Catalog No. BE302-04

NDV BALL VALVES

NIPPON DAIYA VALVE Co., Ltd.

1. 2-Way Ball Valve

Fire Safe Type Ball Valve: F100NB High Pressure / Large Bore Ball Valve: E(K)100S Jacketed Ball Valve: E100JNC Extension Stem Ball Valve: FEX100NB

2. 3-Way Ball Valve

- 2 Seats 3-Way Ball Valve: E300NB-L2
- 4 Seats 3-Way Ball Valve: E300NB-T4/L4
- 3 Seats 3-Way Ball Valve: E300N-T3/L3

3. V-Port Valve

V100ND(NC)

4. Pneumatically Operated Valve

Pneumatically Operated 2-Way Ball Valve Pneumatically Operated 3-Way Ball Valve Pneumatically Operated V-Port Valve

5. Electrically Operated Valve

Electrically Operated 2-Way Ball Valve Electrically Operated 3-Way Ball Valve Electrically Operated V-Port Valve

6. Special Purpose Ball Valve

High Temperature Ball Valve Y-Shaped 3-Way Ball Valve Ball Valve for Shield Tunneling Method Top Entry Ball Valve

7. Safety Instructions

Lever Operated Valve V100ND (NC) Pneumatically Operated ON-OFF Valve VPN1100ND (NC) Pneumatically Operated ON-OFF Valve VPN3100ND (NC) Electrically Operated Valve VMS4100ND (NC)

Contents

7 | 1. 2-Way Ball Valve

8	2-Way Ball Valve Structure and Features	12	1-1. Fire Safe Ball Valve: F100NB
9	Sealing Mechanism	15	1-2. High Pressure / Large Bore Ball Valve: E(K)100S
10	Reference for Seat Selection	16	1-3. Jacketed Ball Valve: E100JNC
		18	1-4. Extended Gland Ball Valve: FEX100NB

21 | 2. 3-Way Ball Valve

22	Flow Pattern and Seats number	24	2-1. 2 seats 3-Way Ball Valve: E300NB-L2
23	Changeover Form	25	2-2. 4 seats 3-Way Ball Valve: E300NB-T4/L4
23	Valve Code	26	2-3. 3 seats 3-Way Ball Valve: E300N-T3/L3

27 | 3. V-Port Valve

28	Structure and Features	31	3. V-Port Valve: V100ND(NC)
29	Reference for Seat Selection		

33 | 4. Pneumatically Operated Valve

34	Torque Actuator: 04DN to 12DN	43	4-2. Pnuematically Operated 3-Way Ball Valve
-		-	
36	Torque Actuator for Large Bore: 13D to 25D	44	2 seats 3-Way Ball Valve:
37	Selection for Actuator		EPN(PO,PC)1300NB-L2
38	4-1. Pneumatically Operated 2 Way Ball Valve	46	4 seats 3-Way Ball Valve:
39	Fire Safe Ball Valve:		EPN(PO,PC)1300NB-T4/L4
	FPN(PO,PC)1100NB		3 seats 3-Way Ball Valve:
41	Jacketed Ball Valve:		EPN(PO,PC)1300N-T3/L3
	EPN(PO,PC)1100JNC	48	4-3. Pneumatically Operated V Port Valve:
42	Extended Gland Ball Valve:		VPN(PO,PC)1100ND(NC)
	FEXPN(PO,PC)1100NB	51	4-4. Data for Pneumatically Operated Valve

55 | 5. Electrically Operated Valve

56	Models and Features	65
56	SRH Type	
57	SRJ Type	
58	SHA Type, SD# Type	
59	PMK Type	
60	5-1. Electrically Operated 2-Way Ball Valve	
	Fire Safe Type:	
	F[]4100NB	70

65 5-2. Electrically Operated 3-Way Ball Valve 2 Seats 3-Way Ball Valve: E□4300NBL2 4 Seats 3-Way Ball Valve: E□4300NB-T4/L4 3 Seats 3-Way Ball Valve: E□4300N-T3/L3 70 5-3. Electrically Operated V-Port Valve V□4100ND(NC)

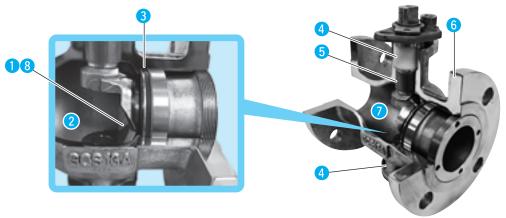
73 | 6. Special Purpose Ball Valve

74	6-1. High Temperature Valve	81	6-3. Ball Valve for Shield Tunneling Method
	Metal Seat Ball Valve	82	6-4. Top Entry Ball Valve
76	6-2. Y-Shaped 3-Way Ball Valve		

83 | 7. Safety Instructions

3

V-Port Valve


Structure and Feature of V-Port Valve Reference for Seat Selection 3. V-Port Valve: V100ND(NC)

Structure and Feature of V-Port Valve

Structure and Features

V-Port Valve is the most suitable for resin pellet (nylon etc.), powder (fly ash etc.), paper mill (pulp fluid), slurry (steel mill, muddy water, lime milk etc.) and any other high viscous fluid.

The valve has high performance for heat resistance, abrasion resistance and flow control.

V-Cut Ball

The valve is effective to cut cellulose or solid matter by V shaped opening of the half-sphere ball. The valve is superior for abrasion resistance by stelite applied to seat side and lapping applied surface of ball. (note; For soft seta , hard chrome plated.)

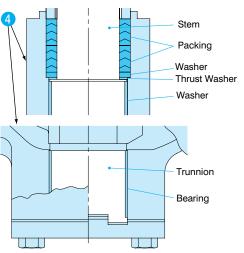
2 Pocketless Structure

Since seat is located at inlet side only, congestion of fluid or clogging between ball and body will not occur. By this seal configuration, abnormal pressure rise will not occur too.

③ Seat with Heat Resistance and Abrasion Resistance

The seat has both rigidity and flexibility, therefore, it can seal from vacuum to high pressure without an influence by temperature and/or pressure difference. The valve is usable in high temperature if metal seat is applied. The seat has high abrasion resistance against abrasive fluid such as slurry and powder. (The details about the seat are described in the next page.)

