

Steam Traps and Monitoring Equipment

The right choice in every case

Steam Traps and Monitoring Equipment

With GESTRA steam traps

Steam traps have to work perfectly

In industry, one of steam's most important tasks is to provide thermal energy through condensation, and to heat a variety of media in heat exchangers. During this process, the steam flows through pipes and cools down more and more en route, so that condensate forms here, too.

Condensate prevents the optimum transfer of heat, but also, in particular, leads to erosion and water hammer. To enable steam systems to work reliably and efficiently, steam traps discharge any condensate that builds up, while retaining the valuable steam to the greatest possible extent. How well steam traps perform has a considerable influence on:

the system's reliability

availability and

■ cost efficiency

To achieve the very best results here, it needs valves that satisfy all the different requirements in every respect.

Flexible for different requirements

To heat water using steam, at times large quantities of condensate must be discharged as quickly as possible, so that drainage without banking-up can be guaranteed even if load and pressure are fluctuating.

If turbines or pipes with superheated steam are drained, only low condensate flowrates occur during operation. More condensate only forms on start-up. Here, the demand is for robustness, maintenance friendliness, durability and a regulator that closes reliably even at pressures above 200 barg.

This is what sets GESTRA steam traps apart

For steam system operators, the cost of energy production is a key driver. Durable steam traps that work without loss of steam help to keep these costs as low as possible. What's more, they ensure reliable and safe operation.

For decades now, GESTRA steam traps have epitomised optimum energy efficiency and absolute reliability. They satisfy the most demanding quality requirements, and their compact and modular design makes them impressive in the field. In addition, they are very maintenance-friendly and extremely easy and convenient to use.

Best quality for every need

At GESTRA you will find an extensive selection of functional types and versions to suit every requirement. In addition, we offer systems that enable you to reliably test and monitor your steam and condensate systems.

How do I get my optimum steam trap?

We find the optimum steam trap for you, with the best efficiency. To achieve this, what matters most is keeping an eye on the decisive factors:

- 1. Requirements specific to your application
- Saturated steam pipe
- Superheated steam pipe
- Steam-regulated heat exchanger
- Unregulated heat exchanger or heating coil
- Steam tracing where undercooling is required
- Turbine drainage
- 2. System and equipment requirements
- Pressure rating
- Type of end connection, e.g. EN flange or socket weld end
- Material of construction

- 3. Operating parameters
- Pressure upstream from steam trap
- Temperature upstream from steam trap
- Pressure downstream from steam trap
- Condensate flowrate
- Start-up and shut-down cycles
- Load changes
- 4. Additional options required
- Monitoring
- Dirt strainer
- Drain valve and manual air vent
- Manual vent valve

Bypass

Online design software

We are happy to advise you on selecting, sizing and configuring the right steam trap for you. But first you can also use our CAE-Sar design software. This shows you the best way to your perfect steam trap.

You can find the easy-to-use CAESar steam trap selection range on our homepage, www.gestra.com, under "Service & Support".

www.gestra.com 3

Steam Traps and Monitoring Equipment

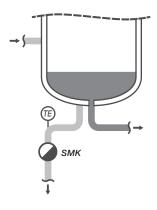
Steam traps with membrane regulator SMK series

Thermostatic steam traps with minimum stagnant area for sterile and aseptic applications

For CIP (clean-in-place) and SIP (steam-in-place) processes, recognition of the phase, i. e. steam or water, and an adequate steam trap reaction time are crucial factors. The STERI*line* membrane regulators used in the SMK series react especially quickly to a change in temperature or a change in phase, due to their design, smaller surface area and low weight.

