

## MSS SP-80 GATE VALVE

UNION BONNET, THREADED ENDS ¼ TO 3" (6 TO 75mm) CLASSES 125 AND 150 BRONZE RISING STEM

**PART** 

Body

Bonnet

Bonnet Ring

Wedge

Stem

Packing Nut

Gland

Packing

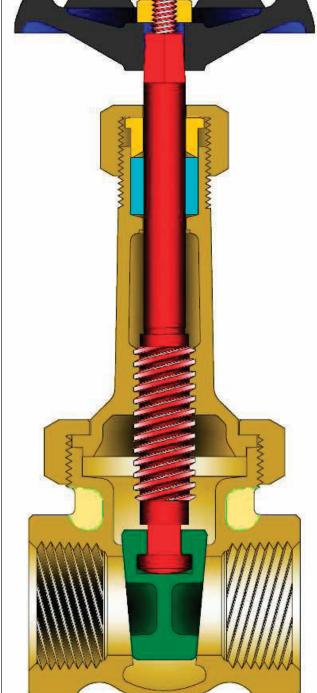
## STANDARD MATERIALS

**MATERIALS** 

B62

B62

B62


B62

B371 C69400

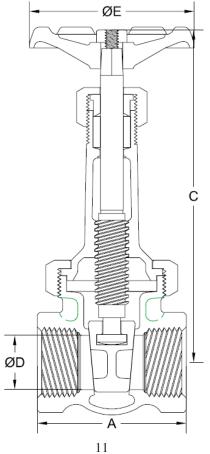
B62 or B16

B16

Graphite



| Hand Wheel                     | A47 Gr. 32510            |  |  |  |
|--------------------------------|--------------------------|--|--|--|
| Hand Wheel Nut                 | Brass                    |  |  |  |
| Wheel Plate                    | Aluminum                 |  |  |  |
| Design Specifications          |                          |  |  |  |
| Item                           | Applicable Specification |  |  |  |
| Pressure - temperature ratings | MSS SP-80                |  |  |  |
| General valve design           | MSS SP-80                |  |  |  |
| Thread design                  | ASME B1.20.1             |  |  |  |
|                                | ASTM                     |  |  |  |


## Class Fig. No. 125 2700 150 2714

## **DESIGN FEATURES:**

- Renewable solid wedges.
- Integral seats.
- High-Tensile bronze alloy stem.
- Stems are rotating / rising design.
  - Each valve is shell and seat pressure tested per industry standard MSS SP-80.

GATE VALVE DIMENSIONS (CLASS 125 AND 150).

| SIZE | SIZE FIG 2700 & 2714 |      |      |     |      |    |         |  |  |
|------|----------------------|------|------|-----|------|----|---------|--|--|
|      |                      |      |      |     |      |    |         |  |  |
| in   | A                    | С    | D    | Е   | WT   | lb | $C_{V}$ |  |  |
| mm   | A                    | C    | D    | E   | VV 1 | kg | CV      |  |  |
| 1/4  | 1.75                 | 4.3  | 0.38 | 2.1 | 0.8  |    | 3.2     |  |  |
| 6    | 44                   | 108  | 10   | 54  | 0.4  |    |         |  |  |
| 3/8  | 2.00                 | 4.3  | 0.38 | 2.1 | 0.8  |    | 7.1     |  |  |
| 10   | 51                   | 108  | 10   | 54  | 0.4  |    |         |  |  |
| 1/2  | 2.38                 | 4.9  | 0.50 | 2.5 | 1.1  |    | 12.6    |  |  |
| 13   | 60                   | 124  | 13   | 64  | 0.5  |    |         |  |  |
| 3/4  | 2.44                 | 6.1  | 0.75 | 2.8 | 1.9  |    | 30      |  |  |
| 20   | 62                   | 156  | 19   | 70  | 0.9  |    |         |  |  |
| 1    | 2.75                 | 7.4  | 1.00 | 3.0 | 2.7  |    | 55      |  |  |
| 25   | 70                   | 187  | 25   | 76  | 1.3  |    |         |  |  |
| 11/4 | 3.00                 | 8.6  | 1.25 | 3.3 | 4.0  |    | 90      |  |  |
| 32   | 76                   | 219  | 32   | 83  | 1.8  |    |         |  |  |
| 1½   | 3.38                 | 9.6  | 1.50 | 3.6 | 5.2  |    | 130     |  |  |
| 40   | 86                   | 244  | 38   | 92  | 2.4  |    |         |  |  |
| 2    | 3.50                 | 11.7 | 2.00 | 4.1 | 9.5  |    | 240     |  |  |
| 50   | 89                   | 297  | 51   | 103 | 4.3  |    |         |  |  |
| 21/2 | 4.50                 | 14.8 | 2.50 | 5.1 | 16.2 |    | 350     |  |  |
| 65   | 114                  | 375  | 64   | 130 | 7.3  |    |         |  |  |
| 3    | 5.00                 | 17.1 | 3.00 | 5.7 | 23.5 |    | 510     |  |  |
| 75   | 127                  | 435  | 76   | 144 | 10.7 |    |         |  |  |



C = Center to top open

WT = Weight  $C_V = Flow Coefficient$