4 Stable Bearing Configuration


Reinforced PTFE is applied to bearings for stem and trunnion and therefore, the operation torque is low and the frequent operation is possible.

6 Gland Packing with Superior Sealing

Perfect sealing is possible from vacuum condition to high pressure condition by applying V-Packing. (V100ND)

6 Integrated Body

The valve body is an all integrated body. Therefore, there are no fluctuations in torque by piping stress, no deterioration of sealing or no external leakage.

7 Full Flow

When the valve is fully opened, the flow passage is almost straight, minimizing pressure loss and ensuring a full capacity flow. Slurry or high viscous fluids can flow the passage smoothly without congestion or cavitation.

8 Flow Control

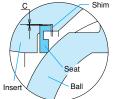
The V-shaped cut ball increases rangeability and enhance flow rate control ability. The flow characteristics are almost equal percentage.

2-Way Ball Valve

Ball Valve

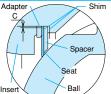
3-Way

Special


Reference for Seat Selection

Seat Specification and Features (V100ND)

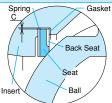
- Solid (thick) Seat, Thin Seat and Soft (Reinforced PTFE) Seat are available for wide range purposes.
- The above three kinds of seats are compatible.
- Outer diameter has a clearance C. By placing the seat on the spherical surface of the ball, seal surface of the seat becomes centripetal and equal contact can be obtained.


cantilever action and seal surface of the seat adheres to the surface of the ball.

Solid (thick) Seat (Code: ST)

Application: resin pellet, powder, slurry, high viscous fluid

Thin Seat (Code: M)



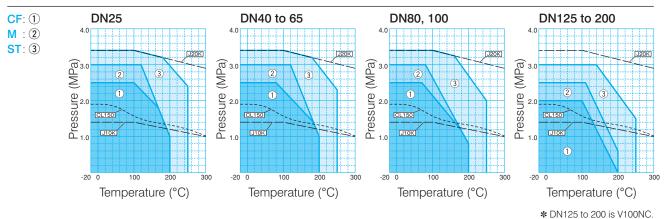
Thin spring plate of SUS316H. The principle of the seal is cantilever as same as the solid seat. However, since the flexibility is better, the leakage tolerance and the torque of the valve can be minimized than the solid seat.

SUS316 (Stellite at seal surface). When the insert is tightened, a notch at the backside of the seat makes

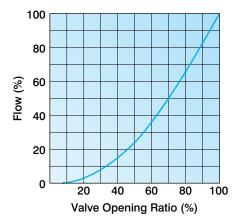
Application: cellulose fluid, viscous fluid, sludge

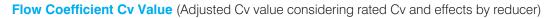
Soft Seat (Code: CF)

Carbonfiber reinforced PTFE. Since the seat spring acts as cantilever, more stable sealing than thin seat can be obtainable.


Application: water, oil, air, for on-off control of clean fluid

Allowable Seat Leakage


Kind of Seat	Allowable Leakage	Applicable Code	
Solid Seat (ST)	0.5% of rated Cv	ANSI B16.104 Class II and IEC534-4 Class II	
Thin Seat (M)0.0005% of rated Cv		ANSI B16.104 Class IV 1/20 and IEC534-4 Class IV-S1	
Soft Seat (CF)	Zero leakage	_	


Remark: Solid seat with allowable leakage of 0.002% is also available.

Working Pressure and Temperature Range

Flow Characteristics

DN	Rated Cv	D×DN	Adjusted Cv	D×DN	Adjusted Cv	D×DN	Adjusted Cv
25	28	40×25	23	50×25	21	65×25	20
40	75	50×40	68	65×40	60	80×40	55
50	153	65×50	127	80×50	110	100×50	95
65	250	80×65	218	100×65	185	125×65	165
80	350	100×80	312	125×80	270	150×80	245
100	540	125×100	480	150×100	430	200×100	360
125	930	150×125	835	200×125	675	250×125	575
150	1320	200×150	1110	250×150	950	300×150	830
200	2000	250×200	1800	300×200	1620	350×200	1500

Cv value Calculation

F	Fluid	Formula	V: Maximum Flow (m ³ /hr) G: Gravity (water: 1, air: 1)	Density (%)	Correcti
	General	$C_V = 11.56V \sqrt{\frac{G}{(P_1, P_2)}}$	P1: Valve inlet pressure (kPa·A) P2: Valve outlet pressure (kPa·A)	1	
Liquid		$V = 11.007$ V $(P_1 - P_2)$	ΔP : P1-P2 (kPa)	2	
Liquid	Viscous		<i>R</i> : Viscosity correction factor	3	
	Fluid	$C_V = 11.56 V \cdot R \cdot \sqrt{\frac{G}{(P_1, P_2)}}$	<i>t:</i> Temperature(°C) <i>Q</i> : Maximum Flow (15.6°C, 101.3 kPa)	4	
		V (F1-F2)	W: Maximum Flow (kg/hr)	5	
Gas	$\Delta P < \frac{P_1}{2}$	$C_{V} = \frac{Q}{2.93} \sqrt{\frac{G(273+t)}{\Delta P(P_{1}+P_{2})}}$	 K: 1+(0.0013 x Superheated value°C) Superheated value: Temperature difference (t-t1) between saturate temperature (t) in absolute pressure at valve inlet and temperature 		
Gas	$\Delta P{\geq \frac{P_1}{2}}$	$C_V = \frac{Q\sqrt{G(273+t)}}{2.538P_1}$			
Steam	$\Delta P < \frac{P_1}{2}$	$C_V = \frac{WK}{0.1391\sqrt{\Delta P(P_1 + P_2)}}$	at valve inlet (t1). For saturated steam, superheated value is assumed to be zero.		
Steam -	$\Delta P{\geq \frac{P_1}{2}}$	$C_V = \frac{WK}{0.1205P_1}$			

Pulp Density Correction Value

Valve Nominal Size

Reducer (D×DN)