Use

Extremely responsive steam trap – especially suitable for draining in:


- The pharmaceutical industry
- Pure steam and ultrapure steam applications
- Clean-in-process (CIP)
- Steam-in-place (SIP) processes

Advantages

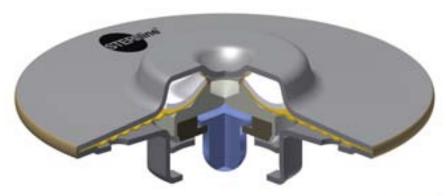
- Fast and precise STERIline thermostatic capsule
- Achieves an almost constant system temperature
- Minimum stagnant area
- All parts in contact with medium are of high-quality stainless steel
- Design principle allows installation with few welded joints
- Functional unit can be replaced quickly and safely
- Optional short design with clamp connection

Installation example

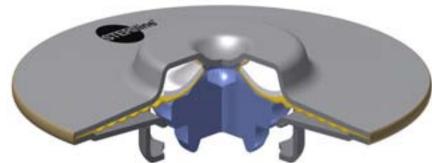
Sterile tank

SMK 22 in detail:

Fast acting regulator with minimum crevice body design for minimum stagnant area.

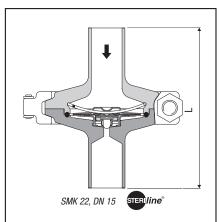

These traps work with the extremely responsive GESTRA STERI*line* thermostatic capsule. This ensures the steam traps can also perform drainage tasks with stringent requirements for high-quality control and a clean process. Condensate is discharged reliably and almost immediately.

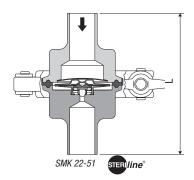
Key data

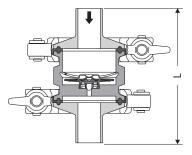

- DN 10-25 (NPS 3/8"-1")
- PN 10
- Max. differential pressure: 6 bar
- Surface roughness: ≤ 0.8 µm
- GESTRA STERI*line* thermostatic capsule

Options

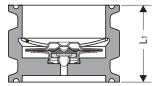
- Surface roughness ≤ 0.4 µm
- Various STERIline thermostatic capsules for small and large condensate flowrates
- Different end connections available, including clamp version for weld-free assembly

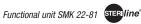

STERIline 1 thermostatic capsule for small condensate flowrates

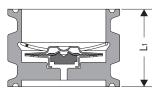



STERIline 2 thermostatic capsule for large condensate flowrates

www.gestra.com







SMK 22-81, SMK 22-82 STERI line°

Functional unit SMK 22-82 STERI line

Application

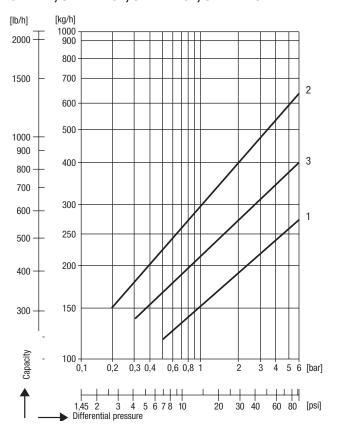
Туре	
SMK 22 STER)/ine°	Virtually pocket-free For small and medium condensate flowrates. Internal surface roughness Ra $\leq 0.8~\mu m$ machine faced, optionally up to Ra $\leq 0.4~\mu m$ electropolished.
SMK 22-51	Virtually pocket-free For small and medium condensate flowrates. Internal surface roughness Ra $\leq 0.8~\mu m$ machine faced, optionally Ra $\leq 0.6~\mu m$ plasma polished.
SMK 22-81	Virtually pocket-free For small and medium condensate flowrates. Functional unit easy to exchange. Internal surface roughness Ra $\leq 0.8~\mu m$ machine faced, optionally Ra $\leq 0.6~\mu m$ plasma polished.
SMK 22-82	Virtually pocket-free For medium and large condensate flowrates. Functional unit easy to exchange. Internal surface roughness Ra $\leq 0.8~\mu m$ machine faced, optionally Ra $\leq 0.6~\mu m$ plasma polished.
Functional unit SMK 22-81 STEEP line®	Virtually pocket-free For small and medium condensate flowrates. Internal surface roughness Ra $\leq 0.8~\mu m$ machine faced, optionally Ra $\leq 0.6~\mu m$ plasma polished. Connection via socket for mounting between clamps DIN 32676-DN 40.
Functional unit SMK 22-82 SIERI line®	Virtually pocket-free For medium and large condensate flowrates. Internal surface roughness Ra $\leq 0.8~\mu m$ machine faced, optionally Ra $\leq 0.6~\mu m$ plasma polished. Connection via socket for mounting between clamps DIN 32676-DN 40.
SRK 22A	Virtually pocket-free Non-return valve for liquids, gases and steam. Connection via socket for mounting between clamps DIN 32676.

