product performance or efficiency always ensuring the highest level of quality in everything we do.

Through investment in its people and markets the company aims to maintain its market position, to become a world leader in its technologies and provide exemplary customer service.

Matthew Goodwin Managing Director

Pioneers in Check Valve Innovation

Goodwin International, by having two check valve products, the Goodwin Dual Plate Check and the Goodwin Non-Slam Axial Check Valve, can offer a cost effective solution to meet the vast majority of customer requirements and applications.

Dual Plate Check Valves

The Dual Plate Check Valve is widely accepted as the "check valve of choice" for new build hydrocarbon, energy and process projects by end-users and engineering contractors alike.

The Goodwin Dual Plate Check Valve is used in standard, regular, "bulk" applications where unwanted phenomena such as "slam" and "waterhammer" are not anticipated. It is available in different body styles to meet customers' specifications.

Axial Check Valves

The Non-Slam Axial Check Valve is the next level in check valve technology. It is specifically used for those critical /severe applications where reliability and high performance are an absolute necessity. Its speed of response and dynamic behaviour is such that unwanted phenomena such as "slam" and "waterhammer" are prevented from occurring.

The Goodwin Non-Slam Axial Check Valve is available in solid disc and ring disc designs.

The Goodwin Dual Plate and Non-Slam Axial Check Valves are complementary check valves enabling Goodwin International to address almost all check valve applications.

Reproduction of this catalogue, either in print or electronically, whole or in part, must be with the express permission of Goodwin International Limited.

As part of our continuous product improvement policy we reserve the right to institute changes in any materials, designs and specifications within this catalog. E&OE

Contents

- 2 Facilities & Resources
- 4 Certification & Testing

Dual Plate Check Valves

- 6 Types
- 7 Technical Features & Benefits
- 11 Installation Between End Connections
- 12 Anti Pressure Surge
- 14 Ordering Instructions Dimensions
- 15 Type BR
- 20 Type BFR
- 24 Type BSR
- 29 Type BHR
- 32 Type BWR
- 34 Type BWA

Axial Check Valves

- 36 Types
- 37 Technical Features & Benefits
- 39 Installation Between End Connections
- 40 Ordering Instructions

Dimensions

- 41 Type ZBF, NBF & NZF Exploded Views
- 42 Type ZB & ZD
- 45 Type NB & ND
- 48 Type NK
- 51 Type NZ & NA
- 54 Type NC

Engineering Data

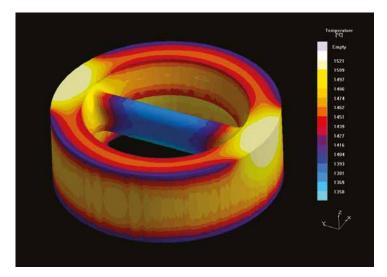
- 57 Flow Coefficients
- 60 Critical Velocity
- 61 Phenomenon of Surge
- 62 Check Valve Selection
- 63 Total Life Cycle Costs
- 64 Best Practice Valve Installation
- 66 Material Specifications
- 67 ASME Pressure / Temperature Ratings
- 68 Large Diameter Check Valves
- 69 Cryogenic Testing
- 70 Certification & Approvals
- IBC Contacts / Industries Served

Goodwin International: Facilities & Resources

Goodwin International's Check Valve manufacturing plant in Stoke-on-Trent, England, comprises a well equipped CNC machine shop with full design, fabrication, inspection and test facilities. These facilities are complemented by sister company Goodwin Steel Castings Ltd, a world class foundry. It was the first steel foundry worldwide to be registered by the British Standards Institution to BS5750 (now BS EN ISO 9001) and is also accredited to ISO14001 and OHSAS 18001.

Specialising in producing high integrity pressure vessel castings from a few kilos to 18,000 kg in weight, the materials cast by Goodwin Steel Castings include carbon and low alloy steels, chrome steels, stainless steels, duplex stainless steels and super nickel alloys such as Hastelloy[®] and Alloy 625. Its ability to produce the special alloys is enhanced by its in-house 10 tonne AOD refining furnace.

Goodwin Steel Castings models all cast valve bodies using SOLIDWORKS[®] 3D Modelling. Casting methods are verified, i.e. method verification, using Magmasoft[™] software.The Magmasoft[™] program includes fluid dynamics, temperature profile, and x-ray simulation to predict where volumetric defects will occur in a given casting. Using this software enables defects to be "engineered out" by developing casting feeding and gating designs to ensure "right first time" production of high integrity castings. This optimisation process is a key feature of Goodwin Steel Castings' Quality Assurance System.


CAD facilities in Goodwin design office

12 tonne induction holding furnace at Goodwin Steel Castings

Super Duplex valve bodies with representative sized keel blocks undergoing heat treatment (From furnace to quenching in under 30 seconds)

Magmasoft[™] temperature profile

Two station CNC vertical borer with live spindle and tool changer

Goodwin International's BS EN ISO 9001 accredited design, machine, test and assembly bays cover some 30,000 m². The machine shop is equipped with 46 modern CNC machine tools, including robotic welding, which are the core of the valve production. These are further supplemented by a large number of conventional machine tools.

Valve design is carried out using 3D CAD and is verified on computers utilizing finite element analysis and Flow Simulation programs.

The test facilities include six hydraulic hydrostatic test rigs, the largest of which has a 2500 tonne hydraulic ram and can test valves up to 60". Cryogenic testing is also carried out on site where valves are submerged in liquid nitrogen at -196°C and leak tested with helium gas.

In addition to buying material from its own foundry, Goodwin International buys material on a global basis from a small number of foundries and forges with which it has long term association. All are ISO 9001 registered. To ensure its commitment to quality Goodwin has fulltime in-country employees in the countries outside of Europe from which it sources to continually audit the quality of material sourced.

Cryogenic test facility for helium leak testing

2500 tonne hydraulic test rig in Goodwin assembly bay

Twin pallet CNC machining centre with 60 tool changer

Goodwin International: Certification & Testing

A Quality Management System registered by BSI in accordance with BS EN ISO 9001 is maintained.

The Standard GOODWIN Check Valve features:-

- Designed, manufactured, assembled and tested in accordance with Quality Assurance System registered by BSI to BS EN ISO 9001.
- Designed and tested to API 594, API 6D or "manufacturer's standard" (dependent on product).
- All bodies and plates/discs certified to BS EN 10204 3.1 as a minimum.
- All new castings are sample approved by dimensional checks (wall thickness etc.) and radiography, 100% coverage to ASTM E446/E186, Level 2 minimum, or ultrasonic testing to ASTM A609, Level "A".
- Surface finish to MSS SP 55 on cast components.
- Traceablilty per melt (not batch of ingot) is maintained throughout all manufacturing processes for bodies, plates/discs and trim.
- All valves are hydrostatically tested (Shell and Seat) to API 598 with unique traceability to certification.
- Firetest approved and certified to ISO 10497, API 6FA & API 6FD for pressure classes ASME 150 to ASME 2500.
- Additional testing to be specified on the enquiry and Purchase Order.

Extensive in-house testing and laboratory facilities are available including:

- Hydrostatic Pressure Testing to 25000 psig (1725 barg)
- High Pressure Gas Testing to 20000 psig (1380 barg)
- Low Temperature (-46°C) and cryogenic temperature (-196°C) Pressure Testing
- High Temperature Pressure Testing to 550°C
- Helium Leak Testing (Mass Spectrometer)
- Tensile / Bend / Impact / Hardness Testing (ISO 17025 Accredited)
- Corrosion Testing
- Metallography
- Magnetic Particle
- Dye Penetrant
- Ultrasonic Examination
- Radiography
- Chemical Analysis
- Alloy Verification / Positive Material Identification (PMI)
- Co-ordinate Measuring Machines (CMM)
- Feritscope Verification
- Laser Measurement

Other examination Methods or Acceptance criteria to comply with the customer's own specification may be substituted if agreed with the Company at the time of quotation.

Radiography

Radiography is conducted in-house using Dual Voltage 6/9 MeV Linear Accelerator X-Ray machine with developing and viewing facilities.

- Options 100% of All castings 100% of 10% of castings Critical Areas* of All castings Critical Areas* of 10% of castings
- Acceptance ASME VIII Div 1 App 7 or ASME B16.34 App 1

*Critical Areas as defined by ASME B16.34

4

www.checkvalves.co.uk

The Company's operators for all forms of Non-Destructive Testing are qualified to ASNT Level 2 or PCN Level 2.

Magnetic Particle / Dye Penetrant

MethodMPI to ASME V Art 7 or ASME B16.34 App II
DPI to ASME V Art 6 or ASME B16.34 App IIIOptions1. 100% of All castings/forgings
2. 100% of 10% of castings/forgings
3. 100% of all machined surfacesAcceptanceMPI to ASME VIII Div 1 App 7 or ASME B16.34

Acceptance MPI to ASME VIII Div 1 App 7 or ASME B16.34 App II DPI to ASME VIII Div 1 App 7 or ASME B16.34 App III

Ultrasonic Examination

	Method	ASME V Art 5 or ASME B16.34 App IV
--	--------	------------------------------------

- Options
- 1. 100% of All castings/forgings
- 2. 100% of 10% of castings/forgings
- 3. Critical Areas* of All castings/forgings
- 4. Critical Areas* of 10% castings/forgings

Acceptance ASME B16.34 App IV

*Critical Areas as defined by ASME B16.34

- Routine chemical analysis by one of two optical emission spectrometers: Hilger 28 Channel Spectrometer and ARL 35 channel spectrometer
- Carbon, Sulphur, Nitrogen and Hydrogen determination by a combination of Leco and Eltra combustion analysers
- Oxygen determination by Celox direct measurement
- Portable PMI (Positive Material Identification) by XRF hand held analyser
- Typical material analysed:
 - Carbon/Low Alloy Steels/Chrome Steels
 - Stainless/Duplex/6Mo Steels
 - Nickel alloys
 - Cobalt alloys

Corrosion Testing & Metallography

- Intercrystalline corrosion
- Strauss and Huey tests
- Crevice corrosion
- Pitting corrosion
- Typical Standards ASTM G48, A262, G31, G36, A923
- Ferrite counting
- Phase checks
- Grain size/inclusion counts
- Macro and Micro photography
- Typical Standards ASTM E562, E112, E45
- Scanning Electron Microscope

Magnetic Particle / Dye Penetrant

Ultrasonic Examination

Chemical Analysis

Corrosion Testing & Metallography

Goodwin International Dual Plate Check Valves - Types

Wafer Type BR

Flanged

Type BFR

Wafer (BR) Flanged (BFR) Solid Lug (BSR) Buttweld End (BWR) Buttweld End with access (BWA) Hub-End (BHR)

Sizes

2" - 144" (50mm - 3600mm)

Pressure Classes

ASME 150 - 2500 API 2000 - 20000 PN 10 - PN 400 JIS 10K & 20K (available on request)

Solid Lug Type BSR

Materials

Ductile and Ni-Resist® Irons Carbon Steels; Stainless Steels Duplex Stainless Steels Aluminium Bronzes High Nickel Alloys Titanium

Buttweld End Type BWR

Buttweld End with Access Type BWA

Features

Designed, manufactured, assembled and tested in accordance with Quality Assurance System accredited by BSI to BS EN ISO 9001.

Certifiable in compliance with European Pressure Directive (PED) 2014/68/EU and/or ATEX Directive 2014/34/EU to meet customer requirements when specified.

Designed and tested to API 594 / API 6D

All bodies and plates certified to BS EN 10204 3.1 as a minimum.

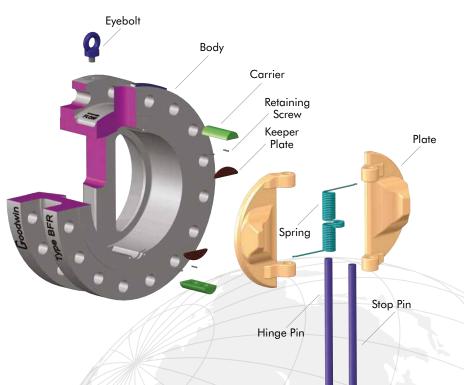
Retainerless design as standard. No screwed body plugs - no leakpath to atmosphere - no fugitive emissions.

Firetested design. Firetest approved and certified to BS EN ISO 10497, API 6FA and API 6FD.

www.checkvalves.co.uk

Dual Plate Check Valves Technical Features & Benefits

Retainerless Design


Goodwin International first offered a retainerless design in the mid-1980s with its current design being in use since the mid-1990s . "Retainerless" has subsequently become an industry standard for dual plate check valves throughout the hydrocarbon, energy and process industries.

Goodwin Dual Plate Check Valves are offered as "retainerless" as standard^{*} in its wafer, flanged, hub-end and buttweld end body styles. Having no screwed body plugs, and an unbroken pressure envelope, the Goodwin retainerless design provides:

- Higher integrity pressure vessel than "retainered" designs
- Fugitive emission free design
- No thread corrosion risk (as in "retainered" designs with screwed body plugs)
- Tamperproof Design
- No plug blow out risk
- Ease of disassembly only an Allen Wrench required

There is no intrusion into the gasket sealing element surface by the retaining mechanism on Goodwin Dual Plate Check Valves.

* **RETAINING PLUGS**: On occasion, for technical reasons, e.g. compact flange and lined types, out of design necessity, Goodwin will provide its Dual Plate Check Valve with retaining plugs. Retaining plugs have been successfully utilised on Dual Plate Check Valves for over 50 years but, obviously, do not afford the same high integrity as retainerless design.

Dual Plate Check Valves Slim Plate Design

Goodwin International's unique slim plate design gives improved flow efficiencies, lower seat leakage rates and faster response than are achievable with the traditional "flat" plate design employed by Goodwin's competitors.

Improved Flow Efficiencies

Benefits of the Goodwin slim plate include;

- Less restriction to flow in the full open position
- Larger throat areas in higher pressure class valves
- · Less constriction to flow on the downstream side of the valve

All these factors contribute to a higher flow coefficient (C $_{\rm V}$ values) resulting in increased flow and/or lower pressure loss.

The images to the right show the substantially greater flow area through a Goodwin Dual Plate Check Valve compared with that of a major international competitor. The graph shows in value terms the greater pressure loss experienced in the competitor's valve. Higher pressure loss means higher energy costs resulting in high Total Life Cycle costs.

Lower Seat Leakage Rates -

Metal to Metal Seats

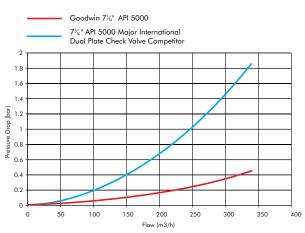
The Goodwin slim plate exhibits differential stiffness which permits the centre of plate to remain rigid whilst the edges of the plate flex. With the plates closed, the geometry of the plate is such that the back pressure pushes the plate sealing surface onto the valve body sealing surface. This gives a far superior sealing performance compared to the traditional "flat" plate design.

Dual Plate Check Valves are tested to API 598 which for metal to metal seats has a permitted seat leakage of 3cc/inch of bore/minute with water. With the Goodwin slim plate design leakage rates of 1.5 cc/inch of bore/minute are achievable as standard. Near zero leakage can be economically achieved with metal-to-metal seats which is particularly useful on cryogenic or high temperature gas applications where it is not possible to use resilient seats.

In contrast to other dual plate check valves the seat sealing characteristics of the Goodwin valve are enhanced as line pressure increases unlike competitors' valves which can significantly deteriorate in higher pressure classes.

Faster Response Times

The Goodwin plate, by virtue of its design, has a lower mass; typically a Goodwin ASME 2500 plate weighs less than competitors' ASME 300 plates. This factor decreases both the inertia of the plates and the friction at the plates hinges providing an opportunity to improve the valve response time.



Goodwin Slim Plate

Competitor "Flat" Plate

Pressure Loss Curve: Goodwin vs Major International Competitor

Dual Plate Check Valves Seat Life

Increased seat life is obtained by eliminating the problem of the plates dragging on the seat when opening. Due to the clearance between the plate hinge and the hinge pin, the heel of the plate lifts with the initial flow as the foot of the spring acts beyond the centre of pressure of the plate.

As the flow then increases through the valve the plates open without the heels of the plate scuffing the body seat.

Plate Shock Bumpers

Goodwin's slim plate incorporates in its geometry a plate bumper at the centre of mass of the plate. When the valve opens, the bumpers of the plates collide creating an equal and opposite force acting on the plates preventing significant bending moments acting on the hinge pin of the plate thereby prolonging valve life.

It is an accepted fact that there will be occasions when the plates do not arrive fully open at the same instance. Clearance on the bumper allow and ensure the plates hit each other rather than the stop pin. This helps prevent damaging forces being exerted on the stop pin and the subsequent risk of a plate going over the central axis of the valve and leaving one port open in the event of a flow reversal.

Plate bumpers are standard on all sizes, pressure classes and types of Goodwin Dual Plate Check Valves.

Slim Plate Design

Plates closed

ODDMIN CHECK WLE

CHECK

INMOOT

CHECK

GOODWIN

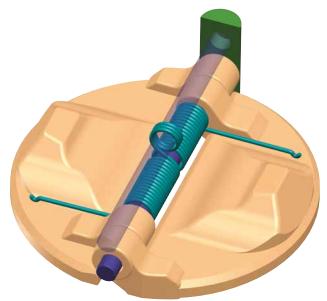
100

Heel lift prior to plate rotation

Plates opening - no seat scuffing

Plates fully open disc shock bumpers meet

NB - for illustration purposes only. When installed in horizontal pipeline, hinge pins should be vertical.