۱L

Adjusted Cv based on the reducer type

Z

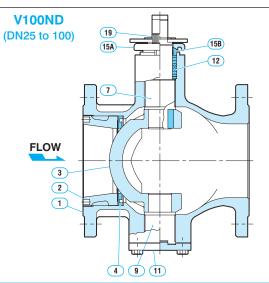
Pipe Nominal Size

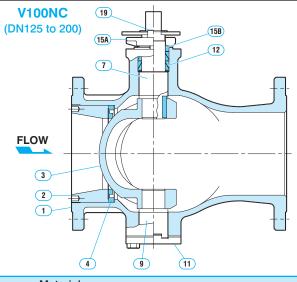
Density (%)	Correction Factor (K1)
1	1
2	1.1
3	1.2
4	1.4
5	1.9

1. Viscosity correction factor R will be applied when the fluid is more than 20cSt.

2. Pulp density correction will be calculated by multiplying Cv value with K1 (Viscous fluid formula to be used.)

30


3 V-Port Valve: V100ND


Specification

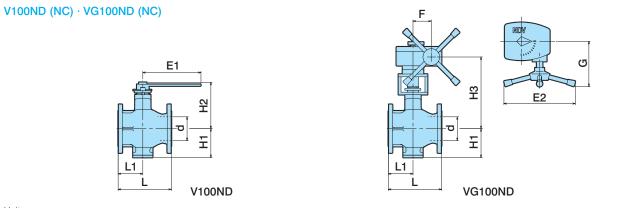
Туре	V100ND	V100NC				
Nominal Size (*1)	DN25 to 100	DN125 to 200				
Face to Face Dimension	According to ISO5752					
Connection type	Class (ASME, JPI) 150, 300					
Body Material (*2)	SCS13A (CF8)	SCS13				
DOUY Material (*2)	SCS14A (CF8M)	SCS14				
Ball Material / Seat Material According to the combination of Ball and Seat						
Operation type	Lever, Gear, Pneumatical, Electrical					
*1: DN20 and over 250 are also availab	1 DN20 and over 250 are also available					

*2: FCD is also available.

Parts and Materials

Parts		Material						
	Faits	V107ND	V107NC	V112ND	V112NC			
1	Body	SCS13A SCS13		SCS14A	SCS14			
2	Insert	SCS13A	SUS304	SCS14A	SUS316			
3	Ball	SCS11 SCS11		SCS11 (ST) SCS11 (Hcr.P)				
4	Seat	SUS316 (S SUS316H Reinforced	(M)	SUS316 (ST) SUS316H (M) Reinforced PTFE (CF)				
7	Stem		316	SUS316				
9	Trunnion	SUS	316	SUS	316			
11	Trunnion Cover	SUS	316	SUS316				
12	Packing	New-PTFE	PTFE	New-PTFE	PTFE			
15A	Gland Flange	SCS13A SCS13		SCS13A SCS13				
15 B	Gland	SUS	304	SUS304				
19	Cap Screw	SUS	304	SUS	304			

Combination of Ball and Seat


	V100ND, V100NC				
Туре	Ball	Seat			
Solid Seat (thick)	SCS11+ST	SUS316 + ST			
Thin Seat	SCS11+Hcr.P	SUS316H			
Soft Seat (Reinforced PTFE)	303TT+HCLF	Reinforced PTFE(CF)			

•ST: Stellite •Hcr.P: Hard chrome plating

Codes	S						
				Val	ve Code for V1	00ND	
V ·	1 () 7 N	D	- C	F - 0	50	- J 1 0 K R F
Ť -			*	2		3	4
				V100ND (NC) (V-Port Val	ve)	
1 Bo	dy Mat	terial	2 Se	eat Material (I	Refer to P 29)	3 Nomii	nal Size (DN or A)
07	SCS	13A	ST	Solid Seat		Confo	orming to ISO6708 and JIS B2001
12	SCS	14A	М	Thin Seat			
			CF	Soft Seat			
4 Co	nnecti	on		* Impro	ovement Identi	ication Co	ode
J10	KRF	JIS 10KRF		None	Original Desig	n	
J20	KRF	JIS 20KRF	_	Ν	First Improver	nent	
A15	ORF	ASME CL150	_	NB	Second Impro	vement	
	_						

Fourth Improvement

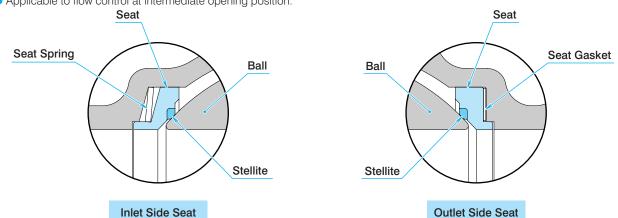
Dimension

ND

Unit: mm

Nominal						Leve	Lever Operated Valve			Gear Operated Valve						Mass (Approx. kg)				
al size	d	l	-	L1	H1	H2	E	1	H	3	(G	I	=	E	2	Lever O	perated	Gear O	perated
b∂ DN	\mathbf{n}	10K CL150	20K				10K CL150	20K	10K CL150	20K	10K CL150	20K	10K CL150	20K	10K CL150	20K	10K CL150	20K	10K CL150	20K
25	25	127	165	55	48	108	160	160	—	—	—	—	—	—	-	—	3.8	5.0	—	-
40	38	165	190	70	71	135	230	230	—	—	—	—	—	-	—	—	6.8	8.5	—	-
50	51	178	216	75	77	140	230	230	—	—	—	—	—	-	—	—	8.1	10.5	—	-
65	64	190	241	80	96	163	350	350	—	—	—	—	—	-	—	—	13.0	15.5	—	-
80	76	203	283	90	101	168	300	300	—	—	—	—	—	-	—	—	14.0	17.0	—	-
100	102	229	305	106	131	209	450	450	311	316	165	190	62.5	77	240	300	21.0	26.5	38.0	49.0
125	127	356	381	145	163	295	050	000	378	378	100	000	77.0	00 5	000		44.0	50.0	77.0	81.0
150	152	394	403	150	173	307	650	800	388	388	190	230	77.0	90.5	300	460	55.0	64.0	90.0	95.0
200	203	457	502	200	211	368	800	1000	446	464	230	260	90.5	121	460		86.0	98.0	135.0	150.0