Pressure/Temperature Ratings

Туре	PN / Class	ΔPMX	Mat	Pressure/Temp. Rating ¹)					
			EN	ASTM	PMA	TMA	p.	/T	
		[bar]			[bar]	[°C]	[bar	·/°C]	
SMK 22	PN 10	6	1.4435	A276 316L ²)	10.0	185 ³)	10.0 / 20	6.0 / 185 ³)	
SMK 22-51	PN 10	6	1.4404	A182 316L2)	10.0	185 ³)	10.0 / 20	6.0 / 185 ³)	
SMK 22-81 SMK 22-82	PN 10	6	1.4404	A182-316L ²)	10.0	185³)	10.0 / 20	6.0 / 1853)	
Functional unit SMK 22-81 SMK 22-82	PN 10	6	1.4404	A182-316L ²)	10.0	185³)	10.0 / 20	6.0 / 1853)	
SRK 22A	PN 10	-	1.4408 / 1.4571	A351 CF8M / AISI316Ti	10.0	185³)	10.0 / 20	6.0 / 1853)	

- 1) Limits for body/cover. Functional requirements may restrict the use to below the limits quoted.

 For full details on limiting conditions depending on end connection and type of regulator see data sheet.
- 2) ASTM nearest equivalent is stated for guidance. Physical and chemical properties comply with EN.
- $^{3})~185~^{\circ}\text{C}$ with PTFE gasket, 150 $^{\circ}\text{C}$ with EPDM gasket.


Available End Connections and Overall Length

		Overall length (L) in mm									
Туре	Connections	DN 10 ³ /8"	DN 15 1/2"	DN 20 3/4"	DN 25 1"	DN 32 1 ¹ / ₄ "	DN 40 1 ¹ /2"	DN 50 2"			
SMK 22	Butt-weld ends Clamp	83 65	83 65	83 65	83 65	-	-	-			
SMK 22-51	Butt-weld ends Clamp	90 65	90 65	90 65	90 65	-	-	_			
SMK 22-81	Butt-weld ends	96	96	96	96	-	-	_			
Functional unit SMK 22-81 SMK 22-82	Socket for mounting between clamps DIN 32676-DN 40 L1 standard	-	_	-	35	-	-	-			
SRK 22A	Socket for mounting between clamps DIN 32676	-	23	29.5	33.5	38	43	54			

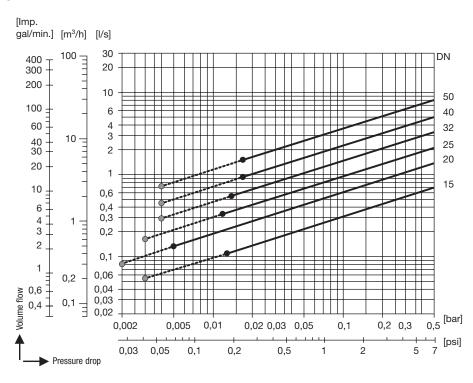
Capacity Charts

SMK 22, SMK 22-51, SMK 22-81, SMK 22-82

The chart shows the maximum capacities for hot and cold condensate.

Curve 1 SMK 22, SMK 22-51, SMK 22-81

This curve indicates the max. capacity of hot condensate that the steam trap with regulating membrane Steri*line* can discharge with virtually no banking-up.


Curve 2 SMK 22, SMK 22-51, SMK 22-81, SMK 22-82

This curve shows the max. capacity of cold condensate that the steam trap can discharge (20 °C at start-up).

Curve 3 SMK 22-82

This curve indicates the max. capacity of hot condensate that the steam trap with regulating membrane Steri*line* can discharge with virtually no banking-up.