Dual Plate Check Valves Independent Plate Closing Action

With coils around the hinge pin, the Goodwin spring acts as two independent springs. The spring action optimises the equal closing rates of each plate especially when friction coefficients are uneven due to one plate resting upon another.

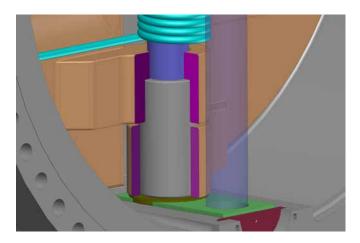
The springs have been designed to ensure stresses are kept to a level so that the spring should have a theoretical infinite life.

Spring designs utilised in Goodwin valves have undergone accelerated laboratory testing and are proven to be capable of operating over 2,000,000 cycles without failure.

Independent Plate Suspension

In sizes 24" and larger (exception: 24" ANSI 150), Goodwin employs Independent Plate Suspension in its Dual Plate Check Valves. In these larger sizes and higher pressures, the weight of the plates are such that the frictional contact on the lower hinges inhibit the speed of response in both opening and closing of the valve.

To ensure the faster speed of response provided by the Goodwin slim plate in the larger valves, frictional contact between the hinges is eliminated by mounting the plates independent of each other.


Firetest Certified

Goodwin International has had firetests conducted on a number of resilient and metal seated valves by an independent facility, witnessed by Lloyds Register of Shipping, and is approved and certified firesafe for all sizes in pressure classes ASME 150 to ASME 2500. The valves tested met the performance requirements stated in the following standards:

BS EN ISO 10497: Testing of Valves Fire type-testing requirements

API 6FA 2nd Edition 15th February 1994 Specification for Firetest for Valves

API 6FD 1st Edition 15th February 1995 Specification for Fire Test for Check Valves

8" 1500# BSR Solid Lug Check Valve undergoing fire test

Dual Plate Check Valve Installation Between End Connections Wafer Flanged Type BR Type BFR 000 Hub-End Solid Lug Type BSR Type BHR Buttweld End with Access **Buttweld End** Type BWA Type BWR

BR, BFR and BSR have face-to-face dimensions to API594. BH, BHR, BWR and BWA face-to-face dimensions to Goodwin standard. 11

Dual Plate Check Valves Anti Pressure Surge (For ASME 150 Valves)

A Design for Severe Pump Applications

In pump applications where pressure surge and water hammer problems are anticipated, correct check valve selection is critical. Historically, process and piping engineers when confronted with high system decelerations have opted for either the axial check valve or the damped swing check valve or swing check valve with bypass.

The Axial Check Valve is usually the selection of choice as the two swing check valve options suffer from not only high cost, size and weight but are, generally, a maintenance problem. Similarly the Axial Check Valve is comparatively high cost against the Dual Plate Check Valve. However, Goodwin, with its APS[#] device, offers the process and piping engineers the lower cost option of using the Dual Plate Check Valve in higher system decelerations than were previously acceptable.

Goodwin can calculate and determine the dynamic performance of its check valves for given system decelerations. Where the demands of the application are beyond the capabilities of the standard Goodwin check valve, Goodwin can employ its APS device. The APS device extends the suitability of the Goodwin Dual Plate Check Valve into those higher system deceleration pump applications where, in the past, only axial or damped swing check valves could be considered.

32" ASME 150 Dual Plate Check Valve with APS, as viewed from valve downstream side.

Patented

32" ASME 150 Dual Plate Check Valve with APS, as viewed from valve upstream side

APS stands for Anti Pressure Surge and is effected in the Goodwin Dual Plate Check Valve by fitting a pressure-sensitive flow-relieving valve in each plate. Essentially, the APS consists of a large piston valve held closed by Belleville washers whose pre-set load will not allow flow through the piston valve from the downstream side of the check valve until the downstream pressure exceeds by 10% the maximum static flow pressure on the downstream side of the valve.

The main function of the APS is not to relieve high pressure but to prevent it from occurring in the first place. It does this by allowing flow which releases excess pressure energy from the downstream side of the valve as the pressure increases on valve closure to the upstream of the valve thereby avoiding the occurrence of full downstream pressure increase. This downstream pressure increase is caused by the instantaneous halt of the column of fluid when the check valve closes and was determined in 1898 by Joukowsky who formulated the equation:

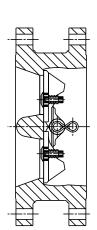
(where V_r max is the maximum reverse velocity of the fluid and is a function of the system deceleration and check valve type).

Tests carried out at the Delft Hydraulics Laboratory in the Netherlands recorded a 40% reduction in the Joukowsky pressure that would have been seen in any check valve not fitted with APS had the same reverse flow velocity occurred.

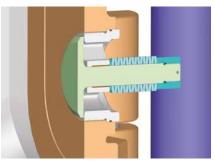
The Cost Effective Solution

With its compact design, low critical velocity and low pressure loss, the Goodwin Dual Plate Check Valve with APS, provides the piping engineer with a cost effective solution to the more costly alternatives of the axial check and damped swing check valves.

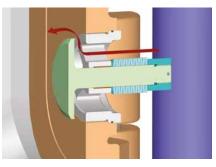
When to use the Goodwin Dual Plate Check Valve with APS


The APS device will minimise pressure surge associated with high deceleration systems to a safe level thereby protecting downstream pipework against overpressurisation and potential rupture as might be experienced with GRP pipe. It will also eliminate the waterhammer that would occur in a check valve without APS.

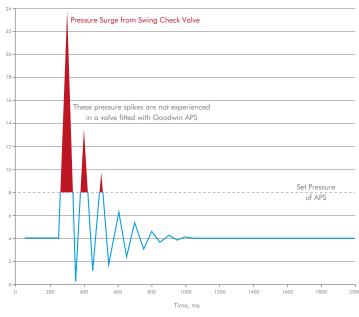
However, the APS device will not minimise the slam forces that occur with rapid closure of the plates. These forces can be calculated by Goodwin for a customer to determine if within acceptable limits. If these limits are exceeded, then Goodwin can offer its Axial Check Valve to eliminate those slam forces.


The APS can be fitted in all Goodwin Check Valves 12" and larger in pressure class ASME 150.

Goodwin requires the following data to establish if its check valve should be fitted with the APS device to meet the demands of its application:


- Valve Size & Pressure Class
- Fluid
- Fluid Density
- Flowrate
- Line Operating Pressure
- Line Design Pressure
- Temperature
- Line Velocity
- System Deceleration
- Downstream pressure in the no flow condition, i.e. when the plates are closed
- # Patented.

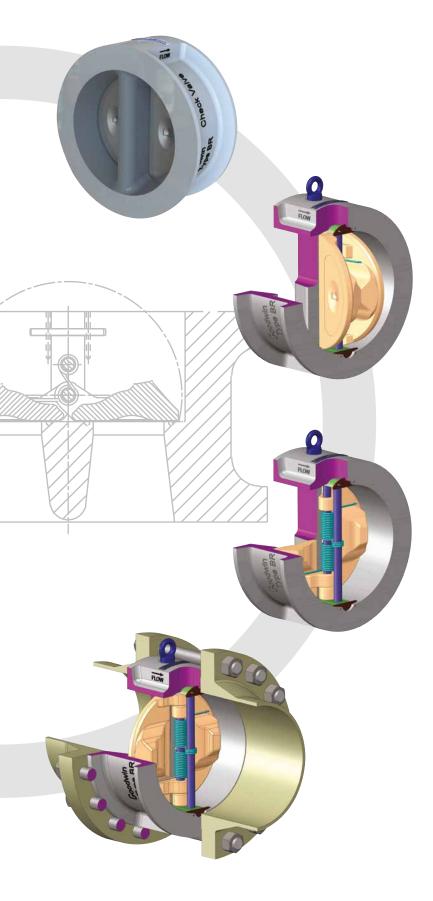
Schematic of a 32" ASME 150 valve with APS



Forward Flow - APS closed

Pressure Surge - APS opens

Surge Pressure Graph Comparison


bar

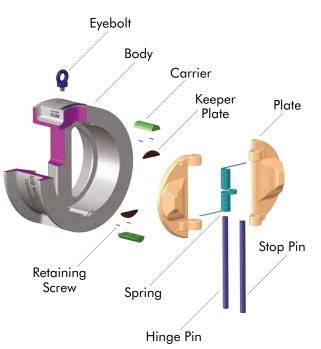
Dual Plate Check Valve: Ordering Instructions

EXA	MPLE															
Ту	/pe	Valve Size	Flang Standa	Preccii	re	Body Material	Plate Material		ody Seat	Plate Seat		ind nection	Speci Featu		Spring Material	Wetted Parts
I	BR	30	В	015	-	С	S		W	Р		R	X		Y	S
* 'R' in	the valve	type code ind	licates Retai	inerless												
		VALVE	TYPE		`	VALVE SIZ	ΣE	F			NDAR	C			ASME/A SURE RA	
BR		Wafer	отг т ь	1)				FIG	STAN	NDARD			FIG			RATINGS
BSI BH	R (BFT) R (BTR) R (R)	Solid Lug Hub Endec	3TF: Thread (BTR: Thread d Reduced B	aded) Bore (R)				- - B		B16.47 Ser	ries A (MSS ries B (API		015 030	' r	15 30	50 10
BH	R (F) (F)	Hub Endeo	d Full Bore d Full Bore		Inches:	For ASME, AW	WA & API	D	AWWA	A C207 Clas	s D	,	060 090		60 90	0
BW BL	R (BWA)	Buttweld E	ind ned (Retaini	ing Dlugs)		Standards		E F		A C207 Clas	s E ore Interna	k	150 250		15 25	
BE		Flanaed -	Lined (Retain	ing Plugs) ining Plugs)				R			ed Bore Int		200		20	00
BS		Solid Lug ·	- Lined (Ret	aining Plugs)				J	JIS 22				300 500		30 50	
BC BF			ad (Retaine Clad (Retaiı					۷	Norso	k L-005			100		100	000
BS			- Clad (Reta						BO	ody SI	EAT/PL	ATE C)VERL/	AY N	ATERIAL	-
BD			ad (Retainir					FIG	MAT	TERIAL			OPER	ATIN	G TEMP I	RANGE †
BFI BSI				ning Plugs) iining Plugs)										°F		°C
				OR PLATE				P E		e as Body / Stainless Ste			As Bod - 20 t	y / Pla o 1000		ly / Plate to 538
								S	316 S	Stainless Ste	eel		- 425	to 1000) -254	to 538
FIG	MATE	RIAL		CAS		ICATION FOR	GED	F G		Stainless S PH Stainles				to 850 to 800		to 455 to 427
6							-	l	Alloy		22 21661		-40	0 000	-40	10 427
C L	Carbon S	steel 1p Carbon Ste	el	ASTM A216 W ASTM A352 L		ASTM A10	כ	М	Mone	el 400				to 900		to 482
Ō	Low Tem	p Carbon Ste	el	ASTM A352 L		ASTM A350	0 LF2	U J	Cobal Viton	It Alloy 6 / S	Stellite 6®			to 1500 to 400		to 815 to 204
D	High Ten	np Cr Mo Stee	el	ASTM A217 W		ASTM A182	2 F11-2	V	Viton					to 400		to 204
K	Low Allo 410 Stai	nless Steel		ASTM A487 G ASTM A217 C		- ASTM A182	2 F6	W		B® Anti Ex			-4 t	o 392	-20	to 200
Р	5% Cr S	teel		ASTM A217 C5		ASTM A182	2 F5a	N	Decor Buna	mpression I -N®	FK58 90		-22	io 250	-30	to 121
W G	9% Cr S		/. NI;	ASTM A217 C1 ASTM A352 C/		ASTM A182		Ť		rene®				to 250		to 121
S		ıp 13% Cr 4% nless Steel	0 111	ASTM ASS2 CA		ASTM A182 ASTM A182		K	Teflor					to 450		to 232
F		inless Steel		ASTM A351 CF		ASTM A182	2 F316L	D	EPDN Elast-	۸ O-Lion 98؛	5			o 230 o 320		to 110 to 160
Y Q		nless Steel (H rome Duplex	igh Temp)	ASTM A351 CF ASTM A890 4/		ASTM A18 A ASTM A182		9	Cobal	It Alloy 21 /	/ Stellite No	21®		io 1500	-267	to 815
В	25% Ch	rome Super D		ASTM A995 C	4MCuN	-		X To Be Specified							ial Dependen	
Z H	25% Chi Alloy 82	rome Super D 5	Ouplex	ASTM A890 64 ASTM A494 CL		A ASTM A182 ASTM B564		END CONNECTION								EATURES
I	Alloy 62	5		ASTM A494 C		ASTM B564		FIG	CON	NNECTI	ON			- X	No Special	reatures ied in order
V U		54 SMO® lloy 6 / Stellit	e® 6	ASTM A351 CF Cobalt Alloy 6		ASTM A182	2 F44	Q	Raised	Face 3.2 µ	um max. Sp	rial Gro	ove	~	and inquiry	
T	Titanium	•		ASTM B367 C2		ASTM B38	1 F2 /	R Raised Face 3.2-6.3 µm Spiral G S Raised Face 6.3-12.5 µm Spiral						1	NACE	
J	Hastallo	v (776®		ASTM A494 CV	/12MW	B348 GR2		F	Flat Fo	ace 3.2-6.3	µm Spiral	Groove		S	Super Torqu	
M	Monel	,		ASTM A494-M		ASTM B564	4 N04400	G E	Raised	100 0.3-12.2 Face 3.2 L	5 µm Špira um max. Co	ncentric	Groove	L	Low Torque Mini Torque	
A	Nickel A	luminium Bro	onze	BS EN 1982 CO ASTM B148 C9		-		D	Raised	Face 3.2-6	5.3 µm Con	centric G	roove		VETTED	
1		m Molybdenu	um Steel	ASTM A217 G	R WC9	ASTM A182		C A	Flat Fa	ace 3.2-6.3	2.5 µm Co µm Concer	ntric Groo	ove	FIG		OTHER
2 3		ckel Steel nless Steel		ASTM A352 LO ASTM A351 CF		ASTM A350 ASTM A182		Z		ace 6.3-12.5 ype Joint	5 µm Conce	entric Gro	oove	S	316 SS	
4	304L Sta	inless Steel		ASTM A351 CF	3	ASTM A182	2 F304L	H		ed End				F	316L SS /	
5 6	Alloy 20	nless Steel		ASTM A351 C		ASTM B462		W		eld End act Flange				E G	410 SS / 17-4 PH	
0 7		Nolybdenum S	Steel	ASTM A351 CO ASTM A352 LO		ASTM A182	2317	V		-				1	Alloy 625)
8	Ni Resist	[®] Iron		ASTM A439 D	2	-			SPI	RING A	AATERI	AL		A M		500® / 625)0® / 625
9 X	Ductile I To Be Sp			ASTM A395 TO BE SPECIF	FD	-		FIG	MATER	RIAL	RECO			3	304 SS /	
		option is at m	anufacture			-					MA °F	X TEN	∿P °C	4 W	304L SS /	/ 316 SS
_		•				1 11		<u>ر</u>	316 5+~;-	nless Steel	570		300	Y	347 SS / 321 SS /	
				upplied with var emonit 33 (liner					316 Stair Inconel X		1022		300 550	Q	F51 DSS	/ 625
				•		•••	• ·		Inconel 6 Monel K5		392 500		200 260	Z H	F55 SDS Inconel 8	5 / 625 25® / 625
	CLAD VALVES - Valves can be supplied with various internal claddings such as Inconel 625 & 825.						ii as	LI	Inconel 7	'18®	1022		550	T	Titanium	l.
			art on one	rating temperat	lite tubue o	f hase materia	I		Titanium Elgiloy	Ti 6AL4V	662 840		350 450			ndard materials her combinations
1 JUII	aoniny Will	ι αυρσπα, πι μ	un, un uper	anny remperui	oro runye u	יי מספי וועוכווע	•	J	Hastelloy To Be Spe		750		400		able on reques	

Wafer Type BR

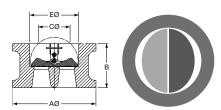
Wafer design. Clamped between flanges with bolting around outside of valve. Permits installation in a piping system in same manner as any conventional wafer valve.

