

PRESSURE REDUCING VALVE

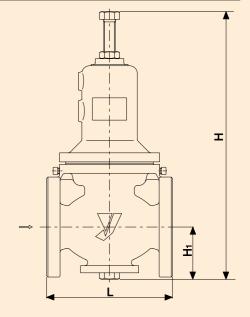
GD-200 SERIES

GD-200 SERIES PRESSURE REDUCING VALVES ARE WIDELY USED FOR CONSTRUCTION EQUIPMENT, AIR CONDITIONING EQUIPMENT, FACTORY EQUIPMENT, INDUSTRIAL EQUIPMENT, ETC. THEY GUARANTEE BOTH STABLE REDUCED PRESSURE AND A LARGE FLOW RATE.

Features

- 1. Pressure balancing mechanism enables stable reduced pressure without affecting the inlet pressure.
- 2. The stainless steel made valve seat enables high resistant to corrosion.
- 3. Easy maintenance and inspection. Internal inspection can be easily done because disassembly is done from the top in only one direction.
- 4. The main valve features a single seat and disc, thereby eliminating leakage.
- 5. Maximum inlet pressure is up to 2.0MPa because of ductile cast iron body for model GD-200H.

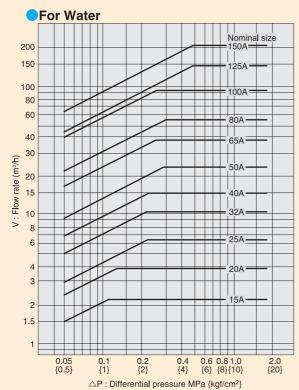
Specification

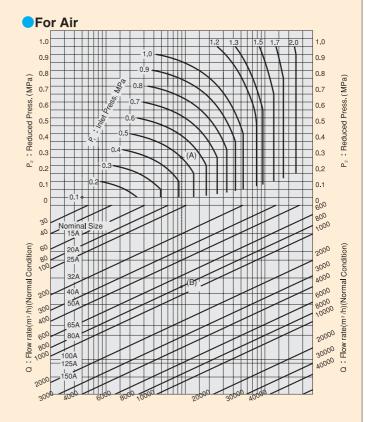

		Model	GD-200	GD-200H		
	Application		Water, Oil, Air, Non-corrosive fluids			
	Connection		JIS 10K FF Flanged	JIS 20K RF Flanged		
	Inlet pressur	е	1.0MPa {10kgf/cm ² G} or less	2.0MPa {20kgf/cm ² G} or less		
	Reduced -	15A~50A	(A)0.05∼0.25MPa, (B)0.26∼0.7MPa	(A)0.05~0.25MPa, (B)0.26~0.7MPa, (C)0.5~1.0MPa		
		65A, 80A	(A)0.05~0.25MPa, (B)0.26~0.7MPa	(A)0.05~0.25MPa, (B)0.26~0.7MPa, (C)0.5~0.9MPa		
		100A~150A	(A)0.05∼0.25MPa, (B)0.26∼0.5MPa	(A)0.05~0.25MPa, (B)0.26~0.5MPa, (C)0.5~0.75MPa		
	Min. differer	ntial pressure	0.05MPa {0.5kgf/cm ² }			
	Max. pressu	re reduction ratio	10 : 1			
	Temperature)	5~80°C*			
	Valve seat le	eakage	None			
_	Body		Ductile Cast Iron			
Material	Valve / Diaphragm		NBR*			
late	Valve Seat		Stainless Steel (SUS304)**			
2	Spindle		Stainless Steel (SUS303 or 304)**			

Viscosity: 600 cSt or less

Dimensions and Weights

			(11111)	1
Nominal Size	L	Ι	H ₁	Weight(kg)
15A	145	297	57	8.2
20A	150	297	57	8.2
25A	150	320	67	10.0
32A	195	397	76	17.3
40A	195	397	76	17.3
50A	195	415	81	19.2
65A	270	555	110	40.0
80A	270	582	125	43.7
100A	308	645	143	70.7
125A	380(384)	849	179	144(145)
150A	400(404)	918	204	173(175)


●L and Weight shown in parenthesis are for GD-200H.



^{*} Rubber parts: FKM is also available {Max. temperature 90°C}
** Trim (Valve seat, Spindle) material (SUS316) is also available (GD-200HS).

Nominal Size Selection Chart

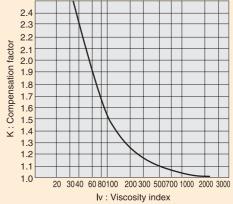
Nominal Size Selection Formula

Calculation formula for Cv value

⟨For gas⟩ (273+t) G In case of $P_2 > \frac{P_1}{2}$ $Cv = \frac{Q}{2940} \sqrt{\frac{1}{\triangle P(P_1 + P_2)}}$ $Cv = \frac{Q\sqrt{(273+t)}G}$ In case of $P_2 \le \frac{P_1}{2}$

 $Cv = \frac{0.365V}{G}$ ⟨For liquid⟩

- P1: Inlet pressure (MPa·A)
- P₂: Reduced pressure (MPa·A) \triangle P: P₁—P₂ (MPa)
- Q: Maximum flow rate of Gas (m³/h, normal condition) G: Specific gravity (Gas: specific
 - nominal size lv: Viscosity index gravity to air, Liquid: specific Mcst: Viscosity (cSt) gravity to water)


Viscosity compensation curve

First, find viscosity index lv.

$$Iv = \frac{72780}{Mcst} \left(\frac{\triangle P}{G} \right)^{\frac{1}{4}} G^{\frac{1}{2}}$$

Find K from calculated Iv on the viscosity compensation curve. The calculated maximum flow rate (V) devided by K is the value of the compensated flow rate.

Compensated maximum flow rate: $V'=V/K (m^3/h)$

Cv Value

Nominal Size	15A	20A	25A	32A	40A	50A	65A	80A	100A	125A	150A
Cv Value	2.5	4	5	8	12	16	28	36	68	75	108

t: Fluid temperature (°C)

Cv: Cv value of specified

(m3/h)

V: Maximum flow rate of liquid

Product lineup for GD-200 series

GD-200C Nylon coated pressure reducing valve (Coated with Nylon both inside and outside of body for superior anti-corrosion) GD-20R Primary pressure regulating valve (Used in by-pass systems to prevent pump shut-off and to maintain a constant pressure in the line)

GD-20R Pressure sustaining valve (Used as a pressure sustaining valve to prevent dripping induced by gravitational force when the pump is turned off)

GD-21 Differential pressure regulating valve (Used as the pump relief valve in closed circuit of air conditioning equipment in high-rise building)

INTERNATIONAL DEPT.

7-3, Futano-cho, Mizuho-ku, Nagoya, 467-0861, Japan Phone: 81-52-881-7199 Fax: 81-52-881-7201 E-mail:intntl@yoshitake.co.jp