Special Purpose Ball Valve


- 6-1. High Temperature Ball Valve
 - Metal Seat Ball Valve
- 6-2. Y-Shaped 3-Way Ball Valve
- 6-3. Ball Valve for Shield Tunneling Method
- 6-4. Top Entry Ball Valve

6-1 High Temperature Ball Valve

Metal Seat Ball Valve

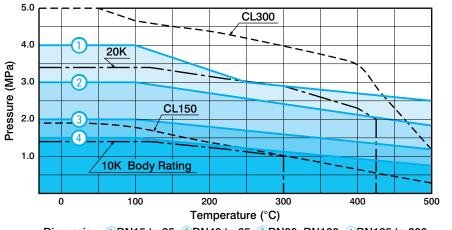
Features of Metal Seat (Code: ST)

- Maximum Working Temperature 500°C (may have some limit according to the working condition.)
- Superior in abrasion resistance, applicable to abrasive fluids such as powder and slurry.
- Applicable to flow control at intermediate opening position.

Specification

F100NB, E100JNC			
DN15 to 200			
Flanged type JIS10K, 20K (*1) Class (ASME, JPI) 150,300 (*2)			
Body Material FCD400, SCS13A, SCS14A			
SUS304 & ST, SUS316 & ST			
SUS304 & SFNi, SUS316 & SFNi			
(SFNi: Nickel base fusible alloy Thermal spraying deposit on Ball)			

*1: JIS B2220 *2: ASME B16.5

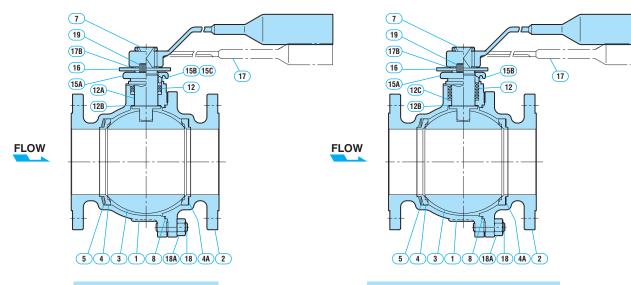

Allowable Seat Leakage

Nomii	nal Size (DN)	15	20	25	40	50	65	80	100	125	150	200
Allowable leakage (cc/min)	Hydraulic Pressure 0.3MPa	0.014	0.018	0.023	0.036	0.045	0.059	0.072	0.09	0.11	0.14	0.18
	Air Pressure 0.6MPa	0.8	1.1	1.4	2.2	2.7	3.5	4.3	5.4	6.8	8.1	10.8

Allowable Leakage of hydraulic pressure is according to ASME B16.104 Class V.

Allowable leakage for air pressure is calculated by those for hydraulic pressure considering water and air leakage ratio written in JIS B2003 General rules for inspection of valves.

Working Pressure and Temperature Range


Dimension ①DN15 to 25 ②DN40 to 65 ③DN80, DN100 ④DN125 to 200

3-Way Ball Valve

figh

Safety Instructions

Parts and Materials

Standard Specification

High Temperature Specification

\sim	Code	S	tandard Specificatio	on	High Temperatu	re Specification	
	Working	F104NB-ST	F107NB-ST	F112NB-ST	FH107NB-ST	FH112NB-ST	
Part	s Temperature	-5 to 250°C	-29 to	250°C	251 to 5	00°C (* 2)	
1	Body	FCD400	SCS13A	SCS14A	SCS13A	SCS14A	
2	Flange	FCD400	FCD400 SCS13A		SCS13A	SCS14A	
3	Ball	SUS304	& SFNi	SUS316 & SFNi	SUS304 & SFNi	SUS316 & SFNi	
4	Seat	SUS30		SUS316 & ST	SUS304 & ST	SUS316 & ST	
4 A	Seat Gasket	High intensity	fiber reinforced expa	inded graphite	Expanded grap	hite & SUS316L	
5	Seat Spring	SL	SUS316CSP or SUS316H			r SUS316H (*3)	
7	Stem	SUS304 (*1) SUS316 (*1)			SUS630 (H900)		
8	Gasket		NTF	Expanded grap	hite & SUS316L		
12	Packing		NTF	Wire reinforced e	xpanded graphite		
12A	Bearing		NTF	-	_		
12B	Thrust Washer		NTF		SUS304CSP		
12C	Gland Flange		—		SUS304CSP		
15A	Gland Packing		SCS13A		SCS13A		
15B	Gland Packing Ring		SUS304		SUS304		
15C	Stem Bearing		NTF		-	_	
16	Travel Stop		SUS304		SUS	\$304	
17	Lever	S	Standard Lever & Pip	Standard L	ever & Pipe		
17B	Retaining Ring	SUS304			SUS304		
18	Stud Bolt	SNB7	SUS	\$304	SUS	\$304	
18A	Nut	S45C	SUS	S303	SUS	\$303	
19	Cap Screw	S45C	SUS	S304	SUS	5304	

*1: DN15 and DN20 are of SUS329J1 *2: 400°C is the maximum in oxidative atmosphere. *3: Inconel X750 for over 351°C

6-2 Y-Shaped 3-Way Ball Valves

Main Applications

- High abrasive fluid such as Powder and Slurry
- Solid etc such as pellet
- Usage of pigs or spheres for cleaning piping

Features

1 Wide Angle Body Shape

While normal 3-way ball valve has a 90 degrees angle, the 3-way ball valve has a wide angle of 135 degrees. It is suitable for high abrasive fluid, high viscous fluid or usage of pigs or spheres for cleaning piping.

Plexible installation position

Straight type and 22.5 degrees type flanges are available. By the combination of these two types of flange at three ports of valve, 54 piping patterns are possible. (Refer to "Flange Application Model")

3 Ball Design

Since the ball and the stem are integrated (fixed valve), the gap of angle at the valve face and the stem will not occur. In addition since the radius curvature of the ball port is 1.5 times than that of the bore, pressure loss is small and the damage of the ball can be minimized even in high abrasion fluid flow.