Retainerless


• Retainerless is standard in Goodwin Check Valves

API 594

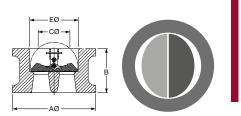
- Designed in accordance with API 594 / API 6D
- Face-to-face dimensions to API 594


Unique Plate Design

- Pressure sensitive plate.
- · Improved flow efficiencies
- Total Life Cycle Costs reduced
- Superior metal-to-metal sealing
- High degree of shut-off

INNOVATION IN THE PIPELINE

Type BR Installation Dimensions ASME B16.5

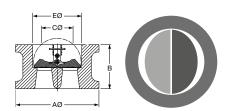

Size	Pressure	End	A	В	C	E	HOLE	HOLE	ST		DN	† Valve
inches	Rating ASME	Facing	mm	mm	mm	mm	P.C.D. mm	DIA. mm	No.	DIA. inches	*Length mm	Weight kg
	150	RF	105	60	0	57	120.7	19.1	4	5/8	165	3
	300	RF	111	60	0	57	127.0	19.1	8	5/8	170	4
2	600	RF/RJ-23	111	60	0	57	127.0	19.1	8	5/8	195	4
(50mm)	900	RF/RJ-24	143	70	0	57	165.1	25.4	8	7/8	240	7
	1500	RF/RJ-24	143	70	0	57	165.1	25.4	8	7/8	240	7
	2500	RF/RJ-26	146	70	0	57	171.4	28.6	8	1	275	8
	150	RF	137	73	51	87	152.4	19.1	4	5/8	185	6
	300	RF	149	73	51	87	168.3	22.2	8	3/4	205	8
3	600	RF/RJ-31	149	73	51	87	168.3	22.2	8	3/4	230	8
(80mm)	900	RF/RJ-31	168	83	60	87	190.5	25.4	8	7/8	255	13
	1500	RF/RJ-35	175	83	60	87	203.2	31.8	8	1 1/8	285	13
	2500	RF/RJ-32	197	86	60	87	228.6	34.9	8	1 1/4	335	16
	150	RF	175	73	89	113	190.5	19.1	8	5/8	185	9
	300	RF	181	73	89	113	200.0	22.2	8	3/4	210	9
4	600	RF/RJ-37	194	79	89	113	215.9	25.4	8	7/8	255	13
(100mm)	900	RF/RJ-37	206	102	83	113	235.0	31.8	8	1 1/8	300	20
	1500	RF/RJ-39	210	102	83	113	241.3	34.9	8	1 1/4	325	21
	2500	RF/RJ-38	235	105	83	113	273.0	41.3	8	1 1/2	395	25
	150	RF	222	98	140	166	241.3	22.2	8	3/4	220	18
	300	RF	251	98	140	166	269.9	22.2	12	3/4	245	21
6	600	RF/RJ-45	267	137	89	166	292.1	28.6	12	1	340	38
(150mm)	900	RF/RJ-45	289	159	89	166	317.5	31.8	12	1 1/8	380	64
	1500	RF/RJ-46	283	159	89	166	317.5	38.1	12	1 3/8	455	60
	2500	RF/RJ-47	318	159	89	166	368.3	54.0	8	2	540	70
	150	RF	279	127	171	207	298.5	22.2	8	3/4	255	25
	300	RF	308	127	171	207	330.2	25.4	12	7/8	290	40
8	600	RF/RJ-49	321	165	168	207	349.2	31.8	12	1 1/8	385	71
(200mm)	900	RF/RJ-49	359	206	130	207	393.7	38.1	12	1 3/8	455	100
	1500	RF/RJ-50	352	206	130	207	393.7	44.5	12	1 5/8	530	120
	2500	RF/RJ-51	387	206	143	207	438.2	54.0	12	2	630	137
	150	RF	340	146	235	260	362.0	25.4	12	7/8	285	56
	300	RF	362	146	235	260	387.4	28.6	16	1	325	63
10	600	RF/RJ-53	400	213	200	260	431.8	34.9	16	1 1/4	460	118
(250mm)	900	RF/RJ-53	435	241	195	260	469.9	38.1	16	1 3/8	505	196
	1500	RF/RJ-54	435	248	184	260	482.6	50.8	12	17/8	620	182
	2500	RF/RJ-55	476	254	191	260	539.8	66.7	12	2 1/2	790	235
	150	RF	410	181	260	300	431.8	25.4	12	7/8	325	107
	300	RF	422	181	260	300	450.8	31.8	16	1 1/8	375	112
12	600	RF/RJ-57	457	229	232	300	489.0	34.9	20	1 1/4	480	192
(300mm)	900	RF/RJ-57	498	292	206	300	533.4	38.1	20	1 3/8	575	293
, ,	1500	RF/RJ-58	521	305	210	300	571.5	54.0	16	2	720	392
	2500	RF/RJ-60	549	305	225	300	619.1	73.0	12	2 3/4	895	451
l l		1,				1	1	1	I :-	I = • , •	1	I

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

+ Weights are for valve only and exclude mating flanges and bolting. Weight will vary according to corrosion allowance specification.

Eyebolt(s) are supplied for valves over 20kg

Type BR Installation Dimensions ASME B16.5

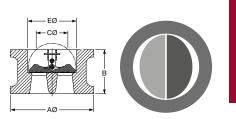


Size	Pressure	End	A	В	C	E	HOLE	HOLE	ST	UD SELECTIO	ON	+ Valve
	Rating	Facing	<u> </u>				P.C.D.	DIA.		DIA.	*Length	Weight
inches	ASME		mm	mm	mm	mm	mm	mm	No.	inches	mm	kg
	150	RF	451	184	286	339	476.3	28.6	12	1	340	102
14	300	RF	486	222	286	339	514.4	31.8	20	1 1/8	420	176
(350mm)	600	RF/RJ-61	492	273	232	339	527.0	38.1	20	1 3/8	535	207
	900	RF/RJ-62	521	356	0	339	558.8	41.3	20	1 1/2	660	396
	1500	RF/RJ-63	578	356	0	339	635.0	60.3	16	2 1/4	810	484
	150	RF	514	191	332	387	539.8	28.6	16	1	350	131
16	300	RF	540	232	330	387	571.5	34.9	20	1 1/4	445	183
(400mm)	600	RF/RJ-65	565	305	330	387	603.2	41.3	20	1 1/2	590	325
	900	RF/RJ-66	575	384	162	387	616.0	44.5	20	1 5/8	705	421
	1500	RF/RJ-67	641	384	162	387	704.8	66.7	16	2 1/2	885	587
	150	RF	549	203	395	438	577.9	31.8	16	1 1/8	375	163
18	300	RF	597	264	391	438	628.6	34.9	24	1 1/4	485	260
(450mm)	600	RF/RJ-69	613	362	330	438	654.0	44.5	20	1 5/8	665	447
	900	RF/RJ-70	638	451	244	438	685.8	50.8	20	1 7/8	815	620
	1500	RF/RJ-71	705	468	184	438	774.7	73.0	16	2 3/4	1010	791
	150	RF	606	219	438	487	635.0	31.8	20	1 1/8	400	205
20	300	RF	654	292	438	487	685.8	34.9	24	1 1/4	520	331
(500mm)	600	RF/RJ-73	683	368	432	487	723.9	44.5	24	1 5/8	685	528
	900	RF/RJ-74	699	451	406	487	749.3	54.0	20	2	835	758
	1500	RF/RJ-75	756	533	210	487	831.8	79.4	16	3	1125	1275
	150	RF	718	222	537	579	749.3	34.9	20	1 1/4	420	282
24	300	RF	775	318	524	579	812.8	41.3	24	1 1/2	570	487
(600mm)	600	RF/RJ-77	791	438	510	579	838.2	50.8	24	1 7/8	800	817
	900	RF/RJ-78	838	495	445	579	901.7	66.7	20	2 1/2	975	1156
	1500	RF/RJ-79	902	559	391	579	990.6	92.1	16	3 1/2	1235	2713

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

+ Weights are for valve only and exclude mating flanges and bolting. Weight will vary according to corrosion allowance specification.

Type BR Installation Dimensions ASME B16.47 SERIES A (MSS SP44)



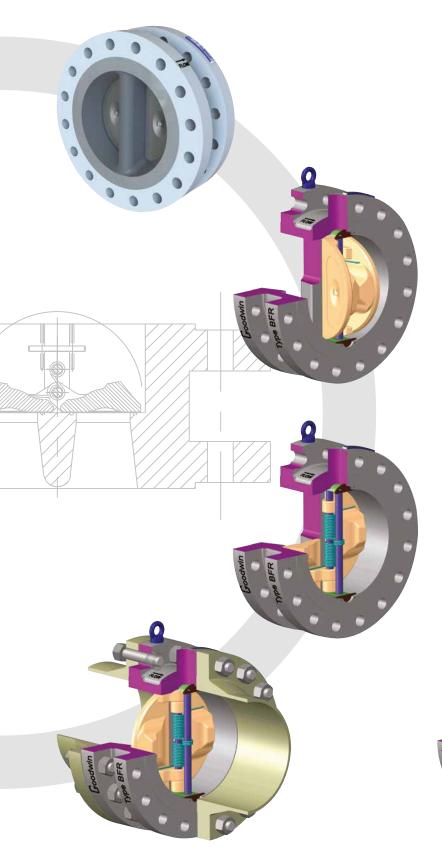
Size	Pressure	End	A	В	C	E	HOLE	HOLE	SI	UD SELECTIO	DN	† Valve
	Rating	Facing					P.C.D.	DIA.		DIA.	*Length	Weight
inches	ASME		mm	mm	mm	mm	mm	mm	No.	inches	mm	kg
	150	RF	775	356	597	629	806.5	34.9	24	1 1/4	605	416
26	300	RF	835	356	597	629	876.3	44.5	28	1 5/8	650	587
(650mm)	600	RF/RJ-93	867	457	578	629	914.4	50.8	28	1 7/8	850	1118
	900	RF/RJ-100	883	533	559	629	952.5	73.0	20	2 3/4	1045	1182
	150	RF	832	381	648	680	863.6	34.9	28	1 1/4	635	599
28	300	RF	899	381	648	680	939.8	44.5	28	1 5/8	685	751
(700mm)	600	RF/RJ-94	914	483	629	680	965.2	54.0	28	2	890	871
	900	RF/RJ-101	946	572	610	680	1022.4	79.4	20	3	1100	1441
	150	RF	883	305	641	735	914.4	34.9	28	1 1/4	565	450
30	300	RF	953	368	641	735	997.0	47.6	28	1 3/4	685	729
(750mm)	600	RF/RJ-95	972	505	584	735	1022.4	54.0	28	2	920	1850
	900	RF/RJ-102	1010	635	584	735	1085.9	79.4	20	3	1180	2132
	150	RF	940	356	641	784	977.9	41.3	28	1 1/2	645	707
32	300	RF	1006	406	641	784	1054.1	50.8	28	1 7/8	750	1635
(800mm)	600	RF/RJ-96	1022	533	610	784	1079.5	60.3	28	2 1/4	970	1743
	900	RF/RJ-103	1073	660	610	784	1155.7	85.7	20	3 1/4	1235	2034
	150	RF	1048	368	648	865	1085.9	41.3	32	1 1/2	675	865
36	300	RF	1118	483	648	865	1168.4	54.0	32	2	845	1269
(900mm)	600	RF/RJ-98	1130	635	527	865	1193.8	66.7	28	2 1/2	1095	2120
	900	RF/RJ-105	1200	718	356	865	1289.1	92.1	20	3 1/2	1335	3259
	150	RF	1162	432	882.7	987	1200.2	41.3	36	1 1/2	740	1223
40	300	RF	1114	546	749.3	909	1155.7	44.5	32	1 5/8	910	1825
(1000mm)	600	RF	1156	660	743.0	909	1212.9	60.3	32	2 1/4	1155	3750
	900	RF	1251	762	736.6	909	1339.9	92.1	24	3 1/2	1395	3972
	150	RF	1219	432	935.1	1062	1257.3	41.3	36	1 1/2	755	1134
42	300	RF	1168	568	836.6	1015	1206.5	44.5	32	1 5/8	940	2630
(1050mm)	600	RF	1219	702	647.7	972	1282.7	66.7	28	2 1/2	1225	3357
	900	RF	1302	787	584.2	972	1390.7	92.1	24	3 1/2	1440	3670
48	150	RF	1384	524	1036.7	1193	1422.4	41.3	44	1 1/2	865	2124
(1200mm)	300	RF	1324	629	965.2	1136	1371.6	50.8	32	1 7/8	1040	4400
	600	RF	1391	787	889	1136	1460.5	73.0	32	2 3/4	1365	4416
54	150	RF	1549	591	1092.2	1281	1593.9	47.6	44	1 3/4	970	2680
(1350mm)	300	RF	1492	718	1092.2	1281	1549.4	60.3	28	2 1/4	1190	3878
60	150	RF	1715	660	1206.5	1422	1759.0	47.6	52	1 3/4	1065	4148
(1500mm)	300	RF	1645	838	1206.5	1422	1701.8	60.3	32	2 1/4	1330	5392
	l	I	1				I		I	l ·	I.	I

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

+ Weights are for valve only and exclude mating flanges and bolting. Weight will vary according to corrosion allowance specification. Eyebolt(s) are supplied for valves over 20kg

Type BR Installation Dimensions ASME B16.47 SERIES B (API 605)

Size	Pressure	End	A	В	C	E	HOLE	HOLE	ST	UD SELECTIO)N	† Valve
	Rating	Facing	<u> </u>				P.C.D.	DIA.		DIA.	*Length	Weight
inches	ASME		mm	mm	mm	mm	mm	mm	No.	inches	mm	kg
	150	RF	725	356	597	629	744.5	22.2	36	3/4	525	395
26	300	RF	771	356	597	629	803.3	34.9	32	1 1/4	650	698
(650mm)	600	RF/RJ-93	765	457	578	629	806.5	44.5	28	1 5/8	850	800
(osonini)	900	RF/RJ-100	838	533	559	629	901.7	66.7	20	2 1/2	1025	1123
	150	RF	776	381	648	680	795.3	22.2	40	3/4	555	517
28	300	RF	826	381	648	680	857.3	34.9	36	11/4	675	696
(700mm)	600	RF/RJ-94	819	483	629	680	863.6	47.6	28	1 3/4	895	827
(70011111)	900	RF/RJ-101	902	403 572	610	680	971.6	73.0	20	3	1110	1369
	150	RF	827	305	641	735	846.1	22.2	44	3/4	480	629
20												
30	300	RF	886	368	641	735	920.8	38.1	36	1 3/8	675	904
(750mm)	600	RF/RJ-95	880	505	584	735	927.1	50.8	28	17/8	935	1499
	900	RF/RJ-102	959	635	584	735	1035.1	79.4	20	3	1185	2025
	150	RF	881	356	641	784	900.2	22.2	48	3/4	530	672
32	300	RF	940	406	641	784	977.9	41.3	32	1 1/2	740	1553
(800mm)	600	RF/RJ-96	933	533	610	784	984.3	54.0	28	2	985	1656
	900	RF/RJ-103	1016	660	610	784	1092.2	79.4	20	3 1/4	1230	1932
	150	RF	987	368	648	865	1009.7	25.4	44	7/8	565	648
36	300	RF	1048	483	648	865	1089.0	44.5	32	1 5/8	840	1206
(900mm)	600	RF/RJ-98	1048	635	527	865	1104.9	60.3	28	2 1/4	1135	2014
	900	RF/RJ-105	1124	718	356	865	1200.2	79.4	24	3	1310	3096
40	150	RF	1095	432	883	987	1120.6	28.6	44	1	640	1166
(1000mm)	300	RF	1150	546	749	909	1190.8	44.5	40	1 5/8	910	2007
42	150	RF	1146	432	935	1062	1171.4	28.6	48	1	645	1077
(1050mm)	300	RF	1200	568	837	1015	1244.6	47.6	36	1 3/4	945	2893
48	150	RF	1307	524	1037	1193	1335.0	31.8	44	1 1/8	760	2857
(1200mm)	300	RF	1368	629	965	1136	1416.1	50.8	40	17/8	1130	4840
54	150	RF	1464	591	1092	1281	1492.3	31.8	56	1 1/8	840	2546
(1350mm)	300	RF	1530	718	1092	1281	1577.8	50.8	48	17/8	1150	4266
60	150	RF	1630	660	1207	1422	1662.2	34.9	52	1 1/4	925	3941
(1500mm)	300	RF	1707	838	1207	1422	1763.8	60.3	40	2 1/4	1305	5931
()	1						1			, -		


LARGE DIAMETER VALVES

Size	Pressure	End	A	В	С	E	HOLE	HOLE	S	UD SELECTIO	N	† Valve
inches	Rating ASME	Facing	mm	mm	mm	mm	P.C.D. mm	DIA. mm	No.	DIA. inches	Length mm	Weight kg
66 (1650mm)	150	FF		•								
72 (1800mm)	150	FF		G 0	0 D V	VIN	SUPP	LY TY	PE B	BR VA	LVES	
78 (1950mm)	150	FF			11	N SI	ZES 6	6 " T C) 14	4 " T O		
84 (2100mm)	150	FF		CUS	STO	MER	AGRE	ED F	LAN(GEDE	SIGN	
90 - 144 (2250mm)	150	FF										

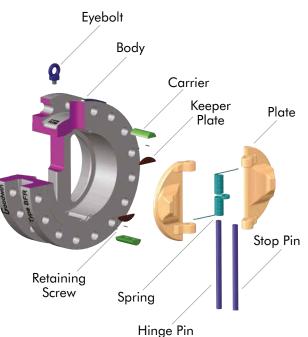
* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

+ Weights are for valve only and exclude mating flanges and bolting. Weight will vary according to corrosion allowance specification.

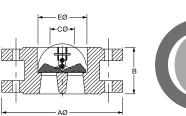
Flanged Type BFR

Double flanged design. Permits installation in a piping system in same manner as any conventional double flanged valve, ie studs and nuts per flange.

