

ASME B16.34 GATE VALVES

BOLTED BONNET, ASME CLASS 200-600 ¼" to 2" (6 TO 50 mm), THREADED OR SOCKET WELD ENDS CAST STAINLESS STEEL

STANDARD MATERIALS (Other materials available)

1) See pages 27-28 for flanged and buttweld designs.

Design Specifications

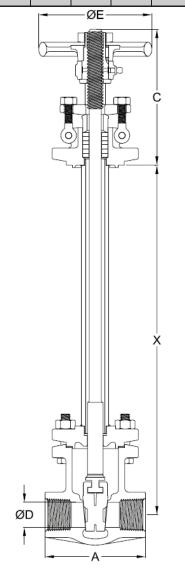
1001101100	A HAMOUNE					
		Wall thickness	ASME B16.34			
01	Firm Name	Pressure - temperature ratings	ASME B16.34			
Class	Figure Number	General valve design	ASME B16.34			
200	2490					
		End threads—NPT	ASME B1.20.1			
300	2467 (1)	Socket weld ends	ASME B16.11			
600	1973 (1)	Materials	ASTM			

DESIGN FEATURES:

- **Seat face:** Ground and lapped to a smooth finish.
- Flexible Wedge with low center stem –
 wedge contact. Wedge is ground and
 lapped to a smooth finish and closely
 guided to prevent dragging and seat damage.
- Non-rotating stem with precision ACME threads and burnished finish. Double ACME threads for faster operation.
- Body and bonnet joint accurately machined.
- Each valve is shell, seat and backseat pressure tested.

- Valves are available with socket weld ends.
- Yoke bushing can be lubricated to minimize friction and prolong life of the stem
- Body and bonnet castings are precision machined.
- **Gland** has two-piece construction for easy alignment.
- Valves are specially cleaned and processed for oxygen or cryogenic service and are then sealed to prevent contamination.
- Bonnet chamber ventilation, in order to prevent excess pressure build up caused by trapped cryogenic liquids, is available upon request.

Each valve has a unique certification number that is traceable to the valve certification sheet which includes MTR data, pressure test report, inspection report and certificate of conformance.


Applicable Specification

- Other available options as follows:
 - -Alternate valve materials
 - -Alternate trim materials
 - -Non-extended design
 - -Other options available as specified

NOTE: Powell reserves the right to convert threaded ends to socket weld. Remnant of threads will exist as pipe stop behind socket bore.

GATE VALVE DIMENSIONS (CLASSES 200-600)

SIZE	SIZE ASME 200							ASME 300							
in mm	A	С	D	Е	X (1)	WT	C _V	A	С	D	Е	X (1)	WT	lb kg	C _v
1/4	2.13	5.1	0.38	3.0	13.0	5.4	7.1	2.13	5.1	0.38	3.0	13.0	5.3		7.1
6	54	130	10	76	330	2.4		54	130	10	76	330	2.4		
3/8	2.13	5.1	0.38	3.0	13.0	5.4	7.1	2.13	5.1	0.38	3.0	13.0	5.3		7.1
10	54	130	10	76	330	2.4		54	130	10	76	330	2.4		
1/2	3.00	5.6	0.50	3.5	13.0	7.5	12.6	3.00	5.6	0.50	3.5	13.0	7.3		12.6
13	76	141	13	89	330	3.4		76	141	13	89	330	3.3		
3/4	3.50	6.3	0.75	4.0	13.0	9.6	30	3.50	6.3	0.75	4.0	13.0	9.2		30
19	89	189	19	102	330	4.4		89	189	19	102	330	4.2		
1	4.00	6.8	1.00	4.5	14.0	13.1	55	4.00	6.8	1.00	4.5	14.0	13.2		55
25	102	171	25	114	356	5.9		102	171	25	114	356	6.0		
1½	4.63	8.4	1.50	6.0	14.0	23.8	130	4.63	8.4	1.50	6.0	14.0	23.8		130
38	117	213	38	152	356	10.8		117	213	38	152	356	10).8	
2	5.00	9.7	2.00	7.0	16.0	29.5	240	5.00	9.7	2.00	7.0	16.0	34.5		240
50	127	246	51	178	406	13.4		127	246	51	178	406	15	5.6	

SIZE	ASME 600									
in	A	С	D	Е	X (1)	WT	lb	C		
mm	А						kg	C_{V}		
1/4	2.13	5.1	0.38	3.0	13.0	6	7.1			
6	54	130	10	76	330	2				
3/8	2.13	5.1	0.38	3.0	13.0	6.2		7.1		
10	54	130	10	76	330	2				
1/2	3.00	5.6	0.50	3.5	13.0	7.8		12.6		
13	76	141	13	89	330	3				
3/4	3.50	6.3	0.75	4.0	13.0	10	30			
19	89	189	19	102	330	4.6				
1	4.00	6.8	1.00	5.0	14.0	14	55			
25	102	171	25	127	356	6				
1½	5.00	8.4	1.50	7.0	14.0	27	130			
38	127	213	38	178	356	12				
2	5.75	9.7	2.00	8.0	16.0	37	240			
50	146	246	51	203	406	16				

(1) Other extensions available. C = Bottom of yoke flange to top Consult Powell Engineering. open

X = Center to bottom of yoke flange (Std)

WT = Weight $C_V = Flow coefficient$