4 Inlet Side Seal Mechanism

The spring at the seat rear side (rubber cushion for DN100 or less, metal spring for DN125 or more) provides excellent sealing even in heat cycle and pressure fluctuations. Moreover, since the sealing is done at inlet side, the functional deterioration by fluid flowing into the pocket can be minimized.

O-Ring Seal

O-Rings used at each seal provide stable sealing performance and eliminates the need for periodical tightening.

6 Stable Bearing Performance

Reinforced PTFE are used for the bearings for the shafts above and below the ball. This prevents galling and enables the valve to cope with very frequent operation.

Purge hole

The body has two purge holes. They can be used for the prevention of fluid congestion by air charge, the leakage check for seat abrasion, and the purge of fluid remaining at pockets.

Specification

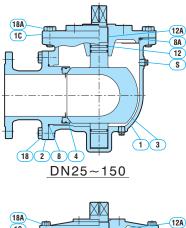
	Items	Specification			
Nominal Si	ze (DN)	25 to 300			
Connection		Flange Type JIS10K (*1), Class (ASME, JPI) 150 (*2)			
Max. Working Pressure		1.4 MPa			
Max. Working Temperature		150°C			
	Body	Body SCS13A, FCD400 (DN65 or more), SCS14A♣, SCS16A♣			
Materials	Ball	SCS13A, SCS14A*, SCS16A*			
	Seat	Reinforced PTFE (CF), Semi-metal Seat (SM)*, Metal Seat (ST)*			
Operation		Lever (up to DN150), Gear (DN200 or more)			
Operation	Automatic	Pneumatical (double acting only), Electrical, Hydraulic			

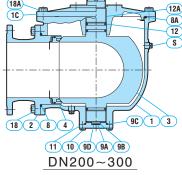
Option: 1. Body Material: SCS14A, SCS16A

2. Hardening is treated on ball surface for semi-metal and metal seat.

*1: JIS B2220 *2: ASME B16.5

Ball Valve


3-Way I


Special Purpose Ball Valve

Ball Valve

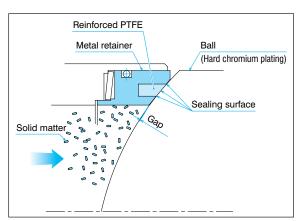
Shaped

Parts and Materials

	Parts	Material	Remarks		
1	Body	SCS13A			
1C	Body Cover	SCS13A			
2	Body Connector	SCS13A			
3	Ball	SCS13A			
3	Dali	SCS13A & Surface hardening	for SM, ST Seat		
4	Seat	Refer to Seat Deta	ils described below		
4 A	Seat Retainer (CFRS)	Refer to Seat Deta	ils described below		
4B	O-Ring	Refer to Seat Deta	ils described below		
4C	Shim	Refer to Seat Deta	ils described below		
5	Seat Spring	Refer to Seat Deta	ils described below		
8	O-Ring	NBR (FKM) *			
8A	O-Ring	NBR (FKM) *			
9A	Pivot	SUS304	DN200 to 300		
9B	Thrust Washer	Reinforced PTFE	DN200 to 300		
9C	O-Ring	NBR (FKM) *	DN200 to 300		
9D	Shim	SUS316	DN200 to 300		
10	Bolt	SUS304	DN200 to 300		
11	Trunnion Cover	SUS304	DN200 to 300		
12	O-Ring	NBR (FKM) *			
12A	Bearing	SUS316 & Reinforced PTFE			
18	Bolt	SUS304			
18A	Bolt	SUS304			
S	Plug	SUS304			

Seat Details

		DN25	to 100	DN125	5 to 300
		NTF, CF, GR	SM	CFRS, GRRS	SM
	Sketch			5 4B 4A 4	
	Parts		Mat	erial	
4	Seat	Reinforced PTFE	SUS & Reinforced PTFE	Reinforced PTFE	SUS & Reinforced PTFE
4 A	Seat Retainer	—		SUS304	—
4B	O-Ring	NBR, FKM *	NBR, FKM *	NBR, FKM *	NBR, FKM *
4C	Shim	SUS316	SUS316		—
5	Seat Spring	Silicone Rubber, FKM	Silicone Rubber, FKM	SUS329J4L	SUS329J4L


* O-Rings are of FKM (fluororubber) when fluid temperature is more than 80°C

Sealing Mechanism of SM (Semi-metal Seat)

Semi-metal seat has a structure that reinforced PTFE (CF: with carbon fiber, GR: with glass fiber) is inserted into metal retainer by hydraulic press and the gap between ball and metal retainer is designed to be minimum. (For CFRS and GRRS, reinforced PTFE is inserted by hand.) Therefore, solid matter in fluid can be blocked to enter into seal surface directly. In addition, even if a metal touch condition happens, the better sealing than normal metal touch condition can be maintained by metal-PTFE-metal triple seal.

Hard chromium plating is provided on the surface of ball considering abrasion resistance so that long lifetime can be attained without galling between ball and seat.

Records of Main Fluid: Corks powder, Resin pellet, CWM slurry

WN Type Pneumatic Actuator

Features

This actuator has been developed exclusively for 3-Way Ball Valve of which rotation angle is 135 degrees.

The actuator provides stable operation by applying simple rack and pinion design.

Maximum operating pressure is 0.7MPa.