Retainerless


• Retainerless is standard in Goodwin Check Valves

API 594


- Designed in accordance with API 594 / API 6D
- Face-to-face dimensions to API 594

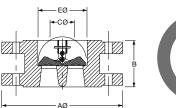
Unique Plate Design

- Pressure sensitive plate
- Improved flow efficiencies
- Total Life Cycle Costs reduced
- Superior metal-to-metal sealing
- High degree of shut-off

Type BFR Installation Dimensions ASME B16.5

Size	Pressure	End	A	В	C	E	HOLE	HOLE	S1	UD SELECTIO	ОМ	† Valve
	Rating	Facing	<u> </u>				P.C.D.	DIA.		DIA.	*Length	Weight
inches	ASME		mm	mm	mm	mm	mm	mm	No. §	inches	mm	kg
8 (200mm)	150	RF	343	127	171	207	298.5	22.2	8	3/4	140	49
10	150	RF	406	146	235	260	362.0	25.4	12	7/8	150	82
(250mm)	600	RF/RJ-53	508	213	200	260	431.8	34.9	16	1 1/4	245	183
	900	RF/RJ-53	546	241	195	260	469.9	38.1	16	1 3/8	265	203
	150	RF	483	181	260	300	431.8	25.4	12	7/8	150	115
12	300	RF	521	181	260	300	450.8	31.8	16	1 1/8	205	153
(300mm)	600	RF/RJ-57	559	229	232	300	489.0	34.9	20	1 1/4	255	230
	900	RF/RJ-57	610	292	206	300	533.4	38.1	20	1 3/8	285	354
	150	RF	533	184	286	339	476.3	28.6	12	1	165	142
14	300	RF	584	222	286	339	514.4	31.8	20	1 1/8	210	166
(350mm)	600	RF/RJ-61	603	273	232	339	527.0	38.1	20	1 3/8	265	313
	900	RF/RJ-62	641	356	0	339	558.8	41.3	20	1 1/2	310	463
	150	RF	597	191	332	387	539.8	28.6	16	1	170	176
16	300	RF	648	232	330	387	571.5	34.9	20	1 1/4	220	301
(400mm)	600	RF/RJ-65	686	305	330	387	603.2	41.3	20	1 1/2	285	426
	900	RF/RJ-66	705	384	162	387	616.0	44.5	20	1 5/8	325	596
	150	RF	635	203	395	438	577.9	31.8	16	1 1/8	180	210
18	300	RF	711	264	391	438	628.6	34.9	24	1 1/4	230	392
(450mm)	600	RF/RJ-69	743	362	330	438	654.0	44.5	20	1 5/8	305	565
	900	RF/RJ-70	787	451	244	438	685.8	50.8	20	1 7/8	365	859
	150	RF	699	219	438	487	635.0	31.8	20	1 1/8	190	284
20	300	RF	775	292	438	487	685.8	34.9	24	1 1/4	240	497
(500mm)	600	RF/RJ-73	813	368	432	487	723.9	44.5	24	1 5/8	325	744
	900	RF/RJ-74	857	451	406	487	749.3	54.0	20	2	385	1045
	150	RF	813	222	537	579	749.3	35.0	20	1 1/4	205	371
24	300	RF	914	318	524	579	812.8	41.3	24	1 1/2	265	777
(600mm)	600	RF/RJ-77	940	438	510	579	838.2	50.8	24	1 7/8	365	1166
	900	RF/RJ-78	1041	495	445	579	901.7	66.7	20	2 1/2	485	1826

Type BFR (Small Diameter - Extended Body - Non API 594) ASME B16.5


Size	Pressure	End	A	В	C	E	HOLE	HOLE	ST	UD SELECTIO)N	+ Valve
inches	Rating ASME	Facing	mm	mm	mm	mm	P.C.D. mm	DIA. mm	No. §	DIA. inches	*Length mm	Weight kg
2	150	RF	152	114	0	57	120.7	19.1	4	5/8	105	7
(50mm)	300	RF	165	114	0	57	127.0	19.1	8	5/8	110	9
3	150	RF	191	121	51	87	152.4	19.1	4	5/8	110	11
(80mm)	300	RF	210	121	51	87	168.3	22.2	8	3/4	130	15
4	150	RF	229	121	89	113	190.5	19.1	8	5/8	110	16
(100mm)	300	RF	254	121	89	113	200.0	22.2	8	3/4	135	18
6	150	RF	279	130	140	166	241.3	22.2	8	3/4	120	21
(150mm)	300	RF	318	130	140	166	269.9	22.2	12	3/4	145	27
8 (200mm)	300	RF	381	152	171	207	330.2	25.4	12	7/8	160	48
10 (250mm)	300	RF	445	178	235	260	387.4	28.6	16	1	175	68

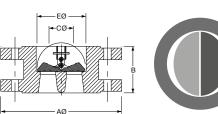
* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

+ Weights are for valve only and exclude mating flanges and bolting. Weight will vary according to corrosion allowance specification.

§ Number of studs is per flange, therefore, double the amount for valve installation purposes

Type BFR Installation Dimensions ASME B16.47 SERIES A (MSS SP44)

Size	Pressure	End	A	B	C	E	HOLE	HOLE	ST	UD SELECTIO	DN	† Valve
	Rating	Facing					P.C.D.	DIA.		DIA.	*Length	Weight
inches	ASME		mm	mm	mm	mm	mm	mm	No. §	inches	mm	kg
	150	RF	870	356	597	629	806.5	34.9	24	1 1/4	245	463
26	300	RF	972	356	597	629	876.3	44.5	28	1 5/8	290	1238
(650mm)	600	RF/RJ-93	1016	457	578	629	914.4	50.8	28	1 7/8	390	977
	900	RF/RJ-100	1086	533	559	629	952.5	73.0	20	2 3/ ₄	510	1991
	150	RF	927	381	648	680	863.6	35.0	28	1 1/4	255	1025
28	300	RF	1035	381	648	680	939.8	44.5	28	1 ⁵ /8	305	1120
(700mm)	600	RF/RJ-93	1073	483	629	680	965.2	54.0	28	2	405	1467
	900	RF/RJ-100	1168	572	610	680	1022.4	79.4	20	3	525	2426
	150	RF	984	305	641	735	914.4	35.0	28	1 1/4	260	747
30	300	RF	1092	368	641	735	997.0	47.6	28	1 3/4	325	1206
(750mm)	600	RF/RJ-95	1130	505	584	735	1022.4	54.0	28	2	410	1908
	900	RF/RJ-102	1232	635	584	735	1085.9	79.4	20	3	540	3829
	150	RF	1060	356	641	784	977.9	41.3	28	1 1/2	290	1032
32	300	RF	1149	406	641	784	1054.1	50.8	28	1 7/8	345	1615
(800mm)	600	RF/RJ-96	1194	533	610	784	1079.5	60.3	28	2 1/4	430	1977
	900	RF/RJ-103	1314	660	610	784	1155.7	85.7	20	3 1/ ₄	570	3425
	150	RF	1168	368	648	865	1085.9	41.3	32	1 1/2	305	1318
36	300	RF	1270	483	648	865	1168.4	54.0	32	2	360	1957
(900mm)	600	RF/RJ-98	1314	635	527	865	1193.8	60.3	28	2 1/2	455	2885
	900	RF/RJ-105	1461	718	356	865	1289.1	92.1	20	3 1/2	615	4354
	150	RF	1289	432	883	987	1200.2	41.3	36	1 1/2	305	1560
40	300	RF	1238	546	749	909	1155.7	44.5	32	1 5/8	360	3073
(1000mm)	600	RF	1321	660	743	909	1212.9	60.3	32	2 1/4	490	3152
	900	RF	1511	762	737	909	1339.9	92.1	24	3 1/2	630	6688
	150	RF	1346	432	935	1062	1257.3	41.3	36	1 1/2	320	2149
42	300	RF	1289	568	837	1015	1206.5	44.5	32	1 ⁵ /8	370	2876
(1050mm)	600	RF	1403	702	648	972	1282.7	66.7	28	2 1/2	520	3965
	900	RF	1562	787	584	972	1390.7	92.1	24	3 1/2	650	**
48	150	RF	1511	524	1037	1193	1422.4	41.3	44	1 1/2	340	2904
	300	RF	1467	629	965	1136	1371.6	50.8	32	1 7/8	410	3722
(1200mm)	600	RF	1594	787	889	1136	1460.5	73.0	32	2 3/4	575	5450
54	150	RF	1683	591	1092	1281	1593.9	47.6	44	1 3/4	380	2790
(1350mm)	300	RF	1657	718	1092	1281	1549.4	60.3	28	2 1/4	470	**
60	150	RF	1854	660	1207	1422	1759.0	47.6	52	1 3/4	400	6065
(1500mm)	300	RF	1810	838	1207	1422	1701.8	60.3	32	2 1/4	490	**
, ,	1	1					1	I	I		I	


* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

+ Weights are for valve only and exclude mating flanges and bolting. Weight will vary according to corrosion allowance specification.

§ Number of studs is per flange, therefore, double the amount for valve installation purposes.

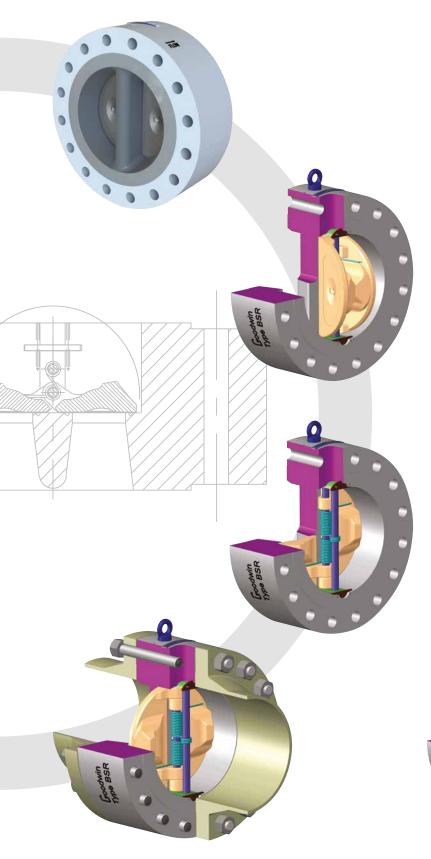
** Apply to Goodwin for details.

Type BFR Installation Dimensions ASME B16.47 SERIES B (API 605)

Size	Pressure	End	A	В	C	E	HOLE	HOLE	ST	UD SELECTIO	DN	† Valve
	Rating	Facing					P.C.D.	DIA.		DIA.	*Length	Weight
inches	ASME		mm	mm	mm	mm	mm	mm	No. §	inches	mm	kg
	150	RF	786	356	597	629	744.5	22.2	36	3/4	165	906
26	300	RF	867	356	597	629	803.3	34.9	32	1 1/4	290	1114
(650mm)	600	RF/RJ-93	889	457	578	629	806.5	44.5	28	1 5/8	380	1276
	900	RF/RJ-100	1022	533	559	629	901.7	66.7	20	2 1/2	480	1792
	150	RF	837	381	648	680	795.3	22.2	40	3/4	175	923
28	300	RF	921	381	648	680	857.3	34.9	36	1 1/4	290	1008
(700mm)	600	RF/RJ-94	953	483	629	680	863.6	47.6	28	1 ³ /4	395	1320
	900	RF/RJ-101	1105	572	610	680	971.6	73.0	20	2 3/4	515	2183
	150	RF	887	305	641	735	846.1	22.2	44	3/4	175	714
30	300	RF	991	368	641	735	920.8	38.1	36	1 ³ /8	305	1155
(750mm)	600	RF/RJ-95	1022	505	584	735	927.1	50.8	28	1 7/8	420	1418
	900	RF/RJ-102	1181	635	584	735	1035.1	79.4	20	3	545	3446
	150	RF	941	356	641	784	900.2	22.2	48	3/ ₄	175	855
32	300	RF	1054	406	641	784	977.9	41.3	32	1 1/2	330	**
(800mm)	600	RF/RJ-96	1086	533	610	784	984.3	54.0	28	2	440	2642
	900	RF/RJ-103	1238	660	610	784	1092.2	79.4	20	3	555	2642
	150	RF	1057	368	648	865	1009.7	25.4	44	7/ ₈	195	1033
36	300	RF	1172	483	648	865	1089.2	44.5	32	1 5/8	340	1794
(900mm)	600	RF/RJ-98	1213	635	527	865	1104.9	60.3	28	2 1/4	480	2589
	900	RF/RJ-105	1346	718	356	865	1200.2	79.4	24	3	585	**
40	150	RF	1175	432	883	987	1120.6	28.6	44	1	210	1364
(1000mm)	300	RF	1273	546	749	909	1190.6	44.5	40	1 ⁵ /8	365	3380
42	150	RF	1226	432	935	948	1171.4	28.6	48	1	215	1953
(1050mm)	300	RF	1334	568	837	1015	1244.6	47.6	36	1 3/4	375	4872
48	150	RF	1392	524	1037	1193	1335.0	31.8	44	1 1/8	235	2475
(1200mm)	300	RF	1511	629	965	1136	1416.1	50.8	40	1 7/8	400	5511
54	150	RF	1549	591	1092	1281	1492.3	31.8	56	1 1/8	245	2790
(1350mm)	300	RF	1673	718	1092	1281	1577.8	50.8	48	1 7/8	415	**
60	150	RF	1726	660	1207	1422	1662.2	34.9	52	1 1/4	260	**
(1500mm)	300	RF	1878	838	1207	1422	1763.8	60.3	40	2 ¹ / ₄	465	**

LARGE DIAMETER VALVES

Size	Pressure	End	A	В	C	E	HOLE	HOLE	S	UD SELECTIO)N	+ Valve
inches	Rating ASME	Facing	mm	mm	mm	mm	P.C.D. mm	DIA. mm	No.	DIA. inches	Length mm	Weight kg
66 - 144 (1650mm - 3600mm)	150	FF		I N A W	WA	Z E S C 2 0	SUPPL 66"T 7FLA AGRE	0 14 NGE	4 " T STA	O EIT NDAR[HER DOR	


* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

+ Weights are for valve only and exclude mating flanges and bolting. Weight will vary according to corrosion allowance specification.

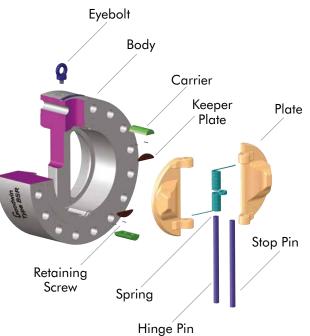
§ Number of studs is per flange, therefore, double the amount for valve installation purposes.

** Apply to Goodwin for details.

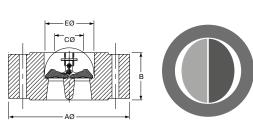
Solid Lug Type BSR

Solid Lug Wafer design. Clamped between flanges with bolting passing through the body of the valve.

Retainerless


• Retainerless is standard in Goodwin Check Valves

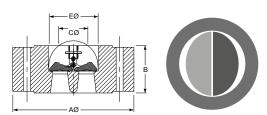
API 594


- Designed in accordance with API 594 / API 6D
- Face-to-face dimensions to API 594

Unique Plate Design

- Pressure sensitive plate
- Improved flow efficiencies
- Total Life Cycle Costs reduced
- Superior metal-to-metal sealing
- High degree of shut-off