SRK 22A

GESTRA steam	n traps at a glance	Operating principle						
Туре	Materials, body, cover	Bimetallic Membrane	Ball float UNA	Thermodynamic DK	Inverted bucket IB			
		DIX WIIX	UNA	DIX	ıb			
AK 45	1.0460/SA105							
BK 15	1.0460/SA105	Х						
BK 27N	1.5415	X						
BK 28	1.5415	X						
BK 28-ASME	1.7335/SA182-F12-2	X						
BK 29	1.7335/SA182-F12-2	X						
BK 29-ASME	1.7335/SA182-F12-2	X						
BK 36A-7	1.4408/SA351-CF8M	Х						
BK 37	1.5415	X						
BK 37-ASME	A182-F12	Х						
BK 45	1.0460/SA105	X						
BK 45-LT	SA350-LF2	X						
BK 46	1.5415	X						
BK 212	1.7383/A182-F22-3	X						
BK 212-F91	1.4903/SA182-F91	X						
BK 212-1.4901	1.4901 (F92)	X						
BK 212-ASME	1.7383/A182-F22-3	X						
DK 36A-7	1.4408/SA351-CF8M			Χ				
DK 45	1.0460/SA105			Χ				
DK 47-L	A743 CA40			Χ				
DK 47-H	A743 CA40			Χ				
DK 57-L	AISI 420			Χ				
DK 57-H	AISI 420			Χ				
GK 11	5.1301							
GK 21	5.1301							
IB 16A-7	SA240-304L				Χ			
MK 20	5.4202	Х						
MK 25/2	1.0460, 1.0619/SA105, SA216-WCB	X						
MK 25/2 S	1.0460, 1.0619/SA105, SA216-WCB	X						
MK 35/31	1.0460/SA105	X						
MK 35/32	1.0460/SA105	X						
MK 35/2S	1.0460/SA105	X						
MK 35/2S3	1.0460/SA105	X						
MK 36A-71	1.4408/SA351-CF8M	X						
MK 36A-72	1.4408/SA351-CF8M	X						
MK 36/51	1.4301/SA479-F304	X						
MK 36/52	1.4301/SA479-F304	X						
MK 45-1	1.0460/SA105	X						
MK 45-2	1.0460/SA105	X						
MK 45 A-1	1.4404/A182-F316L	Х						
MK 45 A-2	1.4404/A182-F316L	Х						
SMK 22	1.4435	Х						
SMK 22-51	1.4404	Х						
SMK 22-81	1.4404	X						
SMK 22-82	1.4404	Х						
TK 23	5.1301							
TK 24	1.0619/SA216-WCB							
TS 36	1.4408/SA351-CF8M							
JBK 46	1.0460/SA105	X						
JC 36, UCY 36	1.4408/SA351-CF8M							
JNA 14	5.3103		Χ					
UNA 14P	5.3103		Χ					
UNA 16	1.0460, 1.0619/SA105, SA216-WCB		Χ					
UNA 16A	1.4404, 1.4408/A182-316L, SA351-CF8M		Х					
UNA 25-PK	5.3103		Χ					
JNA 25-PS	5.3103		Х					
JNA 27h	1.5419		X					
JNA 43	5.1301/A126-B		Х					
JNA 45	1.0460, 5.3103/SA105, (A395)		X					
JNA 45 MAX	1.0460, 5.3103/SA105, (A395)		X					
UNA 46	1.0460, 1.0619/SA105, SA216-WCB		X					
UNA 46 MAX	1.0460, 1.0619/SA105, SA216-WCB		X					
UNA 46 MAX	1.4404, 1.4408/A182-316L, SA351-CF8M		X					
UNA 46A MAX	1.4404, 1.4408/A182-316L, SA351-CF8M		X					
UNA 38	1.5415, 1.7357		X					
UNA 30 UNA 39	1.7335/SA182-F12		X					
UNA-Special Typ 62-B	1.7555/54162-F12		X					
UNA-Special Typ 62-6 UNA PN 25	1.0425 1.0619/SA216-WCB							
UNA-Special PN 63	1.5419		X X					