Speci

Specificatio	on			
Code	Cylinder Volume (I)	Air Consumption (NI) (Operating press 0.4MPa)	Mass (kg)	Specification
WN-1N	0.94	4.6	11	Maximum Operating Pressure: 0.7MPa
WN-2N	2.2	10.8	18	 Ambient Temperature: -10 to 60°C
WN-3N	4.4	22	28	Rotation Angle: 135°
WN-4N	8.0	40	47	 Bore Size: Bore Size: Rc1/4 (WN-1N to WN-4N)
WN-5N	17	84	86	Rc3/8 (WN-5N to WN-7N)
WN-6N	33	162	156	
WN-7N	58	282	256	 Painting: Silver (conforming to RoHS)

Unit: mm

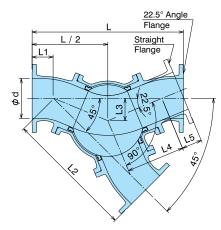
Actuator Selection Table

DN	Rank	Actuator Code)	
DN	папк	Pneumatic	Operating	
25	В			
25	С	WN-1N		
40	В			
40	С	WN-2N		
50	В	VVIN-ZIN		
50	С	WN-3N		
65	В	WN-2N	Lever	
05	С	WN-3N		
80	В	VVIN-SIN		
00	С	WN-4N		
100	В	VVIN-4IN		
100	С			
125	В	WN-5N		
120	С	NIC-NIVV	Gear	
150	В		Lever	
150	С	WN-6N		
200	В	VVIN-DIN		
200	С			
050	В	WN-7N	Coor	
250	С	VVIN-7IN	Gear	
	В			
300	С	WN-7N (Operating Pressure 0.6MPa)		

Selection by Operating Condition (Rank)

Rank	Seat	Fluid (Example)
В	CF, CFRS	Oil, Sludge, Viscous Fluid (up to 500CP), Powder (Soft, not including solid matter)
С	SM	Powder (Hard/Soft, including solid matter), Slurry, High viscous fluid (Gum)

Operation Form (Example)


Arrow direction below shows the movement from the position before changeover.

BEFORE Changeover	AFTER Changeover
Form 1	Form 2
BEFORE Changeover	AFTER Changeover
п п	
Form 2	Form 1

Safety Instructions

Dimension

Base Dimension

Unit: m	m						
DN	d	L	L1	L2	L3	L4	L5
25	25	230	50	180	27	70.4	44.6
40	38	250	51	199	31	80.1	44.9
50	51	280	56	224	35	90.9	49.1
65	64	320	50	264	43	112.6	47.4
80	76	360	69	291	46	120.1	59.9
100	102	460	76	384	64	166.7	63.3
125	127	530	84	446	75	195.9	44.1
150	151	580	73	507	90	234.9	30.1
200	200	760	110	650	111	292.2	47.8
250	249	800	86	714	130	339.7	60.3
300	298	1000	102	898	165	431.2	68.8

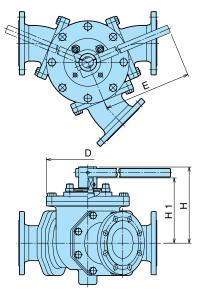
Е 250

970

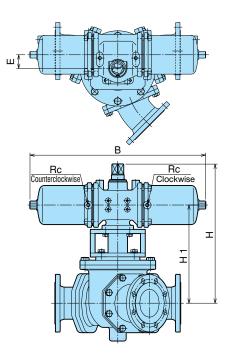
1350

1350

_


_

328


393

422

Manually Operated Valve Dimension

Pneumatically Operated Valve Dimension

DN	D	Н	H1
25	100	122	—
40	130	152	—
50	156	163	—
65	190	198	—
80	212	212	—
100	276	255	—
125	320	271	—

292

_

_

Unit: mm

150

200

250

300

366

476

534

634

Unit: mm

DN	Actuator Code	Н	H1	В	E	Rc	
25	WN-1N	246	171	404	31		
40	WN-1N	271	196	464	51		
40	WN-2N	316	216	520	39		
50	WN-2N	327	227	520	39		
50	WN-3N	346	239	624	45	1/4	
65	WN-2N	348	248	520	39	1/4	
05	WN-3N	373	266	624	45		
80	WN-3N	386	279	024	43		
00	WN-4N	430	300	828	65		
100	WN-4N	484	354	020	05		
100	WN-5N	520	380				
125	WN-5N	542	402	916	72		
150	WN-5N	563	423				
150	WN-6N	674	440	1204	90	3/8	
200	WN-6N	742	508	1204	90	3/0	
200	WN-7N	773	530				
250	WN-7N	844	601	1558	122		
300	WN-7N	874	631				

Pattern (Flange Application Model)

No.	01	02	03	04	05	06
Combination						
tion						
No.	07	08	09	10	11	12
Combination						
No.	13	14	15	16	17	18
Combination						
No.	19	20	21	22	23	24
Combination						
No.	25	26	27	28	29	30
Combination		H H H				
No.	31	32	33	34	35	36
Combination						
No.	37	38	39	40	41	42
Combination						
No.	43	44	45	46	47	48
Combination						
No.	49	50	51	52	53	54
Combination						

2-Way Ball Valve

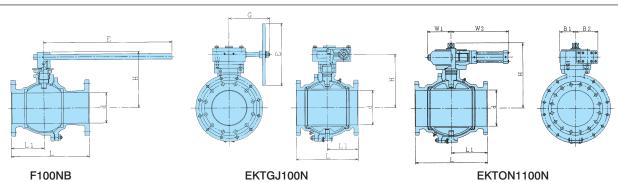
3-Way Ball Valve

6-3 Ball Valve for Shield Tunneling Method

Features

- Valves for Shield Tunneling Method have abundant supply records.
- Compact and robust design.
- Lever, Gear, Ratchet lever, Hydraulic and Pneumatic operation are applicable.