Type BSR Installation Dimensions ASME B16.5

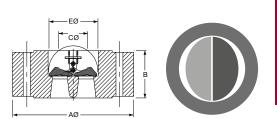

Size	Pressure	End	A	В	l c	E	HOLE	HOLE	1 51	UD SELECTIO	N	+ Valve
5120	Rating	Facing			Č	-	P.C.D.	DIA.	51	DIA.	*Length	Weight
inches	ASME		mm	mm	mm	mm	mm	mm	No. §	inches	mm	kg
	150	RF	152	60	0	57	120.7	19.1	4	5/8	165	5
	300	RF	165	60	0	57	120.7	19.1	8	5/8	170	7
2	600	RF/RJ-23	165	60	0	57	127.0	19.1	8	5/8	195	7
(50mm)	900	RF/RJ-24	216	70	Ő	57	165.1	25.4	8	7/8	240	14
()	1500	RF/RJ-24	216	70	Û	57	165.1	25.4	8	7/8	240	14
	2500	RF/RJ-26	235	70	0	57	171.4	28.6	8	1	275	18
	150	RF	191	73	51	87	152.4	19.1	4	5/8	185	8
	300	RF	210	73	51	87	168.3	22.2	8	3/4	205	15
3	600	RF	210	73	51	87	168.3	22.2	8	3/4	230	14
(80mm)	900	RF/RJ-31	241	83	60	87	190.5	25.4	8	7/8	255	22
	1500	RF/RJ-35	267	83	60	87	203.2	31.8	8	11/8	285	26
	2500 150	RF/RJ-32 RF	305 229	86 73	60 89	87 113	228.6 190.5	34.9 19.1	8	1 1/4 5/8	335 185	38 13
	300	RF	254	73 73	09 89	113	200.0	22.2	8 8	3/a 3/4	210	20
4	600	RF/RJ-37	273	79	89	113	200.0	25.4	8	5/4 7/8	255	20
(100mm)	900	RF/RJ-37	292	102	83	113	235.0	31.8	8	1 1/8	300	39
(1001111)	1500	RF/RJ-39	311	102	83	113	241.3	34.9	8	1 1/4	325	51
	2500	RF/RJ-38	356	105	83	113	273.0	41.3	8	1 1/2	395	69
	150	RF	279	98	140	166	241.3	22.2	8	3/4	220	33
	300	RF	318	98	140	166	269.9	22.2	12	3/4	245	46
6	600	RF/RJ-45	356	137	89	166	292.1	28.6	12	1	340	77
(150mm)	900	RF/RJ-45	381	159	89	166	317.5	31.8	12	1 1/8	380	104
	1500	RF/RJ-46	394	159	89	166	317.5	38.1	12	1 3/8	455	119
	2500	RF/RJ-47	483	159	89	166	368.3	54.0	8	2	540	165
	150	RF	343	127	171	207	298.5	22.2	8	3/4	255	64
0	300	RF	381	127	171	207	330.2	25.4	12	7/8	290	82
8 (200mm)	600 900	RF/RJ-49 RF/RJ-49	419 470	165 206	168 130	207 207	349.2 393.7	31.8 38.1	12 12	1 1/8 1 3/8	385 455	129 208
(200mm)	1500	RF/RJ-49	470	200	130	207	393.7 393.7	44.5	12	1 5/8	530	208
	2500	RF/RJ-51	552	200	143	207	438.2	54.0	12	2	630	277
	150	RF	406	146	235	260	362.0	25.4	12	7/8	285	96
	300	RF	445	146	235	260	387.4	28.6	16	1	325	122
10	600	RF/RJ-53	508	213	200	260	431.8	34.9	16	1 1/4	460	234
(250mm)	900	RF/RJ-53	546	241	195	260	469.9	38.1	16	1 3/8	505	324
	1500	RF/RJ-54	584	248	184	260	482.6	50.8	12	1 7/8	620	378
	2500	RF/RJ-55	673	254	191	260	539.8	66.7	12	2 1/2	790	500
	150	RF	483	181	260	300	431.8	25.4	12	7/8	325	181
10	300	RF	521	181	260	300	450.8	31.8	16	11/8	375	214
12	600	RF/RJ-57	559	229	232	300	489.0	34.9	20	11/4	480	300
(300mm)	900 1500	RF/RJ-57 RF/RJ-58	610 673	292 305	206 210	300 300	533.4 571.5	38.1 54.0	20 16	1 3/8 2	575 720	502 792
	2500	RF/RJ-50	762	305	210	300	619.1	73.0	10	2 3/4	895	792
	150	RF	533	184	286	339	476.3	28.6	12	2 3/4	340	199
14	300	RF	584	222	286	339	514.4	31.8	20	1 1/8	420	313
(350mm)	600	RF/RJ-61	603	273	232	339	527.0	38.1	20	1 3/8	535	313
(900	RF/RJ-62	641	356	0	339	558.8	41.3	20	1 1/2	660	775
	1500	RF/RJ-63	749	356	0	339	635.0	60.3	16	2 1/4	810	905
	150	RF	597	191	332	387	539.8	28.6	16	1	350	282
16	300	RF	648	232	330	387	571.5	34.9	20	1 1/4	445	489
(400mm)	600	RF/RJ-65	686	305	330	387	603.2	41.3	20	1 1/2	590	660
	900	RF/RJ-66	705	384	162	387	616.0	44.5	20	1 5/8	705	795
	1500	RF/RJ-67	826	384	162	387	704.8	66.7	16	2 1/2	885	1170

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

+ Weights are for valve only and exclude mating flanges and bolting. Weight will vary according to corrosion allowance specification.

INNOVATION IN THE PIPELINE

Type BSR Installation Dimensions ASME B16.5

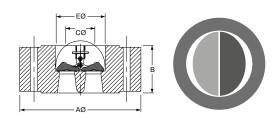


Size	Pressure	End	A	В	C	E	HOLE	HOLE	S1	UD SELECTIO)N	† Valve
	Rating	Facing					P.C.D.	DIA.		DIA.	*Length	Weight
inches	ASME		mm	mm	mm	mm	mm	mm	No. §	inches	mm	kg
	150	RF	635	203	395	438	577.9	31.8	16	1 1/8	375	290
18	300	RF	711	264	391	438	628.6	34.9	24	1 1/4	485	558
(450mm)	600	RF/RJ-69	743	362	330	438	654.0	44.5	20	1 5/8	665	1078
	900	RF/RJ-70	787	451	244	438	685.8	50.8	20	1 7/8	815	1165
	1500	RF/RJ-71	914	468	184	438	774.7	73.0	16	2 3/4	1010	1665
	150	RF	699	219	438	487	635.0	31.8	20	1 1/8	400	348
20	300	RF	775	292	438	487	685.8	34.9	24	1 1/4	520	700
(500mm)	600	RF/RJ-73	813	368	432	487	723.9	44.5	24	1 5/8	685	933
	900	RF/RJ-74	857	451	406	487	749.3	54.0	20	2	835	1960
	1500	RF/RJ-75	984	533	210	487	831.8	79.4	16	3	1125	2249
	150	RF	813	222	537	579	749.3	34.9	20	1 1/4	420	396
24	300	RF	914	318	524	579	812.8	41.3	24	1 1/2	570	1076
(600mm)	600	RF/RJ-77	940	438	510	579	838.2	50.8	24	1 7/8	800	1554
	900	RF/RJ-78	1041	495	445	579	901.7	66.7	20	2 1/2	975	2351
	1500	RF/RJ-79	1168	559	391	579	990.6	92.1	16	3 1/2	1235	3230

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

+ Weights are for valve only and exclude mating flanges and bolting. Weight will vary according to corrosion allowance specification.

Type BSR Installation Dimensions ASME B16.47 SERIES A (MSS SP44)


Size	Pressure	End	A	В	C	E	HOLE	HOLE	S1	UD SELECTI	DN	† Valve
	Rating	Facing					P.C.D.	DIA.		DIA.	*Length	Weight
inches	ASME	_	mm	mm	mm	mm	mm	mm	No. §	inches	mm	kg
	150	RF	870	356	597	629	806.5	34.9	24	1 1/4	605	1254
26	300	RF	972	356	597	629	876.3	44.5	28	1 5/8	650	1542
(650mm)	600	RF/RJ-93	1016	457	578	629	914.4	50.8	28	1 7/8	850	1766
(,	900	RF/RJ-100	1086	533	559	629	952.5	73.0	20	2 3/4	1045	2479
	150	RF	927	381	648	680	863.6	34.9	28	1 1/4	635	1276
28	300	RF	1035	381 6	48 6	80	939.8	44.5 2	8	1 5/8	685	1395
(700mm)	600	RF/RJ-94	1073	483	629	680	965.2	54.0	28	2	890	1827
. ,	900	RF/RJ-101	1168 5	72	610	680	1022.4	79.4	20	3	1100	3021
	150	RF	984	305	641	735	914.4	34.9	28	1 1/4	565	1010
30	300	RF	1092	368	641	735	997.0	47.6	28	1 3/4	685	1996
(750mm)	600	RF/RJ-95	1130	505	584	735	1022.4	54.0	28	2	920	3045
	900	RF/RJ-102	1232	635	584	735	1085.9	79.4	20	3	1180	3835
	150	RF	1060	356	641	784	977.9	41.3	28	1 1/2	645	2925
32	300	RF	1149	406	641	784	1054.1	50.8	28	17/8	750	3428
(800mm)	600	RF/RJ-96	1194	533	610	784	1079.5	60.3	28	2 1/4	970	3815
(), (), (), (), (), (), (), (), (), (), (900	RF/RJ-103	1314	660	610	784	1155.7	85.7	20	3 1/4	1235	4265
	150	RF	1168	368	648	865	1085.9	41.3	32	1 1/2	675	1430
36	300	RF	1270	483	648	865	1168.4	54.0	32	2	845	2661
(900mm)	600	RF/RJ-98	1314	635	527	865	1193.8	66.7	28	2 1/2	1095	5896
	900	RF/RJ-105	1461	718	356	865	1289.1	92.1	20	3 1/2	1335	**
	150	RF	1289	432	883	987	1200.2	41.3	36	1 1/2	740	1386
40	300	RF	1238	546	749	909	1155.7	44.5	32	1 5/8	910	3827
(1000mm)	600	RF	1321	660	743	909	1212.9	60.3	32	2 1/4	1155	7862
. ,	900	RF	1511	762	737	909	1339.9	92.1	24	3 1/2	1395	8328
	150	RF	1346	432	935	1062	1257.3	41.3	36	1 1/2	755	2377
42	300	RF	1289	568	837	1015	1206.5	44.5	32	1 5/8	940	2961
(1050mm)	600	RF	1403	702	648	972	1282.7	66.7	28	2 1/2	1225	6572
. ,	900	RF	1562	787	584	972	1390.7	92.1	24	3 1/2	1440	**
	150	RF	1511	524	1037	1193	1422.4	41.3	44	1 1/2	865	4174
48	300	RF	1467	629	965	1136	1371.6	50.8	32	1 7/8	1040	6239
(1200mm)	600	RF	1594	787	889	1136	1460.5	73.0	32	2 3/4	1365	**
54	150	RF	1683	591	1092	1281	1593.9	47.8	44	1 3/4	970	**
(1350mm)	300	RF	1657	718	1092	1281	1549.4	60.3	28	2 1/4	1190	**
60	150	RF	1854	660	1207	1422	1759.0	47.6	52	1 3/4	1065	**
(1500mm)	300	RF	1810	838	1207	1422	1701.8	60.3	32	2 1/4	1330	**

 $^{*}\,$ Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

+ Weights are for valve only and exclude mating flanges and bolting. Weight will vary according to corrosion allowance specification.

** Apply to Goodwin for details

Type BSR Installation Dimensions API 6A / ISO 10423

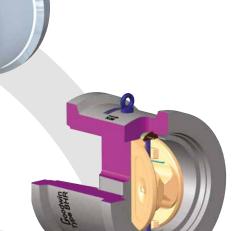
API 5000: Type BSR (RETAINERLESS)

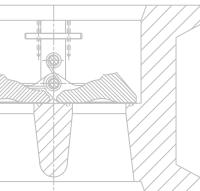
Size	Pressure	End	A	В	C	E	HOLE	HOLE	SI	UD SELECTIO	DN	† Valve
inches	Rating ASME	Facing	mm	mm	mm	mm	P.C.D. mm	DIA. mm	No. §	DIA. inches	*Length mm	Weight kg
2 1/16	5000	R-24	215.9	70	0	53.1	165.1	25.5	8	7/8	225	8
2 9/16	5000	R-27	244.5	70	0	65.8	190.5	28.5	8	1	235	
3 1/8	5000	R-35	266.7	83	60	81.8	203.2	31.75	8	1 1/8	270	14
4 1/16	5000	R-39	311.2	102	83	108.7	241.3	35	8	1 1/4	305	28
5 1/8	5000	R-44	374.7	102	83	131.1	292.1	41.25	8	1 1/2	360	
7 1/16	5000	R-46	393.7	159	89	181.9	317.5	38	12	1 3/8	435	53
9	5000	R-50	482.6	206	130	229.4	393.7	44.5	12	1 5/8	510	117
11	5000	R-54	584.2	248	184	280.2	482.6	51	12	1 7/8	600	204

API 10000 & API 15000: Type BS (RETAINERED, i.e. with Retaining plugs)

Size	Pressure	End	A	В	C	E	HOLE	HOLE	SI	UD SELECTIO)N	† Valve
	Rating	Facing	<u> </u>				P.C.D.	DIA.		DIA.	*Length	Weight
inches	ASME		mm	mm	mm	mm	mm	mm	No. §	inches	mm	kg
2 1/16	10000	BX-152	200.0	70	0	53.1	158.8	22.2	8	3/4	205	
	15000	BX-152	222.3	95	0	53.1	174.6	25.4	8	7/8	250	
2 9/16	10000	BX-153	231.8	70	0	65.8	184.2	25.4	8	7/8	225	
	15000	BX-153	254.0	95	0	65.8	200.0	28.4	8	1	270	
3 1/16	10000	BX-154	269.9	86	60	78.5	215.9	28.6	8	1	260	
	15000	BX-154	287.3	111	60	78.5	230.2	31.8	8	1 1/8	305	
4 1/16	10000	BX-155	316.0	105	83	103.9	258.7	31.8	8	1 1/8	310	
	15000	BX-155	360.4	130	83	103.9	290.6	38.1	8	1 3/8	365	
5 1/8	10000	BX-169	357.1	105	83	131.1	300.0	31.8	12	1 1/8	330	
	15000	BX-169	419.1	130	83	131.1	342.9	41.1	12	1 1/2	425	
7 1/16	10000	BX-156	479.6	159	89	180.1	403.2	41.1	12	1 1/2	445	
	15000	BX-156	505.0	184	89	180.1	428.6	41.1	16	1 1/2	510	
9	10000	BX-157	552.5	206	143	229.4	476.3	41.1	16	1 1/2	540	
	15000	BX-157	647.7	231	143	229.4	552.5	50.8	16	1 7/8	635	
11	10000	BX-158	654.1	254	191	280.2	565.2	47.6	16	1 3/4	635	
	15000	BX-158	812.8	273	191	280.2	711.2	53.8	20	2	765	

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.


Testing procedures in accordance with API 6A / ISO 10423. Allowable leakage rate in accordance with API 598.


Types BR and BSR to API 6D / ISO 14313

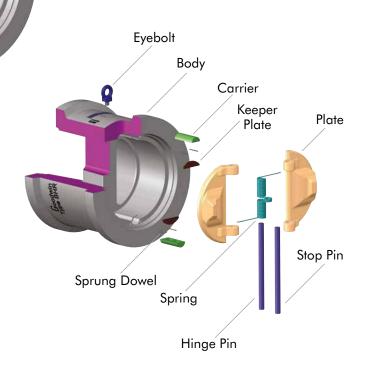
The installation dimensions are the same as for ASME valves (refer Type BR and Type BSR) Sizes 2" - 12" 2500# 14"-1500#

Testing procedures in accordance with API 6D / ISO 10423. Allowable leakage rate in accordance with API 598.

Hub End Type BHR

Hub End design. Clamped into a piping system using mechanical clamp connectors, eg. Grayloc[®], Galperti[®], Vector Techlok[®].

Retainerless


• Retainerless is standard in Goodwin Check Valves

API 594

- Designed in accordance with API 594 / API 6D
- Face-to-face dimensions to Goodwin standard
- 3 design options available
 - BHR(F) (Full bore retainerless)
 - BH(F) (Full bore retaining plugs)
 - BHR(R) (Reduced bore retainerless)

Unique Plate Design

- Pressure sensitive plate
- Improved flow efficiencies
- Total Life Cycle Costs reduced
- Superior metal-to-metal sealing
- High degree of shut-off

INNOVATION IN THE PIPELINE

Hub End (Full Bore) Installation Dimensions

Type BHR(F)

Pressure Rating ASME

900

1500

2500

900

1500

2500

900

1500

2500

900

1500

2500

900

1500

2500

900

1500

2500

Size

mm

4

(100mm)

6

(150mm)

8

(200mm)

10

(250mm)

12

(300mm)

14

(350mm)

	-
	В
	Ī
ZZA ↓ ZZZ .	

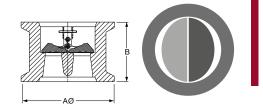
\mathcal{I}

		AØ					4	AØ	-
Seal Ring	Α	В	† Valve	Size	Pressure	Seal Ring	Α	B	+ Valve
Size	mm	mm	Weight kg	mm	Rating ASME	Size	mm	mm	Weight kg
	229	279	47	2	900		117	136	14
				z (50mm)	1500	13-20	117	136	14
34-40	229	279	47	(Juliili)	2500		117	136	14
	259	308	71	3	900		162	158	29
				(80mm)	1500	23-27	162	158	29
	327	358	130		2500		162	158	29
46-62	327	358	130	4	900		191	220	46
40-0Z	327	270	130	(100mm)	1500	31-40	191	220	46
	349	445	205	(,	2500		191	220	46
				6	900		274	279	135
	409	418	245	(150mm)	1500	40-62	274	279	135
62-82	409	418	245		2500		274	279	135
02 02	107		2.15	8	900	- /	368	311	243
	435	451	300	(200mm)	1500	56-82	368	311	243
	464	485	375	• •	2500		368	311	243
	404	405	3/5	10	900	70.07	409	381	320
84-97	464	485	375	(250mm)	1500	72-97	409	381	320
					2500		409	381	320
	533	533	520	12	900 1500	92-112	482 482	431 431	440 440
	590	602	678	(300mm)	2500	72-112	402	431	440
	570	002	0/0	14	900	110-120	402 511	431	646
97-110	590	602	678	(350mm)	1500	110-120	511	482	646
	638	638	908	16	900	112-120	651	628	770
	038	038	908	(400mm)	1500	112-120	651	628	770
	590	602	932	16	900	130-137	552	533	770
				(400mm)	1500	100 10/	552	533	770
112-130	590	602	932	18	900	160	660	584	1245
	638	689	945	(450mm)	1500	100	660	584	1245
I	030	007	7 1 J	(1301111)	1500		000	501	1215

Type BH(F)

+ Weights are for valve only and exclude mating clamps and bolting. Weight will vary according to corrosion allowance specification.