Nominal size										Non pres	ninal sure	Max. pe		Hot con	densate	
8 1⁄4″	10 3/8″	15 ½″	20 ¾″	25 1″	40 11/2"	50 2″	65 ²¹ / ₂ "	80 3″	100 4"	150 6″	PN	CI	∆PMX [bar]		[kg/h]	[lb/h]
74	78				.72		-72	J	4	U		U	ΔFIVIX [Dai]	Δr wix [psi]	[ky/II]	נוט/וון
		Χ	Χ	Χ							40	000	00	000	0.550	5.000
					Χ	Χ					40	300	22	320	2,550	5,620
					Χ	Χ					63		45	650	1,500	3,310
		X	X	X							100	000	85	1,230	910	2,010
		X	X	Х							100	600	85	1,230	910	2,010
		X	X	X							160	000	110	1,600	980	2,160
		Χ	Χ	Χ								900	110 32	1,600 465	980	2,160 660
		v									100	300	45	650	300 570	
		X	X	X							100	600	45	650	570	1,260 1,260
		X	X	X							40	300	22	320	510	1,120
		X	X	X							40	300	22	320	510	1,120
		X	X	X							40	300	32	465	550	1,210
		X	X	X							630	000	275	3,988	300	660
		X	Х	X							775	2500	275	3,988	300	660
		~	~	^							800	2000	275	3,988	300	660
		Χ	Χ	Χ								2500	275	3,988	300	660
												300	32	465	400	880
		Χ	Χ	Χ							40	300	32	465	510	1,120
		Χ	Χ								63	600	42	610	330	730
			Χ	Χ							63	600	42	610	2,000	4,410
		Χ	Χ								63	600	42	610	550	1,210
			Χ	Χ							63	600	42	610	2.100	4,630
							Х	Χ	Χ	Χ	16		6	87	380,000	837,740
						Χ					16		6	87	18,000	39,680
											0	300	27.6	400	750	1,650
		Χ	Χ								6		4.5	65	1,050	2,310
					X	Х					40		32	465	5,500	12,130
	ν,	v			Χ	Χ					40 25		32 21	465 305	8,200 360	18,080 790
	X	X									25		21	305	790	1,740
	X	X		v							40		32	465	1,800	3,970
				X							40		32	465	3,100	6,830
				٨							40	300	32	465	300	660
												300	32	465	450	990
Х	Χ	Χ	Χ									300	32	465	500	1,100
Х	Χ	Χ	Χ									300	32	465	830	1,830
		Χ	Χ	Χ							40	300	32	465	610	1,340
		Χ	Χ	Χ							40	300	32	465	1.100	2,430
		Χ	Χ	Χ							40	300	32	465	610	1,340
		Χ	Χ	Χ							40	300	32	465	1,100	2,430
	Χ	Χ	Χ	Χ							10		6	87	270	600
	Χ	Χ	Χ	Χ							10		6	87	270	600
	Χ	Χ	Χ	Χ							10		6	87	270	600
				Χ							10		6	87	400	880
						X	X	X	Х		16		10 14	145	125,000	275,570
		V	V	V		Χ	Χ	Χ	Χ		25	300	14	203	140,000	308,640
		X	X	X							40	300	32	465	170	370
		X	X	X							70	300	02	100	110	010
		X	X	X							25		13	188	650	1,430
		X	X	Х							25		16	232	1,000	2,200
		Х	Х	Х							40	300	22	320	650	1,430
		Χ	Χ	Χ							40	300	22	320	650	1,430
					Χ						40		13	188	3,200	7,050
					Χ						40		13	188	610	1,340
				Χ	Χ	Χ					63		45	650	4,800	10,580
								Χ	Χ	Χ	16	125	13	188	26,000	57,320
		Χ	Χ	Χ	Χ	Χ	Χ				40	300	32	465	6,050	13,340
					Χ	Χ	Х				40	300	32	465	15,500	34,170
		Χ	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	40	300	32	465	26,000	57,320
					X	X	X				40	300	32	465	15,500	34,170
		Χ	Χ	Χ	X	X	X				40	300	32	465	6,050	13,340
		V	V	V	X	X	Х				40	300	32 80	465 1,160	15,500 5,200	34,170
		X	Χ	X	Χ	X					100 160	900	140	2,030	6,000	11,460 13,230
		Х		Χ		Χ			γ		160	300	140	232	90,000	198,410
									X		25		22	320	66,000	145,500
							Х	Χ	X		63		45	650	32,000	70,550
																,