Specification


Manual Operation Type

Туре	Le	/er	Ge	ar	Ratchet Lever						
Ball	Floa	ting	Floating	Trunnion	Floating	Trunnion					
Valve Code	F104NB ET101N		ETGH101N	EKTGJ101N	ETGRH101N	EKTGRH101N					
DN	DN65 to100 DN125 to 200		DN125 to 200	DN250 to 350	DN125 to 200	DN250 to 350					
	Body: FC200 (FCD400 for up to DN100)										
Materials	Ball: SCS13 (Har	Ball: SCS13 (Hard chromium plating)									
	Seat: Reinforced PTFE										

Automatic Operation Type

Туре		Hydraulic		Pneumatic					
Ball	Floa	ıting	Trunnion	Trunnion					
Valve Code	FTON1104NB	ETON1101N	EKTON1101N	EKTPN1101N					
DN	DN65 to 100	DN125 to 200	DN200 to 350	DN200 to 350					
Operating Pressure			0.4 to 0.7 MPa						
	Body: FC200 (FCD400 for up to DN100)								
Materials	Ball: SCS13 (Hard chromium plating)								
	Seat: Reinforced PTFE								

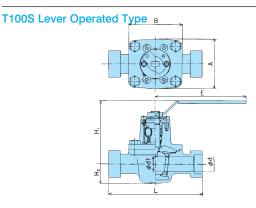
Dimension

F100NB

Unit: mm

Nominal size					Lever			Ge	ear		Hydraulic						
ninal DN	d	L	L1	Е	Н	Mass (kg)	Е	G	Н	Mass (kg)	W1	W2	B1	B2	Н	Mass (kg)	
65	64	190	87	250	135	13.5	—	—	—	—					211	25.0	
80	76	203	97	350	145	16.5	—		—	—	108	272	74	110	221	28.0	
100	102	229	115	450	180	27.0	—		—	—					248	38.5	
125	127	290	145	050	260	57.0		80 160	250	84.0		379	106	148	304	80.0	
150	152	330	165	650	280	72.0	280		270	98.0	153				324	96.0	
200	203	400	200	800	350	110.0	315	200	325	147.0					377	143.0	
250	250	450	225		—	—	450	295	385	280.0	195	458	130	184	464	260.0	
300	300	600	300		—	—	500	075	415	430.0	190	400	130	104	541	390.0	
350	335	700	350		—	—	560	375	440	620.0	225	528	160	202	566	640.0	

6-4 Top Entry Ball Valve (T100S/H)

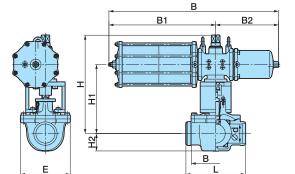

Features

Top entry type is that ball and seat can be taken out from the top of the valve. Welding connection is possible and the maintenance is easy. The valve is suitable for hazardous fluid or precious fluid of which leakage to the outside is not allowed.


Specification

			Valve Type							
		T100S	T100H							
No (DI	minal Size N)		8 to 100							
	essure ass	CL150	CL300							
Со	nnection	SW (Socket	t Weld), BW (Butt Weld)							
Pre	x. Working	1.4 MPa	2.1 MPa							
	ax. Working mperature	100°C	C 150°C							
	Body	SCS13A, SC	SCS13A, SCS14A, SCS16A, SCS19A							
~	Ball		SUS304							
Nate	Seat	PTFE	Reinforced PTFE							
Materials	Packing	Re	inforced PTFE							
S	Facking	FKM (O-Ring)	FKM or Perfluorogum (O-Ring)							
	Gasket	SUS304 & E	xpanded graphite (Spiral wound type)							

Dimension



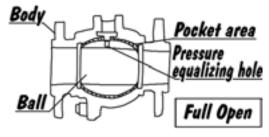
T100H Pneumatically Operated Type

в

Un	it: m	m							
۵	ON	d	L	H1	H2	А	В	Е	Mass (kg)
	8	8		75	20	52	56	100	
	10	10	108	75	20	JZ	50	100	0.9
	15	13		95	23	65	68	130	
	20	19	117	99	26	69	71	130	1.3
	25	25	165	114	32	86	90	160	2.8
	40	38	105	148	42	116	119	230	6.8
	50	51	216	158	53	177	157	230	11.0
	65	64	241	169	63	187	184	350	15.0
	80	74	283	172	73	208	206	330	21.0
1	00	98	305	223	95	256	252	450	35.0

DN	d		н	H1	H2	А	в	Е	h	h Actuator					Mass
DN	u	L	п	пі	пΖ	A	Р	E	п	Code	С	W	W1	W2	(kg)
8	8		176	122	20	52	56	70	00	PO-04D	010	—	—	—	2.5
10	10	108	170	122	20	52	90	70	93	PU-04D	212	—		—	2.0
15	13		193	133	23	65	68	80	108	PO-05D	268	—	—	—	3.9
20	19	117	210	142	26	69	71	80	120	PO-06D	314	—	—	—	5.9
25	25	165	233	165	32	86	90	100	103	FU-00D	314	—	—	—	7.0
40	38	105	286	209	42	116	119	130	151	PO-08D	392	—	—	—	20.0
50	51	216	338	239	53	177	157	130	156	PO-10D	500	—	—	—	28.0
65	64	241	393	280	63	187	184	160	241	PO-12D	604	—	—	—	46.0
80	74	283	403	290	73	208	206	100	233	FU-12D	634				52.0
100	98	305	510	360	95	256	256	252		PO-13D		869	547	322	115.0

3-Way Ball Valve


7

Safety Instructions

Safety Instructions

1. Selection of Valves

- Usable ranges for products described on this brochure are limited according to the domestic/international code and standard and NDV standard. Appropriate products must be selected after confirming the usage conditions (fluid, pressure, temperature etc.).
- 2 Materials for the main parts of valves must be selected properly considering working conditions (fluid, temperature etc.).
- **3** Please specify degrease or water proof when issuing order. (Some of the products may not be applicable for degrease or water proof.)
- Soft seat floating ball valve must be used at full open/close position. Usage at intermediate position may cause damages of the surface of ball and/or seat.
- 6 Because of the structure of ball valve, abnormal pressure rise at pocket (*) occurs if the fluid is liquid and the temperature fluctuates. Ball top is provided with a hole to prevent this abnormal pressure rise. The alternative countermeasure should be taken incase the abnormal pressure rise happens by temperature rise at the pocket during valve full closing. Please consult with NDV or local representative if the case occurs.

During valve full OPEN: Space between ball and shell During valve full CLOSE: Space between ball and shell, Ball bore portion

- **6** Floating ball valve has a mechanism to seal by pushing ball against the seat of the outlet side with fluid pressure. Please consult with NDV or local representative in case that the pressure change is large in operation condition because seat leakage may occur at low pressure operation.
- **?** Please consult with NDV or local representative in case that fluid includes abrasive matter because an abrasion may occur at seat, body or other parts of valve.