1. Type BH(F) is supplied with external threaded retainers


2. Reduced Bore Retainerless, Type BHR(R), i.e. no external threaded components.

3. Clamps, seal rings and companion hubs are not included with the valve

- 4. Particular make of Hub Ends, Seal Ring Size and Clamp Style must be specified by customer. Relevant technical information should be obtained from the chosen clamp supplier, e.g. Grayloc[®], Techlok[®], Galperti[®].
- 5. Dimension B: These are typical only. Due to the large variety of Hub End sizes and Clamp Styles available the face-to- face dimensions for a given size and rating may vary to maintain ASME and API design specifications. Please contact Goodwin for details prior to using above data as design criteria.
- 6. Valve sizes not listed above are available on application, together with customer specified end sizes and types. All valves are rated in accordance with ASME B 16.34, API 594 and API 598 design and application specifications.
- 7. Internals designed to suit customer's specified hub-ended bore details.

HEAVY DUTY HUB DIMENSIONS ARE AVAILABLE ON APPLICATION TO GOODWIN INTERNATIONAL www.checkvalves.co.uk

Type BHR(R) Hub End (Reduced Bore) Installation Dimensions

Size	Pressure	Seal Ring	Α	В	† Valve	Size	Pressure	Seal Ring	A	В	† Valve
mm	Rating ASME	Size	mm	mm	Weight kg	mm	Rating ASME	Size	mm	mm	Weight kg
3	900		127	114	15	16	900	114-120	533	406	642
(80mm)	1500	23-27	127	114	15	(400mm)	1500	111 120	533	406	642
(oonini)	2500		127	114	15	16	900	130-140	533	381	642
4	900		152	127	17	(400mm)	1500	130-140	533	381	642
(100mm)	1500	31-40	152	127	17	18	900	134-144	559	394	335
(roomin)	2500		152	127	17	(450mm)	1500	134-144	559	394	339
6	900		235	159	54	18	900	S162	533	314	301
(150mm)	1500	46-62	235	159	54	(450mm)	1500	5102	533	314	304
(130mm)	2500		235	159	54	20	900	160	660	463	994
8	900		292	159	95	(500mm)	1500	100	660	463	994
(200mm)	1500	52	292	159	95	20	900	180	660	381	994
(2001111)	2500		292	159	95	(500mm)	1500	100	660	381	994
8	900		292	206	95	24	900	180	749	578	1750
(200mm)	1500	64-82	292	206	95	(600mm)	1500	100	749	578	1750
(20011111)	2500		292	206	95	24	900	200-220	749	533	1300
10	900		346	248	120	(600mm)	1500	200-220	749	533	1300
(250mm)	1500	67-97	346	248	120	30	900	251	992	584	2950
(2301111)	2500		346	248	120	(750mm)	1500	231	992	584	2950
12	900		406	317	321						
(300mm)	1500	91-112	406	317	321						
(Soonini)	2500		406	317	321						
14	900		470	356	490						
(350mm)	1500	97-120	470	356	490						

+ Weights are for valve only and exclude mating clamps and bolting. Weight will vary according to corrosion allowance specification.

490

470 356

1. Clamps, seal rings and companion hubs are not included with the valve

2500

2. Particular make of Hub Ends, Seal Ring Size and Clamp Style must be specified by customer. Relevant technical information should be obtained from the chosen clamp supplier, e.g. Grayloc[®], Techlok[®], Galperti[®].

3. Dimension B: These are typical only. Due to the large variety of Hub End sizes and Clamp Styles available the face-to-face dimensions for a given size and rating may vary to maintain ASME and API design specifications. Please contact Goodwin for details prior to using above data as design criteria.

4. Valve sizes not listed above are available on application, together with customer specified end sizes and types. All valves are rated in accordance with ASME B 16.34, API 594 and API 598 design and application specifications.

5. Internals designed to suit customer's specified hub-ended bore details.

6. BHR(R) valves have reduced bore internals. Cy values available on request.

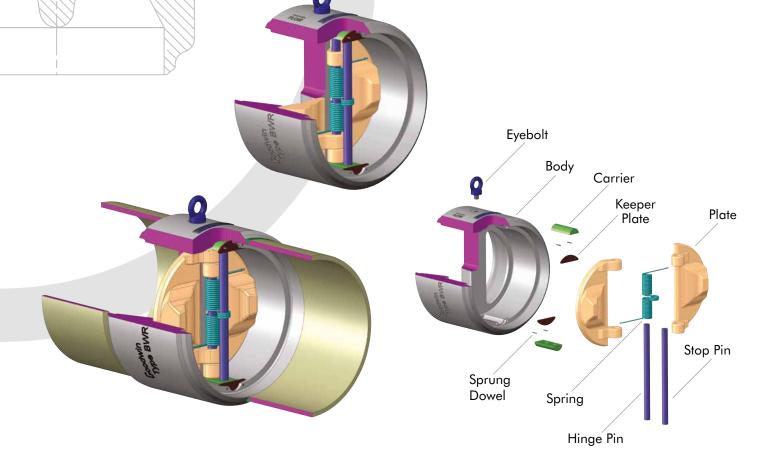
HEAVY DUTY HUB DIMENSIONS ARE AVAILABLE ON APPLICATION TO GOODWIN INTERNATIONAL

INNOVATION IN THE PIPELINE

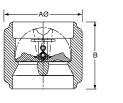
-

Buttweld End design. For direct welding into a piping system. Can be provided with transition and/or pup pieces

Retainerless


• Retainerless is standard in Goodwin Check Valves

API 594

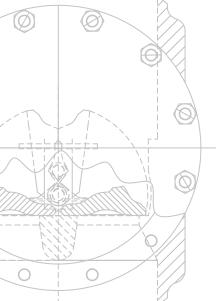

- Designed in accordance with API 594 / API 6D
- Face-to-face dimensions to Goodwin Standard

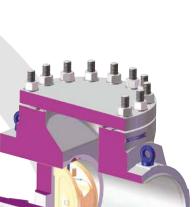
Unique Plate Design

- Pressure sensitive plate
- Improved flow efficiencies
- Total Life Cycle Costs reduced
- Superior metal-to-metal sealing
- High degree of shut-off

Type BWR Installation Dimensions

Size	Pressure Pating ASME	A	B	∆ Valve Weight kg	Size	Pressure Pating ASME	A	B	Δ Valve
mm	Rating ASME	mm	mm	Weight kg	mm	Rating ASME	mm	mm	Weight kg
3	150	98.0	136.0	6.5	10	150	475.4	330.2	190
(80mm)	300	98.0	136.0	6.5	18	300	475.4	330.2	215
	150	129.5	120.7	6.9	(450mm)	600	487.5	409.6	306
	300	129.5	120.7	7.4		900	519.5	447.7	423
4	600	135.6	120.7	8.5		1500	555.4	457.2	568
(100mm)	900	146.7	165.1	14	00	150	526.7	400.1	273
	1500	155.1	165.1	16	20	300	526.7	400.1	213
	2500	169.8	165.1	19	(500mm)	600	539.9	495.3	461
	150	168.3	136.5	13		900	578.0	546.1	637
	300	168.3	136.5	13		1500	621.7	546.1	855
6	600	171.9	136.5	15	04	150	609.6	342.9	361
(150mm)	900	228.8	206.4	28	24	300	609.6	419.1	458
	1500	228.8	206.4	37	(600mm)	600	635.4	546.1	722
	2500	228.8	206.4	44		900	680.1	603.2	1020
	150	226.5	152.4	22		1500	738.5	660.4	1401
	300	226.5	152.4	25	00	150	711.2	374.7	435
8	600	239.5	215.9	43	28 (700mm)	300	727.1	419.1	572
(200mm)	900	252.2	292.1	69	(700mm)	600 900	774.3 822.1	489.0 584.2	910 1307
	1500	284.2	292.1	92		150	762.0	387.4	596
	2500	312.6	292.1	113	30	300	762.0 768.4	431.8	590 715
	150	270.6	187.3	43		500 600	700.4 819.2	431.0 508.0	1098
	300	270.6	187.3	43	(750mm)	900	868.9	609.6	1096
10	600	289.4	262.0	78		150	812.8	368.3	572
(250mm)	900	305.7	262.0	90	32	300	833.0	431.8	792
	1500	346.5	346.1	159	(800mm)	600	887.3	533.4	1342
	2500	367.3	346.1	179	(ooonini)	900	940.2	635.0	1892
	150	329.5	215.9	63		150	940.2	419.1	921
	300	329.5	215.9	69	36	300	914.4	482.6	1118
12	600	351.8	292.1	117	(900mm)	600	944.8	552.5	1618
(300mm)	900	372.6	317.5	159	(7001111)	900	1003.2	660.4	2292
	1500	419.2	349.3	234		150	1005.2	469.9	1255
	2500	367.3	412.8	344	40	300	1016.0	571.5	1607
	150	380.0	260.4	102	(1000mm)	600	1010.0	660.4	2396
14	300	380.0	260.4	113	(10001111)	900	1121.8	736.6	3256
(350mm)	600	381.8	355.6	199		150	1066.8	508.0	1637
,,	900	381.8	355.6	231	42	300	1066.8	596.9	2013
	1500	429.6	355.6	264	(1050mm)	600	1109.6	673.1	2739
	150	425.3	304.8	146	(10301111)	900	1175.6	749.0	3767
16	300	425.3	304.8	164		150	1219.2	520.7	1922
(400mm)	600	441.0	400.1	263	48	300	1217.2	622.3	3180
((1200mm)	600	1219.2	698.5	3719
					(12001111)				4174
A Waights are	900 1500	469.5 493.8	400.1 438.2	315 434 as Waight will you	(1200mm)	900	1226.6		698.5 775.0


 Δ Weights are for value only and exclude pup or transition pieces. Weight will vary according to corrosion allowance specification.


PIPE SCHEDULE

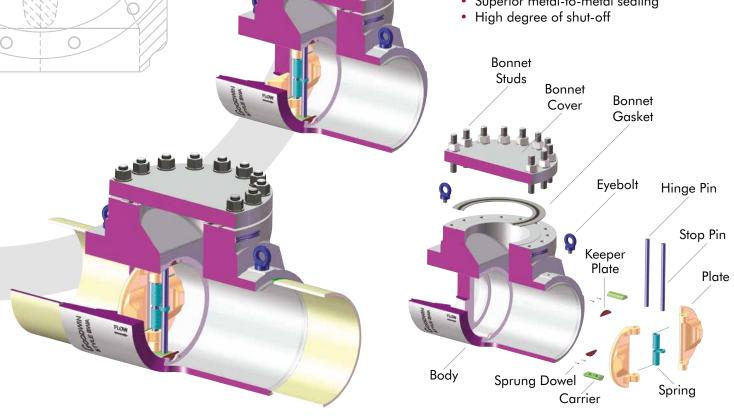
Customer must state pipe schedule at time of enquiry as this may necessitate transition pieces. The nominal bore of the valve will be determined by the pipe schedule selected by the customer and be in accordance with ASME B16.25

Buttweld End

with Access

bonnet access for inspection purposes. For direct welding into a piping system. Can be provided with transition and/or pup pieces.

Retainerless


- Retainerless is standard in Goodwin **Check Valves**
- No screwed body plugs • Note: Bolted bonnet for inspection

API 594

- Designed in accordance with API 594 / API 6D
- Face-to-face dimensions to Goodwin • standard

Unique Plate Design

- Pressure sensitive plate
- Improved flow efficiencies •
- Total Life Cycle Costs reduced
- Superior metal-to-metal sealing

Type BWA Installation Dimensions

- AØ	
0	0

Size	Pressure	A	В	Δ Valve	Size	Pressure	A	В	Δ Valve
mm	Rating ASME	mm	mm	Weight kg	mm	Rating ASME	mm	mm	Weight kg
	150	129.5	305	23		150	475.4	813	521
	300	129.5	305	25	18	300	475.4	813	591
4	600	135.6	356	28	(450mm)	600	487.5	1092	1046
(100mm)	900	146.7	356	41		900	519.5	1194	1474
	1500	155.1	406	53		1500	555.4	1295	2081
	2500	169.8	457	69		150	526.7	864	684
	150	168.3	406	51	20	300	526.7	864	782
	300	168.3	406	51	(500mm)	600	539.9	1168	1423
6	600	171.9	508	62		900	578.0	1321	1981
(150mm)	900	228.8	508	91		1500	621.7	1372	2834
(1561111)	1500	228.8	559	130	24	150	609.6	1067	1140
	2500	228.8	610	166		300	609.6	1067	1228
	150	226.5	457	79	(600mm)	600 900	635.4 680.1	1295	2132 3065
	300	226.5	457	89		900 1500	738.5	1346 1422	4089
0						1500	730.5	1422	1382
8	600	239.5	610	153	28	300	711.2	1118	1657
(200mm)	900	252.2	660	208	(700mm)	600	774.3	1397	3152
	1500	284.2	711	298	(/ 0011111)	900	822.1	1448	4281
	2500	312.6	762	387		150	762.0	1168	1908
	150	270.6	533	138	30	300	768.4	1168	2093
	300	270.6	533	138	(750mm)	600	819.2	1448	3806
10	600	289.4	737	274	(, , , , , , , , , , , , , , , , , , ,	900	868.9	1499	5103
(250mm)	900	305.7	787	347		150	812.8	1219	1997
	1500	346.5	864	525	32	300	833.0	1219	2423
	2500	367.3	914	619	(800mm)	600	887.3	1473	4604
	150	329.5	610	195		900	940.2	1524	6037
	300	329.5	610	214		150	914.4	1372	3054
12	600	351.8	813	421	36	300	914.4	1372	3301
(300mm)	900	372.6	914	591	(900mm)	600	944.8	1499	5555
	1500	419.2	991	860		900	1003.2	1549	7174
	2500	367.3	1041	1144		150	1016.0	1422	4012
	150	380.0	686	301	40	300	1016.0	1422	4379
14	300	380.0	686	334	(1000mm)	600	1057.8	1524	7297
(350mm)	600	381.8	889	656		900	1121.8	1575	9449
(0501111)	900	381.8	991	834		150	1066.8	1422	5042
	1500	429.6	1067	1016	42	300	1066.8	1422	5440
	1500			401	(1050mm)	600	1109.6	1524	8327
1/		425.3	737			900	1175.6	1600	10630
16	300	425.3	737	451		150	1219.2	1524	6240
(400mm)	600	441.0	991	861	48	300	1219.2	1524	8923
	900	469.5	1092	1118	(1200mm)	600	1219.2	1626	11120
	1500	493.8	1194	1540		900	1226.6	1700	12257

 Δ Weights are for valve only and exclude pup or transition pieces. Weight will vary according to corrosion allowance specification.

PIPE SCHEDULE

Customer must state pipe schedule at time of enquiry as this may necessitate transition pieces. The nominal bore of the valve will be determined by the pipe schedule selected by the customer and be in accordance with ASME B16.25

Engineering Data

C_V Pressure Drop Formulae For Liquids

$$Q = 0.865 C_V \sqrt{\frac{\Delta P}{G_f}}$$

For Gases

$$Q = 417C_{\nu}P_{1}Y\sqrt{\frac{X}{G_{g}T_{1}Z}}$$

Based on ISA-S75.01-1985 for Fully developed turbulent flow.

DUAL PLATE CHECK VALVE FLOW COEFFICIENT (C_v)

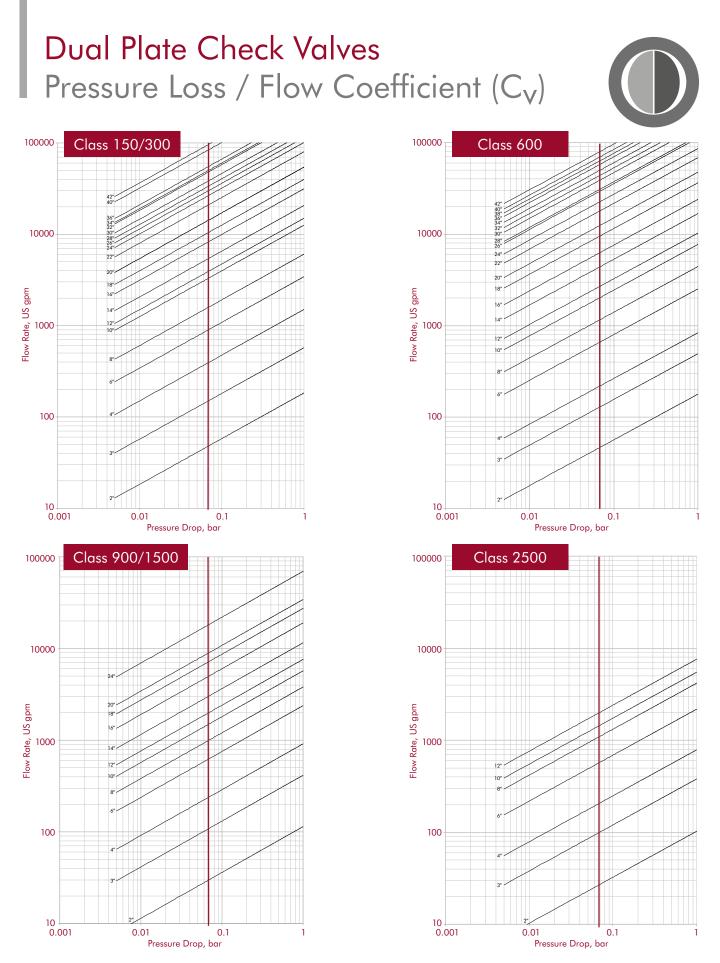
ASME 1	50/300*					
Valve Size C _V						
2″	48					
3″	150					
4″	394					
6″	900					
8″	1589					
10″	3300					
12″	3926					
14″	5418					
16″	8256					
18″	10452					
20″	14251					
24″	26511					
26″	30000					
28″	33600					
30″	38400					
32″	48000					
36″	55200					
40″	84000					
42″	96000					
48″	107600					

*See graphs for C_V values for ASME 600#, 900#, 1500# & 2500#.

