

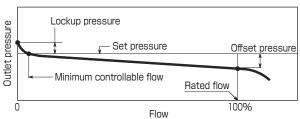
Direct acting

Type PPD41B Pressure Reducing Valves

- Negligible influence is exerted by inlet pressure change due to the use of a pressure balancing construction.
- ●To cope with high pressure use of PPD41B-3.
- ●For larger flow rate, use type PHP30 pressure reducing valve.

Specifications

Fluid	Pressure (MPa)		Tomp	Material for main parts					
	Inlet	Outlet set range	Temp. (℃)	Body	Bottom cover	Spring case	Valve disc & stem	Diaphragm	Connection
Air & non- corrosive gases	0.7-4.0	0.6-1.6 1.3-2.3 2.0-3.0	0-80	Stainless steel	Stainless steel	Cast steel or carbon steel	Stainless steel (Teflon seated)	Synthetic rubber	Flanged JIS40KRF


Remarks 1. Cast steel body and stainless cast steel body are available on request.

Performance

Min. differential pressure	0.1MPa		
Offset pressure	Approx. 10% of max. set range		
Lockup pressure	Approx. 0.1MPa		
Min. controllable flow (air) (1)	3m³/h (normal)		
Seat leakage	0.05% of rated flow or less		

Note (1): Except for air, the flow rate should be divided by \sqrt{G} (G: sp.gr., air: 1).

Flow characteristic curve

Cv values

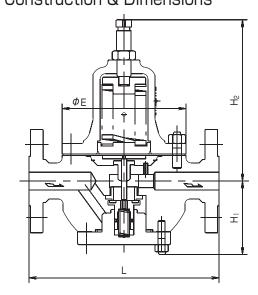
Size	15	20	25	
Cv	1.8	2.6	3.9	

Note

Use as the flow rate either the Cv value calculation or the maximum flow rate, depending on which is the smaller rate. Use the smaller value as the rated flow.

Maximum flow rate conforms to the following formula which is based on the velocity 30m/s at valve outlet.

Max. flow rate
$$V_{LM} = K \cdot P_2 \cdot \frac{273}{G_1(273 + t)} \text{ m}^3/\text{h} \text{ (normal)}$$


P₂: Set pressure MPa abs.

t : Temperature ℃

G: Specific gravity (air:1)

K: 218 for size 15 392 for size 20 641 for size 25

Construction & Dimensions

Dimensions and weights

(mm,	kg)
(1111111,	1/0/

Size	L	H ₁	H ₂	Е	Weight
15 · 20	223	83	182	140	18
25	227	83	182	140	20

^{2.} ASME class 300RF and class 600RF flange are available.