2. Receipt and Carriage

- Wrapping and packing conditions, products condition and number of goods must be checked and confirmed at the time of the receipt.
- 2 Delivered goods may be heavy depending on the bore size. Unloading and carriage must be done using proper machines and tools according to the relevant law for safety and health. Do not go under lifted goods, do not insert hand or leg below goods and do not operate lifting machine under the lifted goods.
- **3** If packing is by corrugated board, the packing strength will become low when wetted. Handling must be carefully done if the corrugated board is wet.

3. Storage

- It is recommended to store products under packing condition until installing them to piping.
- If products are stored for some time after unpacking, dust proof seal (cap) at flange face must not be removed.
- 3 Products must be stored under below mentioned conditions in order to avoid rust and/or degradation of materials.
 - 1. To protect from rain or water
 - Ambient temperature must be below 50°C (The temperature might be different by installed accessories.)
 - 3. To avoid high humidity and dust atmosphere

Ball Valve

3-Way

Special Purpose Ball Valve

4. Installation to Piping

- Remove dust proof seal (cap) at connection flange face and confirm that there are no dusts and/or deposits inside. Confirm also that there are no foreign materials inside of the piping after cleaning. Blow off by air or flush by fluid if necessary.
- 2 Ball valves have not a restriction for the flow direction. Install valves to piping considering the position of operation handle and the other necessary issues for safety operation. If flow direction is marked on the valve for some reason such as a protection of abnormal pressure rise, install as directed by the mark.
- 3 Keep a space for overhauling. The space needs necessary area for lifting a complete set of the valve.
- 4 Valves are delivered at full open position unless otherwise specified. Install valves keeping full open position.
- Install valves avoiding strong tension, compression or bending stress to the valves.
- **6** When installing valves, bolts for installation must be tightened diagonally and equally. Unbalanced tightening may cause leakages from connection flanges.
- Confirm that tightening bolts and nuts are not loosened. Retighten them if loosened.
- 8 After installing valves, blowing off by air or flushing by fluid at full open valve condition must be done to clean foreign materials in piping. (Do not close and open valve during blowing off or flushing.)

4 (1) (Diagonally 2 3

5. Operation

- Do not operate valve with excessive torque by attaching a pipe or a wrench to the lever handle for opening or closing.
- 2 Never put fingers or hands into the inside of valve.
- 3 If there is any leakage from the gland, tighten further the gland bolt. If valve is used for fluid of large temperature change, degree of stress relief of packing is large and therefore, retightening must be done after the temperature once becomes high and falls to low.
- 4 Products may be damaged if remaining fluid in the valve is frozen. If there is a possibility of frozen, heat piping line or clean the inside of valves.

6. Pneumatical and Electrical Actuator

- Air vent and electric wiring terminal are fitted with seals. Do not remove the seals until installation to the connections.
- 2 Actuators are delivered after adjustment. Do not disassemble or readjustment. Call NDV or local representative, if some adjustment seems necessary.
- 3 Use air dehumidified and cleaned by filtration.
- Operating pressure and power source must be confirmed by the plate attached to the valve and/or the specification.
- **5** Take care that rain or water will not enter from air hole of the actuator.

7. Disassembling and assembling

Before remove a valve from piping, discharge the fluid in the piping and relieve the pressure. In this occasion, the valve must be opened and closed several times to relieve the pressure in the valve. Special attention must be given if the fluid is hazardous like poisonous or abrasive fluid.

2 Be careful not to damage the seal part of ball surface and flange face during disassembling and assembling.

Мето

Specifications and performance figures of products contained in this catalog are on the design calculations, in-house tests, actual records of product application, and the official standards and specifications. They are presented as the user guide on the use of product concerned under general service conditions. Users intending to use the product under a special condition are required to receive engineering advice from this company in advance or to make their own studies and evaluation to verify performance on their own responsibility. This company shall not be liable for any damages, material or human, that may arise without following this procedure. In as much as full care was taken in editing this catalog, users are kindly requested to make contact with this company for any questions or discrepancies found. This catalog is subject to change without notice for the purpose of correcting error, supplementing or improving insufficient content, updating the content to the improved product performance, design change, discontinuation of product and other reasons. Revised version automatically invalidates catalogs issued prior to the current version. Check the version with our Sales Dept. or local representative before you place orders.

There are several points to be noticed for the use of ball valve based on the structural characteristics. When valve is delivered, a leaflet for Safety Instructions is in the package. Please read this instruction thoroughly before handling and use of products in order to use them safely and stably for a long time.

NDV NIPPON DAIYA VALVE CO., LTD.

 Head Office:
 1-3-22, Hiro-machi, Shinagawa-ku, Tokyo 140-0005

 TOKYO Sales Department:
 Tel. TOKYO (03)3490-4801
 Fax. TOKYO (03)3490-7950

 INTERNATIONAL Sales Department:
 Tel. TOKYO (03)5434-5330
 Fax. TOKYO (03)5434-5331

NAGOYA Branch: 3-2108, Nakajima-shincho, Nakagawa-ku, Nagoya-shi, Aichi 454-0932 Tel. AICHI (052)354-3171 Fax. AICHI (052)354-3174

OSAKA Branch: Takakura Bldg., 2-5-9, Awaji-machi, Chuo-ku, Osaka-shi, Osaka 541-0047 Tel. OSAKA (06)6203-7721 Fax. OSAKA (06)6222-5895

OKAYAMA Branch: Ima 8-chome, No.2 Bldg., 3-35, Ima 8-chome, Kita-ku, Okayama-shi, Okayama 700-0975 Tel. OKAYAMA (086)241-2669 Fax. OKAYAMA (086)244-3540

KITA-KYUSHU Branch: 2-2-4, Tate-machi, Kokurakita-ku, Kitakyushu-shi, Fukuoka 803-0818 Tel. FUKUOKA (093)571-2438 Fax. FUKUOKA (093)591-3277

http://www.ndv.co.jp