- Q = Liquid flow rate, m^3/h Gas flow rate, sm^3/h (@ 1.013 bar and 15.6°C)
- $C_v = Valve flow coefficient, US gpm$
- $\Delta P = Pressure drop, bar$
- $P_1 =$ Inlet pressure, bar abs.
- $G_f = Specific gravity of liquid @ 1.013 bar, 15.6°C$
- $G_{_{q}} =$ Specific gravity of gas @ 1.013 bar, 15.6°C
- $T_1 =$ Inlet temperature, K
- Y = Valve Expansion Factor
- $X = \Delta P/P_1$
- Z = Gas Compressibility Factor (Ideal Gas = 1)

AXIAL CHECK VALVE FLOW COEFFICIENT (C_v)

ZB VA	ALVES	NK,	/NB VAL	VES
ALL PRESSU	RE CLASSES	ASA	AE 150/3	300
Valve Size	ZB	Valve Size	NK	NB
1"	24	12"	2808	4425
11⁄4"	41	14"	3884	6127
11⁄2"	65	16"	5158	8146
2"	103	18"	6609	10436
2 ½"	181	20"	8262	13046
3"	282	22"	10048	15887
4"	452	22"	12051	19029
5"	725			
6"	1071	26"	14369	22629
8"	1966	28"	16893	26601
10"	3163	30"	19501	30748


The above tabulated C_v values are for the most commonly used axial valves. For the full range of C_v valves please see the graphs on the following pages or contact Goodwin.

Valve Cracking Pressures

On the initial opening of a check valve, such as at system start-up, the upstream pressure applied by the flow to the front of the plates/disc is required to overcome the force of the spring and any upstream back pressure acting on the back of the plates/disc. The pressure differential at which this happens is known as the "cracking pressure". When the pressure differential exceeds the cracking pressure, the valve plates/disc are "cracked open" from the valve seat and the media can flow.

As soon as the plates /disc are cracked open the media cannot sustain a pressure differential and at this point the plates are not kept open by pressure, but by the fluid velocity (see Critical velocity).

Specific values for cracking pressures at atmospheric conditions can be obtained from Goodwin upon request.

Pressure drop versus flow, as depicted in the above graphs, have been established following tests carried out at Delft Hydraulics Laboratories.

The flow curves do not show the full Goodwin range. Upon request Goodwin can manufacture valves in sizes up to 144" diameter and in pressure classes up to API 20000.

Critical Velocity

All check valves should be used in the fully open position. This means that the force provided by the flowing fluid must be greater than the force from the spring(s). This velocity is known as the "Critical Velocity", i.e. that fluid velocity required to keep the plates or disc of a valve fully open.

If the fully open position is not reached any pressure drop calculations would be invalid as the C_V of a valve is determined on the basis of the valve being fully open. With the valve plates or disc only partially open, i.e. the flow velocity being less than the critical velocity of the valve, then a higher pressure drop will exist than would otherwise be calculated.

Goodwin offers a range of spring options requiring different critical velocities to ensure a fully open valve can be selected to suit customer flow data that will be both chatter-free and provide excellent dynamics. All Critical Velocities in the tables are for water. When the fluid is gaseous an energy balance can be applied to convert the media velocity to a water equivalent velocity.

For valves that are installed in a vertical flow up or inclined up position, it must be borne in mind that the fluid velocity must be sufficient to overcome the weight vector of the plates/disc in addition to the Critical Velocity of the spring.

For flow velocities different to those on the right, please consult Goodwin. Other spring strengths are available.

Chatter / Flutter

Chatter or flutter will occur when the forward flow is insufficient to fully open the valve plates/disc, i.e. flow through the valve is less than the critical velocity of the valve. Chatter/Flutter will ultimately lead to premature failure of a valve's internal components. A correctly sized check valve should be fully open when operating in forward flow.

To ensure a valve is fully open, the flow through the valve must exceed the 'critical velocity'. The spring must be chosen such that it is weaker than the flow through the valve, otherwise the valve will be only partially open.

Pressure Surge

A check valve closing against a rapidly moving reverse-flowing liquid induces a pressure rise in the downstream region of the line at the moment of closure.

This pressure rise can become large and result in a surge of high pressure moving back down the line as a shock wave.

Dual Plate Check Valve Springs

Spring	Critical Velocity
Mini-Torque	1.5 m/s
Low Torque	2.0 m/s
High Torque (Standard)	3.0 m/s
Super Torque	4.4 m/s

Axial Check Valve Springs

Spring	Critical Velocity
#1	1.5 m/s
#2	2.0 m/s
#3	2.5 m/s
#4	3.0 m/s

$$v_{Water,equivalent} = v_{Medium} \sqrt{\frac{\rho_{Medium}}{\rho_{Water}}}$$

The magnitude of this pressure was characterised by Joukowsky as:

$$\Delta P_{SURGE} = \frac{\rho \cdot c \cdot v_{\gamma}}{1 \times 10^5}$$

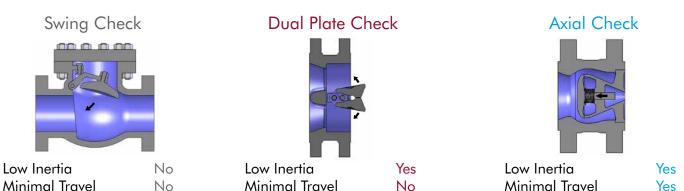
Where ΔP is the maximum surge pressure (bar), r is the media density (kg/m³), c is the celerity (velocity of sound in the line, m/s), v_r is the maximum reverse velocity of the fluid (m/s).

The Phenomenon of Surge

Closing a valve against a moving body of fluid results in pressure pulses. These pulses become stronger as the magnitude of the velocity change increases. A common example of this is when a check valve closes following a pump trip. The pressure pulse can be high and is known as surge or water-hammer.

Whereas surge is the phenomenon of the advancing pressure wave, the term 'slam' relates more specifically to the valve itself, which can be the root cause of the surge. Valve slam occurs after a pump stops when the forward flow decelerates, reverses and accelerates back towards the pump. The check valve must close quickly before the reverse velocity is too high, in order to minimise the surge pressure and protect the line.

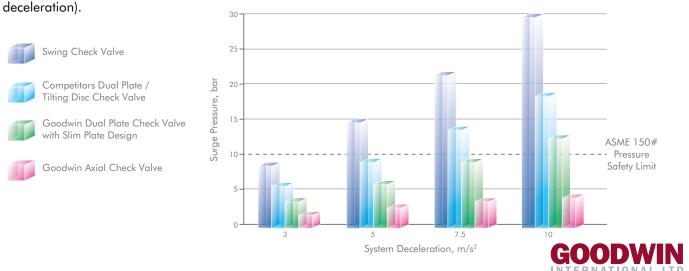
7 Typical Surge Graph


Mechanical Assistance Yes

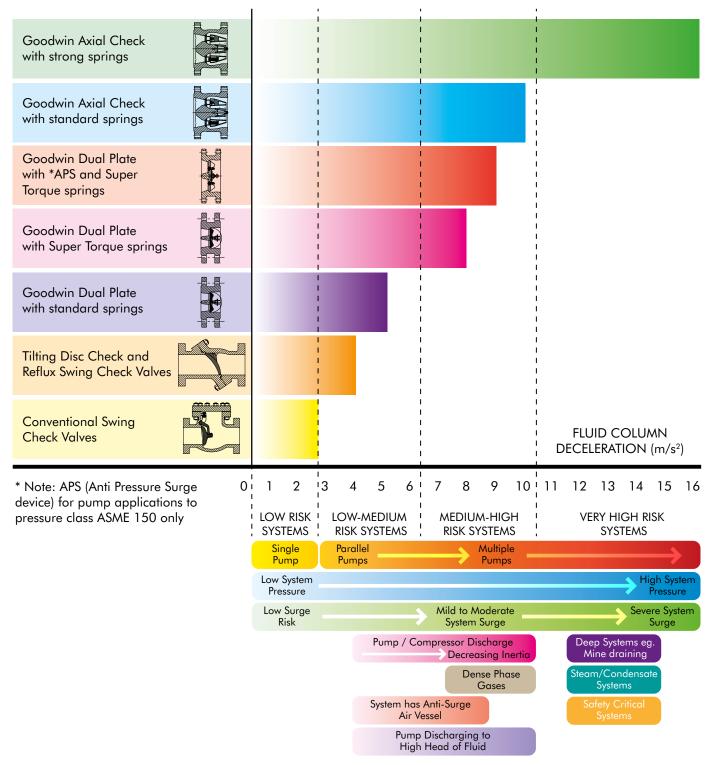
Surge Mitigation

Extensive research has been conducted (Prof. A.R.D. Thorley) into the dynamic response of all types of check valves. It has been found that slam can be reduced by improving the dynamic response of the valve. This is achieved by ensuring that:

- The disc has low inertia and friction
- The travel of the disc is short
- The closure of the disc is assisted with springs


By meeting these requirements, Goodwin provide a range of non-slam check valves to suit up to the most severe of customer requirements.

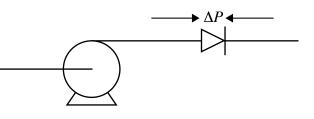
Mechanical Assistance No


Valve Selection The magnitude of the surge pressure can be approximated using the Joukowsky equation (See 'Pressure Surge'). A valve can then be selected based upon the severity of the system into which it is installed (how high the system

Mechanical Assistance Yes

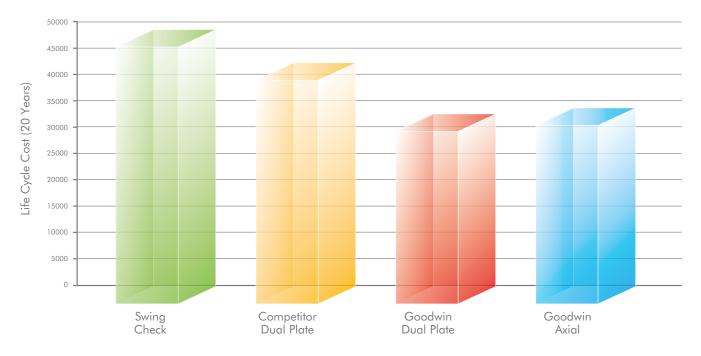
Check Valve Selection based upon System Deceleration Characteristic

Check Valve Types


The above check valve selections and information are for guidance only. Please consult Goodwin for Check Valve applications.

Total Life Cycle Costs

As fluid passes through a check valve there will be a drop in pressure. To maintain the flow-rate, the pump will need to compensate for this pressure loss by working harder.

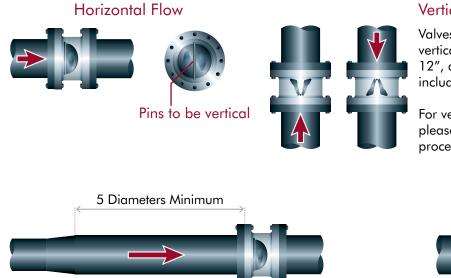

Today, energy cost is a prime concern for all plant manufacturers – the below analysis shows why a low pressure drop check valve should be considered for longterm economic benefit.

		SWING CHECK	COMPETITOR DUAL PLATE	GOODWIN Dual plate	GOODWIN Axial
Check Valve Size	mm	DN400	DN400	DN400	DN400
$\Delta \mathbf{P}$ Coefficient	ξ	1.21	1.05	0.81	0.83
Pipe Velocity, v	m/s	3.00	3.00	3.00	3.00
Flow Rate, Q	m³/s	0.342	0.342	0.342	0.342
Pressure Loss, ΔP	Pa	5551	4817	3716	3807
Pump Power, P	kW	2.5313	2.1966	1.6945	1.7360
Energy Cost /Year	\$	2,430	2,109	1,627	1,667
Life Cycle Cost	\$	48,600	42,180	32,540	33,340

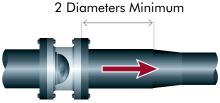
Area of Sch. 40 DN400 Pipe $=0.1140m^2$
Pipe velocity = Critical velocity (3.0m/s)
$Q = Av = 0.1140 \times 3.0 = 0.342 m^3/s$
$\Delta P = \frac{10000 \xi v^2}{2g}$ $P = \frac{Q}{1000} \cdot \frac{\Delta P}{\eta} (\eta = \text{efficiency} = 0.75)$ $\text{Cost} = P \times \text{Cost/yr} \times \text{hrs/yr}^*$ $= \text{Annual Cost} \times 20 \text{ years}$

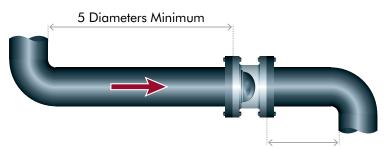
Energy Cost = 0.12 \$/kWh 8000 hrs/year

Some swing check valves appear to offer higher Cv values and, therefore, lower pressure losses. However, such pressure losses are only achieved when the valve is 100% open which invariably requires a high fluid velocity – a consequence of which is high system pressure loss. Reducing the flowrate to address this problem causes the valve to partially close resulting in severe valve pressure drop, whereas the Goodwin Dual Plate and Axial Check Valves would still be 100% open and performing well.


With swing check valves other issues arise in high velocity systems - such as slam and water hammer.

Dual Plate Check Valves Best Practice Valve Installation


Piping components such as pumps, compressors, valves, reducers, bends, elbows create turbulence in a flow stream. To maximise the life of a Dual Plate Check Valve, it should be installed in accordance with industrial best practice i.e. a sufficient distance from turbulence sources to ensure the valve is in fully developed flow. Examples of recommended best practice installation for Dual Plate Check Valves are:

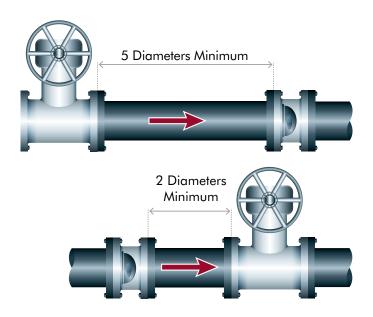


Vertical Flow

Valves (with standard springs) suitable for vertical flow up in sizes to and including 12", and flow down for sizes to and including 8".

For vertical flow in larger valve sizes, please contact Goodwin International with process conditions.

2 Diameters Minimum


Check Valve should be installed a minimum of 5 diameters downstream of a reducer/ expander or bend to ensure flow at valve is fully developed and turbulence is minimised.

Check Valve should be installed a minimum of 2 diameters upstream of a reducer or bend to avoid choked flow, which would cause the valve to only partially open.

When installed near a throttling valve, the check valve should be installed a minimum of 5 diameters downstream, or 2 diameters upstream, of the throttling valve.

Check Valves can be close coupled upstream or downstream of non-throttling isolation valve (e.g. Full Port Ball Valves). On ball valves, disc clearance must be considered to ensure full operation of the ball valve.

Note: Goodwin Check Valves are not piggable Indicates direction of flow

Material Specifications

	ASTM	MATERIAL	MIN	I UTS	MIN	(IELD	MINIMAL	PREn			NC	MINA	L COM	POSITI	ION		
	GRADE	DESCRIPTION	(Nmm	²) (ksi)	(Nmm ²) (ksi)	IMPACT (J)	Δ	C	Cr	Ni	Mo	Cu	N	۷	W	Nb
	A216 WCB	Carbon Steel	485	70	250	36	-	-	0.23	-	-	-	-	-	-	-	-
GENERAL	A105	Forged Carbon Steel	485	70	250	36	-	-	0.23	-	-	-	-	-	-	-	-
PURPOSE	B148 C95800	Aluminium Bronze	600	87	250	36	-	-	-	-	4.5	-	79min	-	-	-	-
	A487 4C	Low Alloy Steel	620	90	415	60	-	-	0.20	0.5	0.5	0.25	-	-	-	-	-
	A352 LCB	Low Temp Carbon Steel	450	65	240	35	27@ -46°C (-50°F)	-	0.23	-	-	-	-	-	-	-	-
	A352 LCC	Low Temp Carbon Steel	485	70	275	40	27@ -46°C (-50°F)	-	0.23	-	-	-	-	-	-	-	-
LOW	A350 LF2	Low Temp Carbon Steel	485	70	250	36	27@ -46°C (-50°F)	-	0.23	-	-	-	-	-	-	-	-
TEMP	A352 LC3	Low Temp Alloy Steel	485	70	275	40	27@ -101°C (-150°F)	-	0.10	-	3.5	-	-	-	-	-	-
	A351 CF8M	Cryogenic Stainless Steel	485	70	205	30	80@ -196°C (-320°F)	27	0.08*	19	10	2.50	-	-	-	-	-
	A351 CF3M	Cryogenic Stainless Steel	485	70	205	30	80@ -196°C (-320°F)	27	0.03*	19	10	2.50	-	-	-	-	-
	A217 WC6	Chrome Molybdenum Steel	485	70	275	40	-	-	0.10	1.25	-	0.50	-	-	-	-	-
	A217 C5	Chrome Molybdenum Steel	620	90	415	60	-	-	0.10	5.0	-	0.50	-	-	-	-	-
HIGH TEMP	A217 C12	Chrome Molybdenum Steel	620	90	415	60	-	-	0.10	9.0	-	1.00	-	-	-	-	-
I LIMI	A217 C12A	Chrome Molybdenum Steel	585	85	415	60		-	0.10	9.0	-	1.0	-	0.05	0.20	-	0.8
	A351 CF8M	Stainless Steel	485	70	205	30	-	27	0.08*	19	10	2.50	-	-	-	-	-
	A351 CF8C	Stainless Steel	485	70	205	30	-	20	0.08*	19	10	0.5*	-	-	-	-	8 x C
HARD	A217 CA15	Chrome Stainless Steel	620	90	450	65	-	-	0.10	13	-	-	-	-	-	-	-
WEARING	A487 CA6NM	Low Temp Chrome Stainless Steel	760	110	515	80	-	-	0.03	13	4.5	0.75	-	-	-	-	-
	A351 CF8M	Stainless Steel	495	70	205	30	-	27	0.08*	19	10	2.5	-	-	-	-	-
	A890 4A & A995 4A	Duplex 22% Cr	620	90	415	60	45 @ -40°C (-40°F)	34	0.03*	22	5.5	3	-	0.15	-	-	-
	A890 5A & A995 5A	Super Duplex 25% Cr	690	100	515	75	45 @ -50°C (-58°F)	-	0.03*	25	7.5	4.5	-	0.25	-	-	-
	A890 6A & A995 6A	Super Duplex 25% Cr	690	100	450	65	-	41	0.03*	25	7.5	3.5	0.75	0.25	-	0.75	-
CORROSION	A351 CK3MCuN	Super Austenitic	550	80	260	38	-	44	0.025*	20	18	6.5	0.75	0.2	-	-	-
RESISTANT	A494-M35-2	Monel	450	65	205	30	-	-	0.35*	-	BAL	-	30	-	-	-	0.5*
MATERIAL	A494 CU5MCuN	High Nickel 825	520	75	240	35	-	-	0.03	21	41	3	2	-	-	-	0.9
	A494 CW-6MC	High Nickel 625	485	70	275	40	-	-	0.03	21	62	9	-	-	-	-	3.5
	A494 CW-12MW	Hastelloy® C276	495	72	275	40	-	-	0.03	16	57	17	-	-	0.35	4	-
	A494 N-7M	Hastelloy® B2	525	76	275	40	-	-	0.03	1*	67	32	-	-	-	-	-
	A494 CX2MW	Hastelloy® C22	550	80	280	45	-	-	0.02*	22	56	13	-	-	0.3	3	-
	B367C2/B348Gr.2	Titanium	345	50	275	40	-	-	0.10*	-	-	-	-	-	-	-	-
* Max			•								·	·	·			•	1

* Max Δ PREn = Pitting Resistance Equivalent number

www.checkvalves.co.uk

ASME B16.34 Pressure/Temperature Ratings Maximum Non-Shock Working Pressure (Standard Class) Bar

		50		3	00		600					
Temperature	A216 WCB	A352	A350	A217	A216 WCB	A352	A350	A217	A216 WCB	A352	A350	A217
	/ A105	LCC	LF2	WC6	/ A105	LCC	LF2	WC6	/ A105	LCC	LF2	WC6
-29 to 38	19.6	19.8	19.6	19.8	51.1	51.7	51.1	51.7	102.1	103.4	102.1	103.4
50	19.2	19.5	19.2	19.5	50.1	51.7	50.1	51.7	100.2	103.4	100.2	103.4
100	17.7	17.7	17.7	17.7	46.6	51.5	46.6	51.5	93.2	103.0	93.2	103.0
150	15.8	15.8	15.8	15.8	45.1	50.2	45.1	49.7	90.2	100.3	90.2	99.5
200	13.8	13.8	13.8	13.8	43.8	48.6	43.8	48.0	87.6	97.2	87.6	95.9
250	12.1	12.1	12.1	12.1	41.9	46.3	41.9	46.3	83.9	92.7	83.9	92.7
300	10.2	10.2	10.2	10.2	39.8	42.9	39.8	42.9	79.6	85.7	79.6	85.7
350	8.4	8.4	8.4	8.4	37.6	40.0	37.6	40.3	75.1	80.0	75.1	80.4
400	6.5	6.5	6.5	6.5	34.7	34.7	34.7	36.5	69.4	69.4	69.4	73.3
450	4.6	4.6	4.6	4.6	23.0	23.0	23.0	33.7	46.0	46.0	46.0	67.7
500	2.8	2.8	2.8	2.8	11.8	11.6	11.8	25.7	23.5	23.2	23.5	51.5
538	1.4	1.4	1.4	1.4	5.9	5.9	5.9	14.9	11.8	11.8	11.8	29.8
		9	200			1	500			25	00	
Temperature	A216 WCB	A352	A350	A217	A216 WCB	A352	A350	A217	A216 WCB	A352	A350	A217
`°C	/ A105	LCC	LF2	WC6	/ A105	LCC	LF2	WC6	/ A105	LCC	LF2	WC6
-29 to 38	153.2	155.1	153.2	155.1	255.3	258.6	255.3	258.6	425.5	430.9	425.5	430.9
50	150.4	155.1	150.4	155.1	250.6	258.6	250.6	258.6	417.7	430.9	417.7	430.9
100	139.8	154.6	139.8	154.4	233.0	257.6	233.0	257.4	388.3	429.4	388.3	429.0
150	135.2	150.5	135.2	149.2	225.4	250.8	225.4	248.7	320.8	418.1	375.6	414.5
200	131.4	145.8	131.4	143.9	219.0	243.2	219.0	239.8	365.0	405.4	365.0	399.6
250	125.8	139.0	125.8	139.0	209.7	231.8	209.7	231.8	349.5	386.2	349.5	386.2
300	119.5	128.6	119.5	128.6	199.1	214.4	199.1	214.4	331.8	357.1	331.8	357.1
350	112.7	120.1	112.7	120.7	187.8	200.1	187.8	201.1	313.0	333.5	313.0	335.3
400	104.2	104.2	104.2	109.8	173.6	173.6	173.6	183.1	289.3	289.3	289.3	304.9
450	69.0	69.0	69.0	101.4	115.0	115.0	115.0	169.0	191.7	191.7	191.7	281.8
500	35.3	35.3	35.3	77.2	58.0	57.9	58.8	128.6	97.9	96.5	97.9	214.4
538	17.7	17.7	17.7	44.7	29.5	29.5	29.5	74.5	49.2	49.2	49.2	124.1

			150			00		600				
	A351 CF8M	A351	A995 4A	A494	A351 CF8M	A351	A995 4A	A494	A351 CF8M	A351	A995 4A	A494
Temperature	/ CF3M	CF8C	A995 6A	CW6MC	/ CF3M	CF8C	A995 6A	CW6MC	/ CF3M	CF8C	A995 6A	CW6MC
ົ°ເ				625 ALLOY*	CF3M			625 ALLOY*	A351			625 ALLOY*
-29 to 38	19.0	19.0	20.0	20.0	49.6	49.6	51.7	51.7	99.3	99.3	103.4	103.4
50	18.4	18.7	19.5	19.5	48.1	48.8	51.7	51.7	96.2	97.5	103.4	103.4
100	16.2	17.4	17.7	17.7	42.2	45.3	50.7	51.5	84.4	90.6	101.3	103.0
150	14.8	15.8	15.8	15.8	38.5	42.5	45.9	50.3	77.0	84.9	91.9	100.3
200	13.7	13.8	13.8	13.8	35.7	39.9	42.7	48.3	71.3	79.9	85.3	96.7
250	12.1	12.1	12.1	12.1	33.4	37.8	40.5	46.3	66.8	75.6	80.9	92.7
300	10.2	10.2	10.2	10.2	31.6	36.1	38.9	42.9	63.2	72.2	77.7	85.7
350	8.4	8.4	-	8.4	30.3	34.8	-	40.3	60.7	69.5	-	80.4
400	6.5	6.5	-	6.5	29.4	33.9	-	36.5	58.9	67.8	-	73.3
450	4.6	4.6	-	4.6	28.8	33.5	-	33.7	57.7	66.9	-	67.7
500	2.8	2.8	-	2.8	28.2	28.2	-	28.2	56.5	56.5	-	56.5
538	1.4	1.4	-	1.4	25.2	25.2	-	25.2	50.0	50.0	-	50.0
			900				500				500	
	A351 CF8M	A351	A995 4A	A494	A351 CF8M	A351	A995 4A	A494	A351 CF8M	A351	A995 4A	A494
Temperature	/ CF3M	CF8C	A995 6A	CW6MC	/ CF3M	CF8C	A995 6A	CW6MC	/ CF3M	CF8C	A995 6A	CW6MC
°C				625 ALLOY*				625 ALLOY*				625 ALLOY*
-29 to 38	148.9	148.9	155.1	155.1	248.2	248.2	258.6	258.6	413.7	413.7	430.9	430.9
50	144.3	146.3	155.1	155.1	240.6	243.8	258.6	258.6	400.9	406.4	430.9	430.9
100	126.6	135.9	152.0	154.6	211.0	226.5	253.3	257.6	351.6	377.4	422.2	429.4
150	115.5	127.4	137.8	150.6	192.5	212.4	229.6	250.8	320.8	353.9	382.7	418.2
200	107.0	119.8	128.0	145.0	178.3	199.7	213.3	241.7	297.2	332.8	355.4	402.8
250	100.1	113.4	121.4	139.0	166.9	189.1	202.3	231.8	278.1	<u>315.1</u>	337.2	386.2
300	94.9	108.3	116.6	128.6	158.1	180.4	194.3	214.4	263.5	300.7	323.8	357.1
350	91.0	104.3	-	120.7	151.6	173.8	-	201.1	252.7	289.6	-	335.3
400	88.3	101.7	-	109.8	147.2	169.5	-	183.1	245.3	282.6	-	304.9
	86.5	100.4	-	101.4	144.2	167.3 140.9	-	169.0 140.9	240.4 235.0	278.8	-	281.8
450	047	047							775 0			
450 500 538	84.7 75.2	84.7 75.2	-	84.7 75.2	140.9 125.5	140.9	-	140.7	208.9	235.0 208.9	-	235.0 208.9

* Extrapolations from materials with similar CR/NI/MO content

Large Diameter Check Valves

Goodwin specialises in the manufacture of large diameter valves being capable of manufacturing both its Dual Plate Check Valve and the Axial Check Valve in sizes to 144" and 88" respectively in all materials and in all relevant pressure classes.

Applicable Flange Standards

- 26" 60": ASME B16.47 Series A ASME B16.47 Series B
- 66" 144": AWWA C207 Class B, D, E & F (Flat Face flanges) Taylor Forge (Raised Face flanges) or Customer agreed flange design

52" 300# Axial Check Valve Type NKF

Large diameter check valves are utilised throughout the hydrocarbon, energy and process industries in a wide variety of applications. Goodwin Check Valves are in service in applications ranging from potable water and seawater to hydrocarbon gas and LNG in materials such as Carbon Steel, Aluminium Bronze, Duplex Stainless Steel and CF8M Stainless Steel.

Typical Goodwin Large Diameter Check Valve Applications

- Pipelines: Extensive use in the compressor stations and pumping stations of many of the world's crosscountry and country-to-country pipelines. Many for the transportation of energy and traversing 1000s of kilometres, by their nature these pipelines are critical -Goodwin Check Valves are selected for their reliability and high performance.
- Ethylene Centrifugal Compressor Trains: Employed on the discharge of each compressor stage, Goodwin Check Valves prevent any potential for backflow to protect compressors against reverse rotation and over pressurisation and the consequent mechanical damage.
- LNG: Especially used within the liquefaction plants, large diameter Goodwin Check Valves are in service at -161°C

84" 150# Dual Plate Check Valve

• Seawater intake line and seawater discharge pumps: Used on the discharge of the pumps, Goodwin Check Valves protect the pumps against reverse rotation and the consequential mechanical damage.

Cryogenic Valves

Goodwin International has its own in-house cryogenic test facility where it is capable of pressure testing at temperatures from ambient temperature down to -196°C.

Cryogenic testing is conducted by immersing the valve in Liquid Nitrogen to cool to the desired temperature which is monitored and recorded at a number of locations on the valve, both internally and externally. Once temperature has stabilised, the pressure test commences using pure Helium (for low temperature testing: Nitrogen or 99% Nitrogen / 1% Helium) as the test medium. Pressure can be increased in increments and seat leakage measured at each increment. Test pressure depends on the rating of the valve and the maximum is limited by the working pressure as designated by ASME B16.34.

Seat leakage is measured with calibrated flow meters. Valve Inspection and Test Standard API 598 defines the maximum permissible leakrate with air or inert gas at ambient temperature conditions as 700cc/minute/inch bore diameter. However, for cryogenic service Goodwin manufactures, as standard, both its valves* with a maximum leakrate of 450cc/minute/NPS (ISO5208 Rate E) with Helium at -196° C. Goodwin has selected this maximum leakrate in response to the requirements of today's LNG plant designers.

Following the seat leak test, valve body integrity is tested whereby the entire body cavity is pressurised and a shell leak detection test carried out using a Mass Spectrometer.

Goodwin has supplied to the majority of the world's most prestigious LNG (Liquefied Natural Gas) projects, particulary to the export liquefaction plants but also to the LNG tanker carriers and the reception/regasification terminals. The vast majority of valves are of 316 Stainless Steel construction for use

in Liquefied Natural Gas service at a temperature of -161°C. Additionally, a large number of valves are of LTCS body construction for low temperature service applications.

*On a number of LNG projects, in response to customers' design requirements, Goodwin has supplied its valves to far lower permissible leakrates than the 450 cc/minute/ NPS. With the Goodwin Dual Plate Check Valve, Goodwin's ability to meet these more stringent customer shut-off requirements is achievable due to its unique and patented pressure sensitive plate design.

18" 300# Axial Check Valve Type NKF on Cryogenic Test

Cryogenic & High Pressure Gas Testing Facility

Goodwin has over 25 years of in-house cryogenic testing experience. Having its own cryogenic and high pressure gas test facility enables Goodwin to test valves in-house as large as 72" at temperatures down to -196°C and pressures to 15000psig/1035barg.

Typical Test Procedures BS 6364 Shell SPE 77/200

Acceptance Standards

Seat Leakage: ISO 5208 Rate E -450 cc/min/NPS [Note: API598 -700 cc/min/NPS]

Outside Leakage (body): Zero

70" 150# Dual Plate Check Valve on Cryogenic Test

Certification & Approvals

Registered

Supplier No. 206106

Argie Thermolulum Archillers Information Com Operation Manager

dy o together with additional qualities

01.01.2018 Expiry (024

is Qua

Alle Gene

Alle Qorisen Ashilles Information Centre

Department of the second secon

INNOVATION

PIPELINE

PETROCHEMICAL

INDUS SERVE GOOD

> Goodwin International Limited design and production of chec applications across a wic

A globally recognised and highly ap national end-user companies and specified and used in Upstream new build hydrod

> Goodwin valves are also exte other energy related o

www.checky

IN THE PIPELINE

STRIES VED DVNNN ONAL LTD

has been at the forefront of the k valves for over 35 years with le spectrum of industries.

proved brand with international and EPCs, Goodwin Check Valves are n, Midstream and Downstream carbons projects.

ensively used in a diversity of Ind process industries.

valves.co.uk

CHEMICAL & FERTILISERS

Goodwin International Global Offices & Agents

Goodwin International Ltd -UK Office & Manufacturing Facility

Plantation Road Trentham, Stoke-on-Trent ST4 8HU England www.checkvalves.co.uk

 Tel
 +44 (0)1782 220000

 Fax
 +44 (0)1782 208060

 Email
 checkvalves@goodwingroup.com

Goodwin Korea Co., Ltd

382-45 Wonchang-Dong Sue-Gu Incheon 404-210 Korea www.goodwin.co.kr

Tel +82 32 579 6313 Fax +82 32 579 6314 Email goodwinkorea@goodwin.co.kr

Goodwin (Shanghai) Valve Company Ltd

1/F suite C, No.14 Building, Xi Ya Road 11#, Waigaoqiao Free Trade Zone, Shanghai, China, 200131 www.checkvalve.com.cn

Tel +86 21 50460658 Fax +86 21 50460355 Email lliu@checkvalve.com.cn

Goodwin Latina

Rua das Margaridas, 70 Terra Preta - Mairiporã - SP CEP 07600-000 Brazil www.goodwinlatina.com

Tel +55 11 4486 1429 Fax +55 11 4486 3427 Email rarmengou@goodwinlatina.com

Goodwin International Ltd Japan Liaison Office

Tel +81 904177391 Email kfuruzono@goodwingroup.com

Goodwin International Ltd Middle East Liaison Office

Tel +971 552559724 Email akamesh@goodwingroup.com

Plantation Road, Trentham, Stoke-on-Trent, ST4 8HU, England Tel +44 (0)1782 654000 Fax +44 (0)1782 208060 Email checkvalves@goodwingroup.com

www.checkvalves.co.uk